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1. Introduction 

 

Composites are materials which are widely used in 

structural elements and modern technologies, principally, in 

aerospace and aircraft industry. The greatest advantages of 

these materials are their high stiffness-to-weight ratio, high 

strength-to-weight ratio, but also the anisotropy that can be 

tailored in the desired direction depending on the type of 

loading. Composite structures have a great potential for 

reducing the weight. However, the analyses of composite 

structures is complex, due to the fact that bending-extension 

coupling exists. The classical beam theory based on the 

Bernoulli-Euler assumption and also the classical 

lamination theory are not suitable for modeling of 

unsymmetrically laminated composite beams (Kapania and 

Goyal 2002, Wang et al. 2013d) with small transverse shear 

modulus in comparison to the in-plane tensile moduli. In 

some specific cases, the assumption of negligibility of axial 

and rotatory inertia is not acceptable. Some papers, in 

which both axial and rotatory inertia effects, are taken into 

account (Lenci et al. 2012a, b). 

Namely, the transverse shear deformation can be of 

considerable importance compared to homogenous isotropic 

materials. To overcome the problem, recently the nonlinear 
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analysis of beams has gained attention for increasing the 

efficiency of structural design. Thus, in Kapania et al. 

(Kapania and Raciti 1989, Kapania and Goyal 2002) the 

application of the finite-element method is suggested, where 

for analysis of the nonlinear vibrations of the symmetrically 

and unsymmetrically laminated beams the simple one-

dimensional finite element is introduced. The beam element 

has 10 or more degrees of freedom at each of the two nodes: 

the axial displacement, the transverse deflection and the 

slope due to bending and shear, the twisting angle, the in-

plane shear rotation and their derivatives. Using the model 

it is concluded that the nonlinear vibrations of 

unsymmetrically laminated beams have soft spring behavior 

for certain boundary condition as opposed to a hard spring 

behavior observed in isotropic and symmetrically laminated 

beams. In the papers (Singh et al. 1991, 1992) the degrees-

of-freedom of the one-dimensional finite element is 

extended to 12, by applying of the classical lamination 

theory, first order shear deformation theory and higher order 

deformation theory. The dynamic nonlinear finite element 

equations are reduced to two second-order ordinary 

nonlinear differential equations using converged normalized 

spatial deformations in the positive and negative deflection 

half-cycles. The modal equations of motion are solved 

using the direct numerical integration method. In the papers 

(Baghani et al. 2011, Jafari-Talookolaei et al. 2011) the free 

vibrations of unsymmetrically laminated composite beams 

settled on nonlinear elastic foundation are investigated. The 

elastic foundation has cubic nonlinearity with shearing 
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Abstract.  In this paper, nonlinear vibrations of the unsymmetrical laminated composite beam (LCB) on a nonlinear elastic 

foundation are studied. The governing equation of the problem is derived by using Galerkin method. Two different end 

conditions are considered: the simple-simple and the clamped-clamped one. The Hamiltonian Approach (HA) method is adopted 

and applied for solving of the equation of motion. The advantage of the suggested method is that it does not need any 

linearization of the problem and the obtained approximate solution has a high accuracy. The method is used for frequency 

calculation. The frequency of the nonlinear system is compared with the frequency of the linear system. The influence of the 

parameters of the foundation nonlinearity on the frequency of vibration is considered. The differential equation of vibration is 

solved also numerically. The analytical and numerical results are compared and is concluded that the difference is negligible. In 

the paper the new method for error estimation of the analytical solution in comparison to the exact one is developed. The method 

is based on comparison of the calculation energy and the exact energy of the system. For certain numerical data the accuracy of 

the approximate frequency of vibration is determined by applying of the suggested method of error estimation. Finally, it has 

been indicated that the proposed Hamiltonian Approach gives enough accurate result. 
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layer. The equation of motion is a fourth order partial 

