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1. Introduction 

 

Composite laminate shows a better results using 

different material properties as compared to a single layer 

and homogenous material structures owing to the large 

number of parameters associated with manufacturing 

processes. The aim of the designer is to control unwarranted 

vibrations, which leads to the failure of the structure. 

Composite materials have the ability to tailor the 

mechanical properties. Moreover, composites offer high 

stiffness to weight ratio, strength to weight ratios, better 

temperature resistance and shock absorbing characteristics 

than homogeneous materials. The use of the lamination 

leads to the structures which have maximum reliability and 

minimum weight. Also that the laminated composite plates 

exhibit larger through-thickness effects than the structures 

made of homogeneous materials, which means that higher-

order shear deformation theories are often required for these 

structures. 

A large number of theories have been proposed by 

different researchers which generally differ in the inclusion 

of the shear deformation and rotary inertia in their 

formulations. The classical theory is based on the Love- 
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Kirchhoff assumption. In this theory, the straight lines 

normal to the undeformed and deformed mid-plane remains 

straight and normal and do not undergo stretching in the 

thickness direction. These assumptions imply the vanishing 

of the transverse shear and transverse normal strains. This 

theory accurately measures the stress analysis of thin 

composites plates. This theory is not suitable for thick 

laminated plates since it has over prediction in natural 

frequencies (Noor et al. 1996, Vinson 2001). In order to 

study the relatively thick plates, the effect of shear 

deformation should be taken in to account. Reissner (1945) 

first introduced the transverse shear deformation on 

analysing the bending of elastic plates and then Mindlin 

(1951) studied the influence of rotary inertia and shear on 

flexural motions of isotropic elastic plates. Yang et al. 

(1966) included transverse shear deformation and rotatory 

inertia in their study. According to the first-order shear 

deformation theory (FSDT), there is a state of constant 

shear strain through the thickness of the plate (transverse 

shear strain). However, according to the 3D elasticity 

theory, the shear strains vary at least quadratically through 

the thickness (transverse shear strain). So, the shear 

correction factors were introduce to correct the discrepancy 

in the shear forces of FSDT and 3D elasticity theory (Pai 

1995, Pai and Schulz 1999). The value of the shear 

correction factors depends on the lamination properties, 

stacking sequence of layers, geometry and boundary 

conditions (Mackerle 2002, Yang et al. 2000). Moreover, a 
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number of higher-order plate theories were developed to 

evaluate the transverse shear stresses accurately which 

effectively exists in thick plates. In higher-order plate 

theories the displacements are expanded up to any desired 

degree in terms of the thickness coordinates (Noor et al. 

1996, Vinson 2001). In the third-order plate theory the in 

plane-displacements are expanded up to the cubic term in 

the thickness coordinates to have a quadratic variation of 

transverse shear strains and transverse shear stresses 

through the plate thickness. This avoids the need for a shear 

correction coefficient (Reddy 2006). The third-order plate 

TSDT theory of Reddy is widely used because of the 

efficiency of transverse shear stresses. 

Free and forced vibration of anti-symmetric plates was 

studied by Khdeir (2001). Free vibration of rectangular and 

annular plates were analysed using the spectral method 

(Ma’en and Butcher 2012). Saha et al. (2004) used the 

variational method to analyse the large amplitude free 

vibration of square plates for different boundary conditions. 

Bai and Chen (2013) found the free vibration solution of 

rectangular plates using the symplectic eigen function 

expansion approach. Pekovic et al. (2014) studied the 

bending analysis of composite plates under higher-order 

shear deformation theory. 2-D higher-order theory was used 

by Matsunaga (2008) to analyse the free vibration and 

stability of functionally graded plates. A new higher-order 

shear deformation theory was used to analyse the vibration 

of sandwich and composite laminated plates and shells 

(Mantari et al. 2011, 2012). Recently, Mantari and 

Granados (2015) examined the thermoelastic analysis of 

sandwich plates using the quasi 3-D hybrid type HSDT. 

Static inconsistencies of beams, plates and shells were 

investigated using higher-order shear deformation theory by 

Groh and Weaver (2015). Phung-Van et al. (2015a) 

analysed cell-based three-node Mindlin plates using C0-type 

higher-order shear deformation for geometrically nonlinear 

analysis of composite plates. In another paper Phung-Van et 

al. (2015b) analysed the composite plates having 

piezoelectric sensors and actuators using HSDT. Thai et al. 

(2015) studied the isogeometric analysis of composite 

plates using HSDT. Smooth discrete shear gap method 

using C0-type higher-order shear deformation theory for 

analysing the laminated plates were studied by Tran et al. 

(2013). Zhen and Wanji (2006) investigated a free vibration 

of laminated and sandwich plates using global-local higher-

order shear deformation theory. Reddy’s higher-order theory 

was used to examine the free vibration of composite 

sandwich plates (Nayak et al. 2002). Kant and 

Swaminathan (2001a, b, 2002) used refined higher-order 

shear deformation theory to analyse the multilayer plates. 

