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Abstract.  Free vibration analysis of a three-layered microbeam including an elastic micro-core and two piezo-magnetic face-
sheets resting on Pasternak’s foundation are studied in this paper. Strain gradient theory is used for size-dependent modeling of
microbeam. In addition, three-unknown shear and normal deformations theory is employed for description of displacement field.
Hamilton’s principle is used for derivation of the governing equations of motion in electro-magneto-mechanical loads. Three
micro-length-scale parameters based on strain gradient theory are employed for prediction of vibrational characteristics of
structure in micro-scale. The results show that increase of three micro-length-scale parameters leads to significant increase of
three natural frequencies especially for increase of second micro-length-scale parameter. This result is according to this fact that
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stiffness of a micro-scale structure is increased with increase of micro-length-scale parameters.
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1. Introduction

A comprehensive vibration or elastic analysis of various
structures such as the beams or plates needs a three
dimensional formulation of the problem without any
simplification. We know that three dimensional analysis of
a structure with exact boundary conditions and presentation
of a comprehensive analytical solution for governing
equations is not possible in general state. To overcome this
problem and to reach a method for solution of the problems,
some simplified theories such Euler-Bernoulli, Timoshenko,
Kirchhoff, Mindlin and etc. have been proposed for beams
and plates. Some of these theories such Euler-Bernoulli and
Kirchhoff theories ignore in plane shear and out of plane
normal deformation and another such as Timoshenko and
Mindlin theories ignore out of plane normal deformation. In
this paper, we employ three-unknown shear and normal
deformation theory for size-dependent vibration analysis of
a three-layered piezo-magnetic microbeam based on strain
gradient theory. a comprehensive literature review about
three-unknown shear and normal deformation theory and
size-dependent theories are presented to show necessity of
this research.

Shimpi and Patel (2006) employed a new two-variable
refined theory for analysis of orthotropic plates. They
mentioned that employing this theory leads to only two
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governing equations, which are completely uncoupled for
static analysis, and are only inertially coupled for dynamic
analysis. In addition, parabolic variation of shear stress was
considered across the thickness direction to ignore need to
shear stress correction factor. Schnabl et al. (2007)
presented an analytical solution for linear two-layer beams
with different material and geometric characteristics. The
effect of transverse shear deformation was studied on the
static and dynamic responses of beam. In addition influence
of various non dimensional material properties and
geometric parameters was studied on the results of beam.
Arefi and Rahimi (2010, 2011, 2012a, b and 2014),
Khoshgoftar et al. (2011), Rahimi et al. (2012) and Arefi
and Khoshgoftar (2014) studied electro elastic analysis of
functionally graded piezoelectric cylinder, sphere and plate
subjected to electric and magnetic potentials. Arefi (2014)
presented a comprehensive study on the electro-magneto-
elastic analysis of functionally graded shell of revolution
based on curvilinear coordinate system and tensor analysis.
The effect of electric and magnetic fields was studied on the
results of system. Zhang et al. (2015) presented a four-
unknown shear deformation theory to develop a
functionally graded cylindrical microshell model and they
introduced three material length scale parameters by using
the strain gradient elasticity theory.

Thai and Vo (2013) presented bending, buckling, and
vibration of functionally graded plates based on new
sinusoidal shear deformation theory without using shear
correction factor. They assumed that material properties are
graded along the thickness direction based on power law
distribution of the volume fraction of the constituents. Thai
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and Kim (2013) presented bending and free vibration
analysis of functionally graded plates based on new higher-
order shear deformation theory using Hamilton’s principle.
Bousahla et al. (2014) introduced trigonometric higher-
order theory for static analysis of functionally graded plates
including the stretching effect. The governing equations
were derived using principle of virtual work and employing
the concept of neutral surface. The Navier-type analytical
solution was employed for functionally graded plate
subjected to transverse load for simply supported boundary
conditions. Hebali et al. (2014) studied free vibration
analysis of a functionally graded plate based on quasi-three-
dimensional (3D) hyperbolic shear deformation theory.
They mentioned total transverse displacement into bending,
shear, and thickness stretching parts. They showed
importance of these parts in analysis via comparison with
previous references.