differential equation which is an appropriate way separated 

into two equations. In Baghani et al. (2011) the differential 

equation is solved by using the variational iteration method, 

while in Jafari-Talookolaei et al. (2011) the homotopy 

analysis method is applied. In the first approximation the 

both methods give the same frequency-amplitude relation, 

while there is a difference in the frequency in the second-

order approximation. There some many other analytical 

methods and nonlinear vibrartions of beams which can be 

found in literatures (Arikoglu and Ozkol 2005, He 2008, 

Jamshidi and Ganji 2010, Shen and Mo 2009, Ramana and 

Prasad 2014, Bambill et al. 2013, Clementi et al. 2015, 

Fang and Zhou 2015, He et al. 2013, Yu et al. 2012, Lenci 

et al. 2013, 2015, Civalek 2006, 2013, Nguyen and Lee 

2015, Babilio 2013, 2014, Wang et al. 2013a, b, c, 

Szekrényes 2015, Basu and Kameswara Rao 2013, Pradhan 

and Murmu 2009, Sheikholeslami and Ganji 2013, 2015, 

2016, Sheikholeslami et al. 2016, Cheng et al. 2012, 

Ghasemi and Mohandes 2016, Poloei et al. 2017, Shafiei 

and Setoodeh 2017, Bayat et al. 2016, 2017, Bayat and 

Pakar 2017a, b, Alkayem et al. 2017). The aim of this paper 

is to develop a solving procedure for the free nonlinear 

vibrations of the unsymmetrical laminated composite beam 

which will give directly the more appropriate frequency 

value. The Hamiltonian Approach (HA) method which is 

already applied for solving free vibrations for the systems 

with one-degree-of-freedom systems (see He 2010, Bayat et 

al. 2014, Navarro and Cveticanin 2016) is adopted for 

solving this problem. The paper has seven sections. After 

the Introduction the physical and mathematical model of the 

problem is presented. A short introduction to the HA 

method is given in Section 3. The HA method is adopted for 

solving equations of free motion of the beam (Section 4). In 

Section 5, the new error estimation is developed. The 

method has the aim to prove the accuracy of the 

approximately calculated frequency in comparison to the 

unknown exact one. In Section 6, for certain numerical 

values the frequency of vibration is obtained applying the 

suggested Hamiltonian approach and the accuracy of the 

result is proved by comparing the value with the 

numerically one and also by estimating of the error 

according to the procedure developed in the paper. 
 

 

2. Description of the problem 
 

In Fig. 1, the laminated composite beam (LCB) on the 

nonlinear layer is plotted. The laminated beam is straight 

and contains the linear and shear layer. The length of the 

beam is L, its width is b and thickness h. Coordinate along 
 

 

 

Fig. 1 The LCB with simply supported end conditions 

the axis of the beam is 𝑋  and in the direction of the 

thickness of the beam is 𝑍 . On the beam an axial force 𝑃  

acts. It causes transversal-axial coupled vibrations. It is 

convenient to transform the two equations of motion into 

only one as is suggested in (Jafari-Talookolaei et al. 2011) 
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Where w is the transversal displacement of the beam 

along the 𝑍  coordinate, B and Λ are coefficients which are 

functions of stiffness of the beam and gyration ratio of the 

cross section and Fw is the foundation force. The load-

displacement relationship is 
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Where k1 and k2 are linear and nonlinear elastic 

foundation coefficients and kS is the coefficient of the 

shearing layer elastic foundation. Substituting (2) into (1) a 

dimensionless partial differential equation is obtained 
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(3) 

 

It is worth to say that the coupling stiffness B and 

therefore Λ differ from zero for the asymmetric laminate. 

Assuming w(x,t) = ϕ(x)W(t) where ϕ(x) is the first 

eigenmode of the beam and using the Ritz method, the 

governing equation of motion follows as 
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(4) 

 

Where αi (i = 1, 2,…7) are presented in Appendix A. 

(The complete formulation of Eq. (3) can be seen in (Jafari-

Talookolaei et al. 2011)). 

The initial conditions are as follows 
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(5) 

 

where a denotes the non-dimensional initial amplitude of 

oscillation. 