Composite plates were analysed using multiquadric radial 

basis function under higher-order shear deformation theory 

(Ferreira et al. 2003). Recently, Neves et al. (2013) 

investigated the static, free and buckling analysis of plates 

using quasi 3-D higher-order shear deformation theory. Cho 

and Parmerter (1993) studied the general lamination 

configuration using higher-order composite plate theory. A 

C0 finite element formulation was used to analyse the 

laminated beams by Iurlaro et al. (2015). Karttunen and von 

Hertzen (2015) used an exact theory to study a linearly 

elastic beams. Zeroth-order shear deformation micro-

mechanical model was used to analyse composite plates by 

Lee (2013). Rajagopal and Hodges (2015) examined the 

plates of variable thickness using variationally asymptotic 

analysis method. The spline method was used by 

Viswanathan et al. (2015a, b, c) and Viswanathan and Javed 

(2016) to solve the free vibrational problems of conical 

shells, cylindrical shells and annular circular plates using 

first order shear deformation theory. Further, Javed et al. 

(2016) analysed the free vibration of antisymmetric angle-

ply plates using first-order shear deformation theory. A 

higher order shear deformation theory was used by Sheikh 

and Chakrabarti (2003) in studying the composite plates. In 

addition, Nguyen et al. (2016) applied higher order shear 

deformation theories for laminated composite plates using 

unified approach. Furthermore, Nguyen et al. (2017) 

investigated isotropic and functionally graded material 

plates using the generalized formulation of three-variable 

plate theory. Singh and Singh (2017) used higher order 

shear deformation theory for free vibration and buckling 

analysis of laminated and braided composite plates. 

This paper intends to investigate the free vibration of 

symmetric and anti-symmetric cross-ply laminated plates 

using higher-order shear deformation theory and applying 

spline approximation technique. The plate kinematics is 

based on the third-order shear deformation theory (TSDT). 

In Section 2, the problem is formulated to obtain a 

coupled differential equations in terms of displacement 

functions using the stress-strain relation and strain- 

displacement relations. In sub Section 2.3, the displacement 

and rotational functions are approximated using cubic and 

quantic splines. Collocation procedure is adopted with these 

splines to yield a set of field equations. Along with the 

equations of simply supported boundary conditions the set 

of field equations become a system of simultaneous 

algebraic equations on the assumed spline coefficients as a 

variable. Then the problem is solved using eigensolution 

technique to obtain the frequency parameters and the 

corresponding eigenvectors, which are the spline 

coefficients from which the mode shapes can be 

constructed. Section 3, shows the results of the frequency 

parameters which are obtained with respect to the plate 

aspect ratio, side-to-thickness ratio, ply angles, number of 

lamina with  different material properties The results are 

presented in graphs and tables. 
 

 

2. Formulation 
 

The displacement field considered according to third-

order shear deformation theory (Reddy 2006) 
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where u, v and w are the displacement components in the x, 

y and z directions respectively, u0 and v0 and w0 are the in-

plane displacements of the middle plane and ϕx and ϕy are 

the shear rotations of any point on the middle surface of the 

plate and h is the thickness of the plate. 

 

2.1 Kinematics 
 

In-plane strains are defined as 
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and the shear strain components are defined as 
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2.2 Constitutive equations 
 

The stress-strain relations for the k-th layer, after 

neglecting transverse normal strain and stress, are of the 

form 
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When the materials are oriented at an angle θ with the x-

axis, the transformed stress-strain relations are 
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where 𝑄𝑖𝑗
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 are fully furnished in 

Viswanathan and Lee (2007). 

The stress resultants are defined as 
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where N, M and Q are stress, moment and shear resultants 

respectively. P and R denote the higher-order stress 

resultants. 

The stress-strain relations are obtained as follows. 
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Stiffness coefficients are defined as 
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where the elastic coefficients Aij, Bij and Dij (extensional, 

bending-extensional coupling and bending stiffness) and Eij, 
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Fij and Hij are the higher-order stiffness coefficients. 

The equilibrium equations considered are as follows 
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  (𝑖 = 0, 2, 4, 6) and ρ is the 
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The displacements and rotational functions are assumed 

in the separable form for cross-ply plates, which satisfies 

the simply-supported boundary conditions along the y- axis. 
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2.3 Method of solution 
 

The differential equations in Eq. (11) contains derivative 

of third order in U(X), second order in V(X), fourth order in 

W(X), third order in ΦX(X) and second order in ΦY(X). These 

functions are approximated by using cubic and quantic 

spline functions in the range of X ε [0, 1], since splines are 

relatively simple and elegant (Viswanathan and Javed 

2016). 

The displacement functions U(X), V(X), and W(X)and 

the rotational functions ΦX(X), ΦY(X) are approximated 

respectively by the splines 
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(13) 

 

Here H(X ‒ Xj) is the Heaviside step function and N is 

the number of intervals into which the range [0, 1] of X is 

divided. The points 𝑋 = 𝑋𝑠 =
𝑠

𝑁
, (s = 0, 1, 2,...., N) are 

chosen as the knots of the splines, as well as the collocation 

points. Thus the splines are assumed to satisfy the 

differential equations given by Eq. (11), at all Xs. The 

resulting expressions contain (5N + 5) homogeneous system 

of equations in the (5N = 21) spline coefficients. 