Yahia et al. (2015) studied wave propagation
characteristics of functionally graded porous plates based
on various higher-order shear deformation plate theories. To
account porosities in functionally graded materials, some
modifications were considered on the rule of mixture. The
effects of the volume fraction distributions and porosity
volume fraction were considered on the wave propagation
characteristics of functionally graded plate. Bourada et al.
(2015) studied bending and free vibration analysis of
functionally graded beams. A simple and refined
trigonometric higher-order beam theory was employed by
authors to include thickness stretching effect. They
mentioned that employing the refined trigonometric higher-
order beam theory does not need to shear stress correction
factor. In addition, the concept of neutral surface was
employed to derive governing equations of mation.
Thermo-elastic analysis of multilayered cross-ply laminates
and angle-ply sandwich plates resting on Pasternak’s
foundation subjected to sinusoidal temperature distribution
was studied by Zenkour (2015) by considering transverse
shear strains. Bounouara et al. (2016) studied free vibration
analysis of functionally graded nano plates resting on elastic
foundation. Zeroth-order shear deformation plate theory
was used for kinematic description of nano plate. Due to
variation of the transverse shear strains across the thickness
of the nano plate, there was no need for account of shear
stress correction factor. Mori-Tanaka homogenization
scheme was used for gradation of material properties.

Adim et al. (2016) employed a refined shear
deformation theory for static, buckling, and free vibration of
orthotropic  laminated composite plates.  Parabolic
distribution was assumed for transverse shear stress to
satisfy condition of zero shear stress and no need to shear
stress correction factor. The bending, free vibration and
buckling loads of composite plate were calculated in terms
of various parameters. Bennoun et al. (2016) developed a
new five-variable refined plate theory to derive governing
equations of motion of a functionally graded sandwich
plate. Effect of gradation of core and face sheets was
studied on the free vibration responses of plate. To show
accuracy and correctness of obtained results, a comparison
with literature including three dimensional elasticity
formulation was performed. A quasi-3D theory including

influence of normal and shear deformations and anisotropy
coupling was employed by Vo et al. (2017) for bending
analysis of a sandwich beam. Influence of important
parameters such fibre angle, lay-up and span-to-height ratio
was studied on the distribution of displacements and
stresses.

Li et al. (2011) employed nonlocal elasticity theory to
investigate resonance and stability for the transverse
vibrations of a nanobeam subjected to a variable initial axial
force, including axial tension and axial compression. Li
(2014a, b) studied torsion vibration of cylindrical
nanostructures and carbon nanotube based on higher-order
stress and two nonlocal models. Nonlocal stress gradient
theory was employed by Liu et al. (2017) to dynamic
analysis and stabilities of axially moving nano-beams with
time-dependent velocity. He mentioned that the natural
frequencies are increased with increase of nonlocal
parameter.

Li et al. (2015) studied longitudinal dynamic behaviors
of some common one-dimensional nanostructures such as
nanorods and nanotubes based on the hardening nonlocal
approach. The numerical results were presented to show
nonlocal longitudinal vibration responses under various
boundary conditions including soft and hard constraints.
Shen and Li (2017) used modified semi-continuum Euler
beam model for bending analysis of micro/nano-beam.
Principle of minimum potential energy was used to derive
governing equations.