Note that, for isotropic and symmetrically laminated 

beams, the coefficient α5 of the quadratic term W(t)2 is zero. 

It causes that the analysis of nonlinear vibrations for 

unsymmetrically laminated beams significantly differs from 

454



 

Nonlinear vibration of unsymmetrical laminated composite beam on elastic foundation 

that of isotropic and symmetrically laminated beams, as the 

bending-stretching coupling (the coefficient B11) induces the 

quadratic term W(t)2. 

Post-buckling load–deflection relation of the LCB can 

be determined from Eq. (4) as 
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Neglecting the contribution of W in the previous Eq. (6), 

the linear buckling load can be obtained as 
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Comparing the buckling load in the nonlinear system 

with the linear case gives 
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Due to nonlinearity the buckling load increases: the 

higher the nonlinearity of foundation, the higher the value 

of the buckling force in comparison to the linear case. 
 

 

3. Hamiltonian Approach adopted for the problem 
 

Hamiltonian Approach proposed by He (2010) is 

adopted for solving the Eq. (8). The method is based on 

variation of the Hamiltonian 
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where 𝜕𝐹/𝜕𝑊 = 𝑓(𝑊) and 
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Hamiltonian for the conservative system is constant, i.e., 
 

0 .젨H H const 
 (11) 

 

Let us assume the solution of (9) in the form of a 

trigonometric function 
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Where a is the amplitude and ω is the frequency of 

vibration. 

Substituting (12) into (9) and using (11) it is 
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The first derivative of (13) for the amplitude a is 
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where 𝑓 = 𝜕𝐹/𝜕𝑊 . The assumed solution (12) is not 

accurate enough. It is the reason that the new approximate 

form of Hamiltonian is introduced 
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i.e., 
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Rewriting (15) with the new function (16) it is 
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For the period of vibration T = 2π/ω the relation (18) 

transforms into 
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From Eq. (19) we can obtain approximate frequency–

amplitude relationship of a nonlinear oscillator. 

 

 

4. Application of method 
 
Hamiltonian (9) for Eq. (4) is constructed as 
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Integrating Eq. (20) with respect to t from 0 to T/4, we 

have 
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Introducing the trial solution (12) into (21) and after 

integration it is 
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Setting (22) into (19) it is 
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If we solve Eq. (23) the approximate frequency of the 

system is 

22
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By substituting (21) in to (25) we have 
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Hence, the approximate solution can be readily obtained 
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The ratio of the non-linear to linear frequency is 
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(29) 

 

Due to nonlinear properties of fundament the nonlinear 

frequency of vibration of the beam is higher than that of the 

beam on the linear foundation. 
 

 

5. Error estimation 
 

The obtained approximate solution (24) differs from the 

exact one. Our aim is to determine the accuracy of the 

obtained result. For this purpose the method for error 

estimation is developed. The suggested procedure is based 

on the difference between the exact value of the total energy 

and the approximate value obtained with assumed trial 

solution and calculated approximate frequency. 

Substituting the trial solution (12) into (20) the 

approximate value of the Hamiltonian follows as 
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The relation (27) corresponds to the approximate value 

of the energy of the system. According to the initial 

conditions (5) the exact value of the total energy of the 

system is 
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The residual between the exact and approximate values 

of the energy is 
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It is evident that the residual is a time periodical 

function. For simplicity, let us average the residual R over 

the period T of the time variable functions. The Eq. (30) 

transforms into 
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After integration of (32) we have 
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Substituting the value of the approximate frequency (24) 

and modifying the Eq. (33) we obtain 
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Comparing the averaged residual of energy with the 

exact total energy the averaged estimation error follows as 
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Substituting (21) into (39) 
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The error depends on the initial amplitude of vibration 

and on the parameters of the elastic foundation. 
 

 

6. Results and discussion. 
 

The Hamiltonian Approach is used to obtain an 

analytical solution for simply supported and clamped- 

clamped beams. 