The boundary condition considered on the edges x = 0 

and x = a are; (1) (S-S): both the ends simply supported. 

This boundary condition gives 13 more equations, thus 

making a total of (5N + 18) equations, in the same number 

of unknowns. The resulting field and boundary condition 

equations may be written in the form 
 

      qPqM 2  (14) 
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where [M] and [P] are square matrices, {q} is a column 

matrix. This is treated as a generalized eigenvalue problem 

in the eigen parameter λ and the eigenvector {q} whose 

elements are the spline coefficients. 
 

 

3. Results and discussion 
 

The higher order shear deformation theory is used to 

investigate the free vibration of cross-ply plates for simply 

supported boundary conditions. All numerical computations 

in this section, unless otherwise stated, three materials are 

considered: Kevlar-49/epoxy (KE), Graphite/Epoxy (AS4/ 

3501-6) (GE) and E-glass epoxy (EGE). Symmetric and 

anti-symmetric plates are considered with two, three, four, 

five and six layeres accordingly. 
 

3.1 Convergence study 
 

In this subsection the frequency parameter with respect 

to different parameter values are carried out to confirm the 

convergence of the spline method for cross-ply plates. The 

number of subintervals N of the range X  [0, 1]. The value 

of N started from 4 and finally it is fixed for N = 18, since 

for the next value of N, the percent changes in the values of 

λ are very low, the maximum being 3%. 
 

3.2 Validation 
 

The validation of the applicability and accuracy of the 

present results with the available results is shown in Table 

1, which is the reduced case of the present study and 

compared to Srinivas and Rao (1970) (used exact method), 

Reddy and Phan (1985) (using classical plate theory), 

Reddy and Phan (1985) (using higher-order shear 

deformation theory), Nayak et al. (2002) (using higher-

order shear deformation theory). The material properties are 

assumed to be: E1 = 143.53 GPa, E2 = 75.38 GPa, G12 = 

42.03 GPa, G13 = 25.56 GPa, G23 = 42.65 GPa, v12 = 0.44. 

The elastic constant C11 = 159.85 GPa. The present results 

are close to the available results obtained by Srinivas and 

Rao (1970), Reddy and Phan (1985) and Nayak et al. 

(2002). 
 

3.3 Effect of different materials and geometric 
parameters on frequencyparameter of the plate 

 

3.3.1 Effect of side-to-thickness ratio 
Tables 2 and 3 show the effect of side-to-thickness ratio 

on fundamental frequency parameter of layered anti-

symmetric cross-ply plates. Table 2 shows the variations of 

the fundamental frequency parameter value for two, four 

and six layered anti-symmetric cross-ply plates using 

Graphite/Epoxy (AS4/3501-6) (GE) material for S-S 

boundary condition. It shows that the fundamental 

frequency parameter value decreases with the increase of 

side-to-thickness ratio, whereas the frequency parameter 

value increases with the increase of number of layers. In 

Table 3, the effect of different material combinations of six 

layered plates on the fundamental frequency is shown. It is 

seen that plates with KE/GE/GE/GE/GE/KE material 

combination shows the lowest frequency parameter value 

Table 1 Comparison of non-dimensional frequencies 

Ω = Ωℎ 𝜌/𝐶11 of a simply supported square plate with 

a/h = 10. Results are compared with Srinivas and Rao 

(1970), Reddy and Phan (1985) and Nayak et al. (2002) 

Modes 

Exact 

(Srinivas 

and Rao 

1970) 

CPT 

(Reddy 

and Phan 

1985) 

HSDT 

(Reddy 

and Phan 

1985) 

HSDT 

(Nayak 

et al. 

2002) 

Present 

(1,1) 0.0474 0.0493 0.0474 0.0476 0.0475 

(2,1) 0.1188 0.1327 0.1189 0.1205 0.1195 

(3,1) 0.2180 0.2671 0.2184 0.2253 0.2190 
 

*Material properties are: E1 = 143.52 GPa, E2 = 75.38 GPa, G12 = 

42.03 GPa, G13 = 25.56 GPa, G23 = 42.65 GPa, v12 = 0.44 

 
 

Table 2 The fundamental frequencies with side-to-thickness ratio 

of six- four- and two-layered anti-symmetric cross ply 

plates: a/b = 1 

a/h 

λ 

0°/90°/0°/90°/ 0°/90° 

GE/GE/GE/GE/GE/GE 

0°/90°/0°/90° 

GE/GE/GE/GE 

0°/90° 

GE/GE 

10 0.367043 0.352020 0.274490 

20 0.203067 0.197248 0.144321 

30 0.137276 0.130948 0.098687 

40 0.103302 0.102759 0.074184 

50 0.082760 0.079966 0.059599 

60 0.069778 0.066635 0.049830 
 

 

 
Table 3 The fundamental frequencies with side-to-thickness ratio 

of six-layered anti symmetric cross ply plates: a/b = 1 

a/h 

λ 

0°/90°/0°/90°/ 0°/90° 

KE/GE/ 

GE/GE/ 

GE/KE 

KE/GE/ 

EGE/EGE/ 

GE/KE 

GE/KE/ 

EGE/EGE/ 

KE/GE 

GE/KE/ 

KE/E/KE 

/GE 

GE 

10 0.346872 0.397367 0.408492 0.367507 0.367043 

20 0.186794 0.214416 0.22556 0.20964 0.203067 

30 0.12672 0.144213 0.151623 0.140431 0.137276 

40 0.096297 0.11013 0.11471 0.10611 0.103302 

50 0.077924 0.087891 0.091322 0.086357 0.08276 

60 0.06175 0.071584 0.07635 0.07434 0.069778 
 

 

 

and the plates with GE/KE/EGE/EGE/KE/GE material 

combination shows the highest frequency parameter value. 

Figs. 1(a)-(d) describes the effect of side-to-thickness 

ratio (10 ≤ a/h ≤ 60) of the plates on the behaviour of 

frequency parameters (λm, m = 1, 2, 3). The different 

number of layers with anti-symmetric cross ply orientation 

is considered using the material GE. The aspect ratio (a/b = 

1) is fixed. From the figures, it is seen that the frequency 

parameter value decreases with increasing the side-to-

thickness ratio. Further, decrease is fast between 10 ≤ a/h ≤ 

30 and becomes slow afterwards. Moreover, the value of the 
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   (a)    (b) 
 

 

 

 

   (c)    (d) 

Fig. 1 Variation of frequency parameter with respect to 

side to thickness ratio of anti-symmetric layered 

plates with different number of layer of GE 

material and a/b = 1 
 

 

  

   (a)    (b) 
 

 

 

 

   (c)    (d) 

Fig. 2 Variation of frequency parameter with respect to 

side to thickness ratio of anti-symmetric six 

layered plates with a/b = 1 

 

  

     (a)      (b) 
 

 

     (c) 

Fig. 3 Variation of frequency parameter with respect to 

side to thickness ratio of symmetric six layered 

plates with a/b = 1 
 

 

  

     (a)      (b) 
 

 

     (c) 

Fig. 4 Variation of frequency parameter with respect to side 

to thickness ratio of anti-symmetric six layered plates 

with: (a) a/b = 0.4; (b) a/b = 1; (c) a/b = 1.6 

479



 

Saira Javed, K.K. Viswanathan, M.D. Nurul Izyan, Z.A. Aziz and J.H. Lee 

frequency parameter increases as the number of layers and 

as well as mode number increases. 

Effect of the different material combinations of six 

layered plates between the side-to-thickness ratio and 

frequency parameter is presented in Figs. 2(a)-(d). The 

frequency parameter value varies for different material 

combinations, reveals that the combination of GE, KE and 

EGE arranged in the order as GE/KE/EGE/EGE/KE/GE in 

Fig. 2(a) gives higher frequency values as compared to the 

materials arranged in the orders KE/GE/EGE/EGE/GE/KE, 

GE/KE/KE/KE/KE/GE and KE/GE/GE/GE/GE/KE shown 

in Figs. 2(b), (c) and (d) respectively. 

The variation of frequency parameter for three different 

ply orientations with anti-symmetric and symmetric manner 

having material combination of GE/KE/EGE/EGE/KE/GE 

are shown in Figs. 3(a)-(c). Generally the frequency 

parameter value decrease as the side-to-thickness ratio 

increases. 

The decrease is strict between 10 ≤ a/h ≤ 30 and slow 

afterwards. Moreover, the frequency parameter value varies 

by using different combination of cross-ply angles. 

Six layered plates of lamination scheme 0°/90°/0°/90°/ 

0°/90° with the materials arranged as (GE/KE/EGE/EGE/ 

KE/GE) are considered to study the effect of side-to-

thickness ratio on the frequency parameter value by fixing 

aspect ratio a/b = 0.4, 1, 1.6 shown in Figs. 4(a)-(c). It is 

seen that the value of side-to-thickness ratio increases while 

the value of the frequency parameter decreases. Moreover, 

the frequency parameter value increases as aspect ratio 

increases. The variation of frequency parameter value with 

respect to the side-to-thickness ratio are shown in Figs. 

5(a)-(c) for two layered plates having GE material by fixing 

the aspect ratio a/b. It is concluded that frequency 

parameter value is highest for a/b = 1.6 followed by a/b = 1 

and a/b = 0.4. 

Fig. 6 demonstrates the effect of frequency parameter on 

side-to-thickness ratio by fixing the aspect ratio as a/b = 

0.4, 1, 1.6 for four layered cross ply plates. It is seen that 

the frequency parameter value decreases as the side-to-

thickness ratio increases, whereas the value of frequency 

parameter increases with the increase of aspect ratio. 