From the reference (Lewandowski 1987) for a simply 

supported beam we had 𝑎 = 𝛿/ 12 and for clamped- 
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Table 1 Comparison of nonlinear to linear frequency ratio 

(𝜔𝑁𝐿/𝜔𝐿) for simply-supported beams 

δ a Hamiltonian 

Approach 

Azrar et al. 

(1999) 

Lewandowski 

(1987) 

1 0.2886 1.0897 1.0891 1.0897 

2 0.5773 1.3228 1.3177 1.3229 

3 0.8660 1.6393 1.6256 1.6394 

4 1.1547 2 - 1.9999 
 

 

 

Table 2 Comparison of nonlinear to linear frequency ratio 

(𝜔𝑁𝐿/𝜔𝐿) for Clamped-Clamped Beams 

δ 𝑤1
∗(1/2) a 

Hamiltonian 

Approach 

Azrar et al. 

(1999) 

Lewandowski 

(1987) 

1 1.58815 0.18177 1.0222 1.0222 1.0222 

1.5 1.58815 0.27265 1.0494 1.0492 1.0492 

2 1.58815 0.36354 1.0862 1.0857 1.0858 

2.5 1.58815 0.45442 1.1318 1.1307 1.1308 

3 1.58815 0.54531 1.1852 1.1831 1.1832 

3.5 1.58815 0.63619 1.2453 1.2420 1.2422 

4 1.58815 0.72707 1.3112 1.3064 1.3063 

4.5 1.58815 0.81796 1.3822 1.3756 1.3751 
 

 

 

 

Fig. 2 Comparison of analytical solution of W(t) based on 

time with the RKM solution for simply supported 

beam 
 

 

clamped beam 𝑎 = 𝛿/ 12𝑤1
∗(1/2) that 𝛿 is maximum 

amplitude parameter and 𝑤1
∗(1/2)  is first mod of beam in 

middle of beam. Tables 1 and 2 represent the comparisons 
of nonlinear to linear frequency ratio (𝜔𝑁𝐿/𝜔𝐿) for 
Simply-Supported Beam and for the Clamped-Clamped 
Beams with the Hamiltonian Approach (HA) and the 
numerical solutions and other researchers results for 
different parameters of a. Azrar (Azrar et al. 1999) and 
Lewandowski (1987) ignored to consider the mid-plane 
effect in their study therefore for large amplitude the ratio 
of nonlinear to linear frequency increases. To show the 
accuracy of the HA results, Runge-Kutta 4th is used to 

 

Fig. 3 Comparison of analytical solution of W(t) based on 

time with the RKM solution for Clamped-Clamped 

beam 

 

 

 

Fig. 4 Nonlinear to linear frequency ratio versus non-

dimensional amplitude ratio 

 

 

 

Fig. 5 Influence of α1 on nonlinear to linear frequency 

base on amplitude 
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Fig. 6 Influence of α2 on nonlinear to linear frequency 
base on amplitude 

 
 
 

Fig. 7 Influence of α3 on nonlinear to linear frequency 
base on amplitude 

 
 
 

Fig. 8 Influence of α4 on nonlinear to linear frequency 
base on amplitude 

 

Fig. 9 Influence of α5 on nonlinear to linear frequency 
base on amplitude 

 
 
 

Fig. 10 Influence of α6 on nonlinear to linear frequency 
base on amplitude 

 
 
 

Fig. 11 Influence of α7 on nonlinear to linear frequency 
base on amplitude 
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Fig. 12 Influence of p on nonlinear to linear frequency 

base on amplitude 

 

 