The effect of different material combinations and aspect 

ratio on the fundamental frequency value is studied in Fig. 7 

for four layered cross-ply plates. KE/GE/GE/KE, GE/KE/ 

KE/GE and KE/EGE/EGE/KE material combinations are 

used in Figs. 7(a)-(c) respectively. The figures show that 

frequency increases with the increase of aspect ratio, but 

differs marginally by using different material combinations. 

The variation of frequency parameter values with 

respect to side-to-thickness ratio and different material 

combinations for five layered plates are depicted in Fig. 8. 

The aspect ratio is fixed a/b = 1. Results concluded that the 

frequency parameter values for the lamination materials 

arranged in the order as GE/KE/EGE/KE/GE, KE/GE/EGE/ 

GE/KE and EGE/GE/KE/GE/EGE. 

Fig. 9 demonstrates the different combination of 

lamination materials effecting the frequency parameter 

value with the increase of side-to-thickness ratio of three 

layered plates. Figs. 9(a)-(c) exhibits that the value of 

frequency parameter for lamination arranged in the order as 

GE/EGE/GE, EGE/KE/EGE and EGE/GE/EGE. 

  

     (a)      (b) 
 

 

     (c) 

Fig. 5 Variation of frequency parameter with respect to 

side to thickness ratio of anti-symmetric two 

layered plates with GE/GE material combina-

tions: (a) a/b = 0.4; (b) a/b = 1; (c) a/b = 1.6 
 

 

  

     (a)      (b) 
 

 

      (c) 

Fig. 6 Variation of frequency parameter with respect to 

side to thickness ratio of anti-symmetric four layered 

plates with: (a) a/b = 0.4; (b) a/b = 1; (c) a/b = 1.6 
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     (a)      (b) 
 

 

     (c) 

Fig. 7 Fundamental frequency parameter variation with 

respect to side to thickness ratio of anti-symmetric 

four layered plates with: (a) KE/GE/ GE/KE; (b) 

GE/KE/KE/GE; (c) KE/EGE/ EGE/KE material 

combinations 
 

 

  

     (a)      (b) 
 

 

     (c) 

Fig. 8 Variation of frequency parameter with respect to side 

to thickness ratio of anti-symmetric five layered 

plates with: (a) GE/KE/EGE/KE/GE; (b) KE/GE/ 

EGE/GE/KE; (c) EGE/GE/KE/GE/EGE material 

combinations and a/b=1 

  

     (a)      (b) 
 

 

     (c) 

Fig. 9 Variation of frequency parameter with respect to side 

to thickness ratio of anti-symmetric three layered 

plates with: (a) GE/EGE/GE; (b) EGE/KE/EGE; 

(c) EGE/GE/EGE material combinations and a/b = 1 

 

 

3.3.2 Effect of side-to-thickness ratio 
The effect of number of layers and different material 

combination are studied on fundamental frequency 

parameter with respect to the aspect ratio and shown in 

Tables 4 and 5. In Table 4, it is seen that the frequency 

value in increases with the increase of aspect ratio and 

number of layers. In Table 5 frequency of five layered 

plates with different material sequences are shown. It 

 

 
Table 4 The fundamental frequencies with aspect ratio of layered 

anti-symmetric cross ply plates: a/h = 10 

a/b 

λ 

0°/90° 

(GE/GE) 

0°/90°/0° 

(GE/KE/ 

GE) 

0°/90°/ 

0°/90°/0° 

(GE/KE/ 

KE/GE) 

0°/90°/0°/ 

90°/0° 

(GE/KE/ 

EGE/KE/GE) 

0°/90°/0°/ 

90°/0°/90° 

(GE/KE/KE/ 

KE/KE/GE) 

0.2 0.177784 0.262125 0.235697 0.316345 0.242200 

0.4 0.185269 0.265360 0.242493 0.323357 0.258542 

0.6 0.200550 0.268430 0.260049 0.322310 0.276981 

0.8 0.231146 0.274075 0.296675 0.337451 0.313034 

1.0 0.274706 0.294306 0.345316 0.361345 0.367861 

1.2 0.336994 0.304561 0.408997 0.397780 0.436413 

1.4 0.438473 0.327727 0.482600 0.444140 0.517420 

1.6 0.476875 0.351892 0.544230 0.481529 0.616116 

1.8 0.562218 0.468920 0.627314 0.559093 0.670023 

2.0 0.660780 0.521389 0.703584 0.586980 0.774660 
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Table 5 The fundamental frequencies with aspect ratio of five 

layered anti-symmetric cross ply plates: a/h = 10 

a/b 

λ 

0°/90°/0°/90°/0° 

(EGE/EGE/ 

EGE/EGE/ 

EGE) 

(KE/GE/ 

EGE/GE 

/KE) 

(GE/KE/ 

KE/KE/ 

GE) 

(GE/KE/ 

EGE/KE/ 

GE) 

(EGE/GE/ 

KE/GE/ 

EKE) 

0.2 0.302881 0.313278 0.279410 0.316345 0.253083 

0.4 0.303214 0.320993 0.282251 0.323357 0.278370 

0.6 0.330603 0.334741 0.289731 0.322310 0.298500 

0.8 0.358871 0.359871 0.301851 0.337451 0.321948 

1.0 0.420726 0.419306 0.326710 0.361345 0.408806 

1.2 0.486287 0.463769 0.361000 0.397780 0.485093 

1.4 0.534112 0.537924 0.402441 0.444140 0.588901 

1.6 0.665426 0.661241 0.451081 0.481529 0.681860 

1.8 0.761771 0.717251 0.506165 0.559093 0.802595 

2.0 0.878293 0.812177 0.517710 0.586980 0.956563 
 

 

 

provides that the five layered plates with the material 

combination of EGE/GE/KE/GE/EGE shows the lowest 

frequency values and GE/KE/EGE/KE/GE and KE/GE/ 
 

 

 

Fig. 10 Fundamental frequency parameter variation with 

respect to aspect ratio of anti-symmetric six layered 

plates 
 

 

 

Fig. 11 Fundamental frequency parameter variation with 

respect to aspect ratio of anti-symmetric four 

layered plates 
 

 

Fig. 12 Fundamental frequency parameter variation with 

respect to aspect ratio of anti-symmetric two 

layered plates 
 

 

EGE/GE/KE material sequence shows the higher frequency 

values. 

Fig. 11 depicts the anti-symmetric four layered plates 

with the influence of different lamination material 

combinations and aspect ratio under S-S boundary 

conditions and a/b = 10 is fixed. It is seen that there is 

negligible difference in the value of fundamental frequency 

between 0.2 < a/b < 1 and difference slightly increases 

afterwards. 

Two layered plates of different lamination materials are 

used to observe the effect of aspect ratio on the fundamental 

frequency in Fig. 12. From the figure, it shows that the 

fundamental frequency value increases slowly with the 

increase of aspect ratio. Further, the lamination material 

slightly effects the value of fundamental frequency. 

Figs. 13 and 14 show the effect of three and five layered 

anti-symmetric plates on the fundamental frequency. The 

characterise pattern of the curves are similar for both the 

graphs. The EGE/GE/EGE, GE/KE/GE and EGE/KE/EGE 

material combinations are used in Fig. 13 and GE/KE/KE/ 

KE/GE, GE/KE/EGE/KE/GE and GE/EGE/KE/EGE/KE 

material combinations are used in Fig. 14. There is a slow 

increase in the value of fundamental frequency with respect 

to aspect ratio in both the figures. Moreover, the funda- 
 

 

 

Fig. 13 Fundamental frequency parameter variation with 

respect to aspect ratio of anti- symmetric three 

layered plates 
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Fig. 14 Fundamental frequency parameter variation with 

respect to aspect ratio of anti-symmetric five 

layered plates with GE/KE/KE/KE/GE, GE/KE/ 

EGE/KE/GE, and GE/EGE/KE/EGE/GE material 

combinations 

 

 

mental frequency value slightly differs while using the 

different material combinations. 
 

 

4. Conclusions 
 

The present study investigates the free vibration of anti-

symmetric and symmetric cross-ply plates using cubic and 

quintic splines under higher-order shear deformation theory. 

The vibrational behaviour of laminated plates are analysed 

for simply-supported boundary conditions. The vibration 

characteristic of the plates is presented for side-to-thickness 

ratio, aspect ratio, different number of layers, stacking 

sequence and three different lamination materials. It is 

concluded that the variation of the geometric parameters 

and materials combination effects the frequency and the 

effect is more significant. The applicability and accuracy of 

the present results with the available results validates that 

current results may be valuable for the engineers of related 

fields. 
 

 

Acknowledgments 
 

This work was supported by Post doctoral Research 

program under Research Management Centre (RMC), 

Universiti Teknologi Malaysia, Johor Bahru, Johor, 

Malaysia and Special Education Program for Offshore Plant 

under the Ministry of Trade, Industry and Energy affairs 

(MOTIE), South Korea. 
 

 

References 
 

Bai, E. and Chen, A. (2013), “A symplecticeigenfunction 

expansion approach for free vibration solutions of rectangular 

Kirchhoff plates”, J. Vib. Control, 19(8), 1208-1215. 

Cho, M. and Parmerter, R. (1993), “Efficient higher order 

composite plate theory for general lamination configurations”, 

AIAA Journal, 31(7), 1299-1306. 

Ferreira, A., Roque, C. and Martins, P. (2003), “Analysis of 

composite plates using higher-order shear deformation theory 

and a finite point formulation based on the multiquadric radial 

basis function method”, Compos. Part B: Eng., 34(7), 627-636. 

Groh, R. and Weaver, P. (2015), “Static inconsistencies in certain 

axiomatic higher-order shear deformation theories for beams, 

plates and shells”, Compos. Struct., 120, 231-245. 