Table 3 Error estimation of analytical solution 

A 𝛼1    𝛼2    𝛼3    𝛼4    𝛼5    𝛼6    𝛼7    P HA Δ×100 

0.5 0.5 0.5 1 3 1.5 2 3 40 5.106 0.404 

1 3 5 1.5 2 4 1 0.5 10 7.812 1.461 

1.5 8 1 3 1.5 0.5 0.2 2.5 15 5.718 0.638 

2 1 1.5 0.5 1 1 1.5 0.2 10 4.929 0.268 

2.5 5 0.5 1 0.5 2.5 1 3 20 6.368 0.146 

3 3 2.5 2 5 10 5 2 50 14.412 1.786 

3.5 5 10 1.5 1 15 1.5 2.5 40 22.109 2.068 

4 2.5 5 1.5 2.5 5 2 10 100 25.836 1.162 

4.5 2 5 2 3 10 0.5 0.5 80 21.457 2.155 

5 5 2 1.5 1.5 8 3 5 30 15.873 1.443 
 

 

 
consider the effect of the variation of non-dimensional 
amplitude ratio versus t for the beam center. Figs. 2 and 3 
represent a comparison of analytical solution of W(t) based 
on time with the numerical solution. From Figs. 2 and 3, the 
motion of the system is a periodic motion and the amplitude 
of vibration is a function of the initial conditions. In 
clamped beams the eigenmodes of them involve hyperbolic 
component and simply supported beams have only 
sinusoidal component in their eigenmodes, in this case the 
HA provides more accurate solution. Fig. 4 shows the effect 
of non-dimensional amplitude ratio 𝛿 on the ratio of non-
linear to linear frequency. For better understanding the 
effects of different parameters on the ratio of nonlinear to 
linear frequency, it has been considered the following 
parameters in Figs. 7 to 11: 𝛼1,𝛼2,𝛼3,𝛼4,𝛼5,𝛼6. Fig. 12, 
shows the effects of different axial loads on the nonlinear to 
linear frequency ratio based on amplitude of the system. 

 

6.1 Error estimation 
 

For the given numerical data and the calculated value of 

the frequency of vibration the estimation error is calculated. 

In the Table 3 the error for various values of initial 

amplitude of vibration and some values of β1, β2 and β3 

(see Eq. (2)) for different values of 𝛼 𝑖=1𝑡𝑜7  and P are 

presented in Table 3. 
 

 

7. Conclusions 
 

In this paper, nonlinear vibrations of the unsymmetrical 

laminated composite beam (LCB) on a nonlinear elastic 

foundation were studied analytically. The governing 

equation was derived and two cases were developed: (1) 

simple-simple; (2) clamped-clamped. A new approximate 

analytical approach has been presented and applied to 

achieve the nonlinear frequency response of the problem. 

The effects of different important parameters were studied 

completely and all the results were compare to the 

numerical one using Runge-Kutta’s algorithm. A new 

method for error estimation of the analytical solution in 

comparison to the exact one is also developed. Full 

procedure of this method was presented in detail. Finally, it 

has been demonstrated that the presented Hamiltonian 

Approach (HA) gives enough accurate result as it compared 

with numerical solutions. 
 

 

References 
 
Alkayem, N.F., Cao, M., Zhang, Y., Bayat, M. and Su, Z. (2017), 

“Structural damage detection using finite element model 

updating with evolutionary algorithms: a survey”, Neural 

Comput. Appl., pp. 1-23. 

DOI: https://doi.org/10.1007/s00521-017-3284-1 

Arikoglu, A. and Ozkol, I. (2005), “Solution of boundary value 

problems for integro-differential equations by using transform 

method”, Appl. Math. Comput., 168(2), 1145- 1158. 

Azrar, L., Benamar, R. and White, R.G. (1999), “A semi-analytical 

approach to the non-linear dynamic response problem of S–S 

and C–C beams at large vibration amplitudes. Part I: general 

theory and application to the single mode approach to free and 

forced vibration analysis”, J. Sound Vib., 224(2), 183-207. 

Babilio, E. (2013), “Dynamics of an axially functionally graded 

beam under axial load”, Eur. Phys. J. Special Topics, 222(7), 

1519-1539. 

Babilio, E. (2014), “Dynamics of functionally graded beams on 

viscoelastic foundation”, Int. J. Struct. Stabil. Dyn., 14(8), 

1440014. 