Iurlaro, L., Gherlone, M. and Di Sciuva, M. (2015), “The (3, 2)-

mixed refined zigzag theory for generally laminated beams: 

theoretical development and C0 finite element formulation”, Int. 

J. Solids Struct., 73, 1-19. 

Javed, S., Viswanathan, K.K., Aziz, Z.A. and Prabakar, K. (2016), 

“Free vibration of anti-symmetric angle-ply plates with variable 

thickness”, Compos. Struct., 137, 56-69. 

Kant, T. and Swaminathan, K. (2001a), “Analytical solutions for 

free vibration of laminated composite and sandwich plates 

based on a higher-order refined theory”, Compos. Struct., 53(1), 

73-85. 

Kant, T. and Swaminathan, K. (2001b), “Free vibration of 

isotropic, orthotropic, and multilayer plates based on higher 

order refined theories”, J. Sound Vib., 241(2), 319-327. 

Kant, T. and Swaminathan, K. (2002), “Analytical solutions for the 

static analysis of laminated composite and sandwich plates 

based on a higher order refined theory”, Compos. Struct., 56(4), 

329-344. 

Karttunen, A.T. and von Hertzen, R. (2015), “Exact theory for a 

linearly elastic interior beam”, Int. J. Solids Struct., 78-79, 125-

130. 

Khdeir, A. (2001), “Free and forced vibration of antisymmetric 

angle-ply laminated plate strips in cylindrical bending”, J. Vib. 

Control, 7(6), 781-801. 

Lee, C.-Y. (2013), “Zeroth-order shear deformation micro-

mechanical model for composite plates with in-plane 

heterogeneity”, Int. J. Solids Struct., 50(19), 2872-2880. 

Mackerle, J. (2002), “Finite element analyses of sandwich 

structures: a bibliography (1980-2001)”, Eng. Comput., 19(2), 

206-245. 
Mantari, J.L. and Granados, E.V. (2015), “Thermoelastic analysis 

of advanced sandwich plates based on a new quasi-3D hybrid 
type HSDT with 5 unknowns”, Compos. Part B: Eng., 69, 317-
334. 

Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), “Static and 
dynamic analysis of laminated composite and sandwich plates 
and shells by using a new higher-order shear deformation 
theory”, Compos. Struct., 94(1), 37-49. 

Mantari, J.L., Oktem, A. and Soares, C.G. (2012), “A new higher 

order shear deformation theory for sandwich and composite 

laminated plates”, Compos. Part B: Eng., 43(3), 1489-1499. 

Matsunaga, H. (2008), “Free vibration and stability of functionally 

graded plates according to a 2-D higher-order deformation 

theory”, Compos. Struct., 82(4), 499-512. 

Ma’en, S.S. and Butcher, E.A. (2012), “Free vibration analysis of 

rectangular and annular Mindlin plates with undamaged and 

damaged boundaries by the spectral collocation method”, J. Vib. 

Control, 18(11), 1722-1736. 

Mindlin, R.D. (1951), “Influence of rotatory inertia and shear on 

flexural motions of isotropic, elastic plates”, ASME J. Appl. 

Mech., 18, 31-38. 

Nayak, A., Moy, S. and Shenoi, R. (2002), “Free vibration analysis 

of composite sandwich plates based on Reddy’s higher-order 

theory”, Compos. Part B: Eng., 33(7), 505-519. 

Neves, A., Ferreira, A., Carrera, E., Cinefra, M., Roque, C., Jorge, 

R. and Soares, C.G. (2013), “Static, free vibration and buckling 

analysis of isotropic and sandwich functionally graded plates 

using a quasi-3D higher-order shear deformation theory and a 

meshless technique”, Compos. Part B: Eng., 44(1), 657-674. 

Nguyen, T.N., Thai, C.H. and Xuan, H.N. (2016), “On the general 

framework of high order shear deformation theories for 

laminated composite plate structures: A novel unified 

approach”, Int. J. Mech. Sci., 110, 242-255. 

483



 

Saira Javed, K.K. Viswanathan, M.D. Nurul Izyan, Z.A. Aziz and J.H. Lee 

Nguyen, T.N., Ngo, T.D. and Xuan, H.N. (2017), “A novel three-

variable shear deformation plate formulation: Theory and 

Isogeometric implementation”, Comput. Methods Appl. Mech. 

Eng., 326, 376-401. 

Noor, A.K., Burton, W.S. and Bert, C.W. (1996), “Computational 

models for sandwich panels and shells”, Appl. Mech. Rev., 

49(3), 155-199. 

Pai, P.F. (1995), “A new look at shear correction factors and 

warping functions of anisotropic laminates”, Int. J. Solids 

Struct., 32(16), 2295-2313. 

Pai, P.F. and Schulz, M.J. (1999), “Shear correction factors and an 

energy-consistent beam theory”, Int. J. Solids Struct., 36(10), 

1523-1540. 

Peković, O., Stupar, S., Simonović, A., Svorcan, J. and Komarov, 

D. (2014), “Isogeometric bending analysis of composite plates 

based on a higher-order shear deformation theory”, J. Mech. Sci. 

Technol., 28(8), 3153-3162. 
Phung-Van, P., Nguyen-Thoi, T., Bui-Xuan, T. and Lieu-Xuan, Q. 

(2015a), “A cell-based smoothed three-node Mindlin plate 
element (CS-FEM-MIN3) based on the C0-type higher-order 
shear deformation for geometrically nonlinear analysis of 
laminated composite plates”, Computat. Mater. Sci., 96, 549-
558. 

Phung-Van, P., De Lorenzis, L., Thai, C.H., Abdel-Wahab, M. and 

Nguyen-Xuan, H. (2015b), “Analysis of laminated composite 

plates integrated with piezoelectric sensors and actuators using 

higher-order shear deformation theory and isogeometric finite 

elements”, Computat. Mater. Sci., 96, 495-505. 

Rajagopal, A. and Hodges, D.H. (2015), “Variational asymptotic 

analysis for plates of variable thickness”, Int. J. Solids Struct., 

75-76, 81-87. 

Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and 

Shells, (2nd Edition), CRC Press, Boca Raton, FL, USA. 

Reddy, J.N. and Phan, N.D. (1985), “Stability and vibration of 

isotropic, orthotropic and laminated plates according to a 

higher-order shear deformation theory”, J. Sound Vib., 98(2), 

157-170. 

Reissner, E. (1945), “The effect of transverse shear deformation on 

the bending of elastic plates”, ASME J. Appl. Mech., 12, A68-

77. 

Saha, K., Misra, D., Pohit, G. and Ghosal, S. (2004), “Large 

amplitude free vibration study of square plates under different 

boundary conditions through a static analysis”, J. Vib. Control, 

10(7), 1009-1028. 

Sheikh, A.H. and Chakrabarti, A. (2003), “A new plate bending 

element based on higher-order shear deformation theory for the 

analysis of composite plates”, Finite Elem. Anal. Des., 39(9), 

883-903. 

Singh, D.B. and Singh, B.N. (2017), “New higher order shear 

deformation theories for free vibration and buckling analysis of 

laminated and braided composite plates”, Int. J. Mech. Sci., 

131-132, 265-277. 

Srinivas, S. and Rao, A.K. (1970), “Bending vibration and 

buckling of simply supported thick orthotropic rectangular 

plates and laminates”, Int. J. Solids Struct., 6(11), 1463-1481. 

Thai, C.H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N. 

and Rabczuk, T. (2015), “Isogeometric analysis of laminated 

composite plates using the higher-order shear deformation 

theory”, Mech. Adv. Mater. Struct., 22(6), 451-469. 

Tran, L.V., Nguyen-Thoi, T., Thai, C.H. and Nguyen-Xuan, H. 

(2013), “An edge-based smoothed discrete shear gap method 

using the C0-type higher-order shear deformation theory for 

analysis of laminated composite plates”, Mech. Adv. Mater. 

Struct., 22(4), 248-268. 

Vinson, J.R. (2001), “Sandwich structures”, Appl. Mech. Rev., 

54(3), 201-214. 

Viswanathan, K.K. and Javed, S. (2016), “Free vibration of anti-

symmetric angle-ply cylindrical shell walls using first-order 

shear deformation theory”, J. Vib. Control, 22(7), 1757-1768. 

DOI: 10.1177/1077546314544893 

Viswanathan, K.K. and Lee, S.K. (2007), “Free vibration of 

laminated cross-ply plates including shear deformation by 

spline method”, Int. J. Mech. Sci., 49(3), 352-363. 

Viswanathan, K.K., Javed, S., Aziz, Z.A. and Prabakar, K. 

(2015a), “Free vibration of symmetric angle-ply laminated 

annular circular plate of variable thickness under shear 

deformation theory”, Meccanica, 50(12), 3013-3027. 

Viswanathan, K., Javed, S., Prabakar, K., Aziz, Z.A. and Bakar, 

I.A. (2015b), “Free vibration of anti-symmetric angle-ply 

laminated conical shells”, Compos. Struct., 122, 488-495. 

Viswanathan, K.K., Aziz, Z.A., Javed, S., Yaacob, Y. and Pullepu, 

B. (2015c), “Free vibration of symmetric angle ply truncated 

conical shells under different boundary conditions using spline 

method”, J. Mech. Sci. Technol., 29(5), 2073-2080. 

Yang, P.C., Nooris, C.H. and Stavsky, Y. (1966), “Elastic wave 

propogation in heterogeneous plates”, Int. J. Solids Struct., 2(4), 

665-684. 

Yang, H.T., Saigal, S., Masud, A. and Kapania, R. (2000), “A 

survey of recent shell finite elements”, Int. J. Numer. Methods 

Eng., 47(1-3), 101-127. 

Zhen, W. and Wanji, C. (2006), “Free vibration of laminated 

composite and sandwich plates using global–local higher-order 

theory”, J. Sound Vib., 298(1), 333-349. 

 

 

CC 

 

 

 

 

484