Baghani, M., Jafari-Talookolaei, R.A. and Salareih, H. (2011), 

“Large amplitudes free vibrations and post-buckling analysis of 

unsymmetrically laminated composite beams on nonlinear 

elastic”, Appl. Math. Model., 35(1), 130-138. 

Bambill, D.V., Rossit, C.A., Rossi, R.E., Felix, D.H. and Ratazzi, 

A.R. (2013), “Transverse free vibration of non uniform rotating 

Timoshenko beams with elastically clamped boundary 

conditions”, Meccanica, 48(6), 1289-1311. 

Basu, D. and Kameswara Rao, N.S.V. (2013), “Analytical 

solutions for Euler–Bernoulli beam on visco-elastic foundation 

subjected to moving load”, Int. J. Numer. Anal. Meth. 

Geomech., 37(8), 945-960. 

Bayat, M. and Pakar, I. (2017a), “Accurate semi-analytical 

solution for nonlinear vibration of conservative mechanical 

problems”, Struct. Eng. Mech., Int. J., 61(5), 657-661. 

Bayat, M. and Pakar, I. (2017b), “Analytical study on non-natural 

vibration equations”, Steel Compos. Struct., Int. J., 24(6), 671-

677. 

Bayat, M., Pakar, I. and Cveticanin, L. (2014), “Nonlinear free 

vibration of systems with inertia and static typa cubic 

459



 

I. Pakar, M. Bayat and L. Cveticanin 

nonlinearities: An analytical approach”, Mechanism and 

Machine Theory, 77, 50-58. 

Bayat, M., Pakar, I. and Bayat, M. (2016), “Nonlinear vibration of 

rested Euler-Bernoulli beams on linear elastic foundation using 

Hamiltonian approach”, Vibroengineering PROCEDIA, 10, 89-

94. 

Bayat, M., Pakar, I. and Cao, M.S. (2017), “Energy based 

approach for solving conservative nonlinear systems”, Earthq. 

Struct., Int. J., 13(2), 131-136. 

Cheng, C.J., Chiu, S.W., Cheng, C.B. and Wu, J.Y. (2012), 

“Customer lifetime value prediction by a Markov chain based 

data mining model: Application to an auto repair and 

maintenance company in Taiwan”, Scientia Iranica, 19(3), 849-

855. 

Civalek, O. (2006), “Harmonic differential quadrature-finite 

differences coupled approaches for geometrically nonlinear 

static and dynamic analysis of rectangular plates on elastic 

foundation”, J. Sound Vib., 294(4), 966-980. 

Civalek, O. (2013), “Nonlinear dynamic response of laminated 

plates resting on nonlinear elastic foundations by the discrete 

singular convolution-differential quadrature coupled 

approaches”, Compos. Part B: Eng., 50, 171-179. 

Clementi, F., Demeio, L., Mazzilli, C.E.N. and Lenci, S. (2015), 

“Nonlinear vibrations of non-uniform beams by the MTS 

asymptotic expansion method”, Continuum. Mech. Thermodyn., 

27(4-5), 703-717. 

Ding, H., Chen, L.Q. and Yang, S.P. (2012), “Convergence of 

Galerkin truncation for dynamic response of finite beams on 

nonlinear foundations under a moving load”, J. Sound Vib., 

331(10), 2426-2442. 

Fang, J. and Zhou, D. (2015), “Free vibration analysis of rotating 

axially functionally graded-tapered beams using Chebyshev-

Ritz method”, Mater. Res. Innov., 19(sub5), 1255-1262. 

Ghasemi, A.R. and Mohandes, M. (2016), “The effect of finite 

strain on the nonlinear free vibration of a unidirectional 

composite Timoshenko beam using GDQM”, Adv. Aircr. 

Spacecr. Sci., 3(4), 379-397. 

He, J.H. (2008), “An improved amplitude-frequency formulation 

for nonlinear oscillators”, Int. J. Nonlinear Sci. Numer. Simul., 

9(2), 211-212. 

He, J.H. (2010), “Hamiltonian approach to nonlinear oscillators”, 

Physics Letters A, 374(23), 2312-2314. 

He, P., Liu, Z.S. and Li, C. (2013), “An improved beam element 

for beams with variable axial parameters”, Shock Vib., 20(4), 

601-617. 

Jafari-Talookolaei, R.A., Salareih, H. and Kargarnovin, M.H. 

(2011), “Analysis of large amplitude free vibrations of 

unsymmetrically laminated composite beams on a nonlinear 

elastic foundation”, Acta Mechanica, 219(1-2), 65-75. 

Jamshidi, N. and Ganji, D.D. (2010), “Application of energy 

balance method and variational iteration method to an 

oscillation of a mass attached to a stretched elastic wire”, 

Current Appl. Phys., 10(2), 484-486. 

Kapania, R.K. and Goyal, V.K. (2002), “Free vibration of 

unsymmetrically laminated beams having uncertain ply 

orientations”, AIAA Journal, 40(11), 2336-2340. 

Kapania, R.K. and Raciti, S. (1989), “Nonlinear vibrations of 

unsymmetrically laminated beams”, AIAA, 27(2), 201-210. 

Lenci, S. and Clementi, F. (2012a), “Effects of shear stiffness, 

rotatory and axial inertia, and interface stiffness on free 

vibrations of a two-layer beam”, J. Sound Vib., 331(24), 5247-

5267. 

Lenci, S. and Clementi, F. (2012b), “On flexural vibrations of 

shear deformable laminated beams”, Proceedings of ASME 

2012 International Mechanical Engineering Congress and 

Exposition, Houston, TX, USA, November, pp. 581-590. 

Lenci, S., Clementi, F. and Mazzilli, C.E.N. (2013), “Simple 

formulas for the natural frequencies of non-uniform cables and 

beams”, Int. J. Mech. Sci., 77, 155-163. 

Lenci, S., Clementi, F. and Warminski, J. (2015), “Nonlinear free 

dynamics of a two-layer composite beam with different 

boundary conditions”, Meccanica, 50(3), 675-688. 

Lewandowski, R. (1987), “Application of the Ritz method to the 

analysis of nonlinear free vibrations of beams”, J. Sound Vib., 

114(1), 91-101. 

Navarro, H.A. and Cveticanin, L. (2016), “Amplitude-frequency 

relationship obtained using Hamiltonian approach for oscillators 

with sum of non-integer order nonlinearities”, Appl. Math. 

Comput., 291, 162-171. 

Nguyen, N.H. and Lee, D.Y. (2015), “Bending analysis of a single 

leaf flexure using higher-order beam theory”, Struct. Eng. 

Mech., Int. J., 53(4), 781-790. 

Poloei, E., Zamanian, M. and Hosseini, S.A.A. (2017), “Nonlinear 

vibration analysis of an electrostatically excited micro 

cantilever beam coated by viscoelastic layer with the aim of 

finding the modified configuration”, Struct. Eng. Mech., Int. J., 

61(2), 193-207. 

Pradhan, S.C. and Murmu, T. (2009), “Thermo-mechanical 

vibration of FGM sandwich beam under variable elastic 

foundations using differential quadrature method”, J. Sound 

Vib., 321(1-2), 342-362. 

Ramana, P.V. and Prasad, B.R. (2014), “Modified Adomian 

Decomposition Method for Van der Pol equations”, Int. J. Non-

Linear Mech., 65, 121-132. 

Shafiei, H. and Setoodeh, A.R. (2017), “Nonlinear free vibration 

and post-buckling of FG-CNTRC beams on nonlinear 

foundation”, Steel Compos. Struct., Int. J., 24(1), 65-77. 

Sheikholeslami, M. and Ganji, D.D. (2013), “Heat transfer of Cu-

water nanofluid flow between parallel plates”, Powder Technol., 

235, 873-879. 

Sheikholeslami, M. and Ganji, D.D. (2015), “Nanofluid flow and 

heat transfer between parallel plates considering Brownian 

motion using DTM”, Comput. Method. Appl. Mech. Eng., 283, 

651-663. 

Sheikholeslami, M. and Ganji, D.D. (2016), “Nanofluid 

hydrothermal behavior in existence of Lorentz forces 

considering Joule heating effect”, J. Molecul. Liquids, 224, 526-

537. 

Sheikholeslami, M., Ellahi, R., Ashorynejad, H.R., Domairry, G. 

and Hayat, T. (2014), “Effects of heat transfer in flow of nano-

fluids over a permeable stretching wall in a porous medium”, J. 

Comput. Theor. Nanosci., 11(2), 486-496. 

Sheikholeslami, M., Ganji, D.D. and Rashidi, M.M. (2016), 

“Magnetic field effect on unsteady nanofluid flow and heat 

transfer using Buongiorno model”, J. Magnet. Magnet. Mater., 

416, 164-173. 

Shen, Y.Y. and Mo, L.F. (2009), “The max–min approach to a 

relativistic equation”, Comput. Math. Appl., 58(11), 2131-2133. 

Singh, G., Rao, V. and Iyengar, N.G.R. (1991), “Analysis of the 

nonlinear vibrations of unsymmetrically laminated composite 

beams”, AIAA, 29(10), 1727-1804. 

Singh, G., Rao, G.V. and Iyengar, N.G.R. (1992), “Nonlinear 

bending of thin and thick unsymmetrically laminated composite 

beams using refined finite element model”, Comput. Struct., 

42(4), 471-479. 

Szekrényes, A. (2015), “A special case of parametrically excited 

systems: Free vibration of delaminated composite beams”, Eur. 

J. Mech. - A/Solids, 49, 82-105. 

Wang, L., Ma, J., Li, L., Peng, J. (2013a), “Three-to-one resonant 

responses of inextensional beams on the elastic foundation”, 

ASME J. Vib. Acoust., 135(1), 011015. 

Wang, L., Ma, J., Peng, J. and Li, L. (2013b), “Large amplitude 

vibration and parametric instability of inextensional beams on 

the elastic foundation”, Int. J. Mech. Sci., 67, 1-9. 

460



 

Nonlinear vibration of unsymmetrical laminated composite beam on elastic foundation 

Wang, L., Ma, J., Yang, M., Li, L. and Zhao, Y. (2013c), 

“Multimode dynamics of inextensional beams on the elastic 

foundation with two-to-one internal resonances”, J. Appl. 

Mech., 80(6), 061016. 

Wang, L., Ma, J., Zhao, Y. and Liu, Q. (2013d), “Refined 

modeling and free vibration of inextensional beams on the 

elastic foundation”, J. Appl. Mech., 80(4), 041026. 

Xu, L. (2010), “Application of Hamiltonian approach to an 

oscillation of a mass attached to a stretched elastic wire”, Math. 

Comput. Appl., 15(5), 901-906. 

Yu, Y.P., Wu, B.S. and Lim, C.W. (2012), “Numerical and 

analytical approximations to large post-buckling deformation of 

MEMS”, Int. J. Mech. Sci., 55(1), 95-103. 

Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010), “Bending 

analysis of FG viscoelastic sandwich beams with elastic cores 

resting on Pasternak's elastic foundations”, ActaMechanica, 

212, 233-252. 

 

 

CC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 
 

In Eq. (1), the physical parameters are given by Jafari-

Talookolaei et al. (2011) 
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where ϕ(x) is the first eigenmode of the beam and 𝑘 1, 𝑘 2 are 

linear and nonlinear elastic foundation coefficients, respectively 

and 𝑘 𝑠 is the coefficient of shearing layer in elastic foundation as 

follow 
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The stiffness coefficients A11, B11 and D11 are given as follows 
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where 𝑄 11
(𝑘)

 is the stiffness transformed to the 𝑥  direction, 𝑍 𝑘  is 

the height of the kth layer and n is the number of laminas. 
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