Zhu and Li (2017) studied nonlocal static analysis of
functionally graded nanotubes using Eringen’s nonlocal
integral elasticity. In spite of others papers in nanoscale that
used nonlocal differential model, this paper used nonlocal
integral model for calculating the twisting static behavior of
functionally graded nanotubes. Wave propagation analysis
of a viscoelastic SWCNTSs subjected to magnetic field with
surface effect was studied by Li et al. (2016a) based on
nonlocal strain gradient theory. It was mentioned that phase
velocity was increased by increase of damping parameter,
surface effect and magnetic field. Free vibration analysis of
a size dependent Timoshenko beam made of functionally
graded materials was studied by Li et al. (2016b) based on
nonlocal strain gradient theory. They reached to novel
conclusions through change of material characteristic
parameter larger or smaller than the nonlocal parameter.

Strain gradient theory was studied by authors to
investigate vibration and bending analysis of micro-
structures subjected to applied electric and magnetic
potentials (Ansari et al. 2013, Arefi and Zenkour 20173, b,
¢, d, Li 2013, Zhang et al. 2015, Mohammadimehr et al.
2016, Simsek 2016, Li et al. 2017). Also, nonlocal elasticity
Eringen’s theory was used for thermo-magneto-electro-
elastic analysis of nano structures using various classic and
advanced theories (Kaghazian et al. 2017, Arefi 20164, b,
Arefi and Zenkour 2016a, b, Zenkour and Arefi 2017). In
addition, there have been a number of size-dependent
models developed for the vibration analysis of microbeams
based on the modified couple stress theory (Akgdz and
Civalek 2013, Tang et al. 2014, Ghadiri and Shafiei 2016,
Sourki and Hoseini 2016).

Literature review has been completed above. It shows
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that although various analyses about shear deformation
theory and micro scale problems have been performed,
combination of strain gradient theory and normal and shear
deformation theory cannot be observed in various studies.
Vibration analysis of a three-layered microbeam is studied
in this paper based on strain gradient theory and three-
unknown shear and normal deformation theory. Hamilton’s
principle is used for derivation of the governing equations
of mation. Effect of three micro-length-scale parameters is
studied on the responses of sandwich microbeam. the
results of this study can be used for design and
manufacturing of micro-electro mechanical systems
including sensor and actuator components.

2. Basic relations

In this paper, free vibration responses of a three-layered
piezo-magnetic shear deformable microbeam are studied.
Strain gradient theory and three unknown shear and normal
deformation theory are employed for formulation of the
problem. The assumptions for our problem are presented as
follows:

(1) Three-unknown shear and normal deformations
theory was used in this paper. Based on this theory,
the normal strain along z direction is considered.

(2) The axial deformation of mid-surface is ignored.

(3) No discontinuity is considered between core and
face-sheets. Based on this assumption, the
displacement field is assumed continuous along the
thickness direction.

(4) The solution was proposed for simply-supported
boundary conditions.

Based on this theory, two longitudinal and transverse
deformations u(x,z) and w(x,z) of microbeam are
expressed as (Arefi and Zenkour 2016a)

u(x,z,t) = 81up(x, t) — ZM
d )
—8,®,(2) $' "

w(x, z,t) = wi(x, t) + S,wy(x, t) + 5, P, (2)ws(x, t),

where u is axial displacement of mid-plane; w; and w,
are the bending and shear components of the transverse

displacement, and w; is an additional function of x that
shows higher order transverse deflection. In this study and
based on assumed displacement field, the following func-
tions may be supposed as (Arefi and Zenkour 2016a)

®d,(z)=z— gsin (%), ®,(z) = cos (%),

62=1.

@

The linear strain-displacement relations are used to
derive strain components as follows

duy  d*wy d*w,
Epy =0 ——Z—— — —
XX 1 dx dxz 271 dxz )

q ()
&y = 8,P0ws, Yy, = 8,9, E(WZ + ws).

The stress-strain relations for isotropic core are
expressed as

Oxx €11 C13 0 Exx
{O_zz } =|C13 €33 0 { €2z }; (4)
Oyxz 0 0 Css Vxz

where ¢;; are stiffness coefficients which are expressed as

E Ev E
€11 = C33 = 1 (%)

PR Y c = PR c = PYZENRRY
— 2 B71 2 721 +v)
in which E and v are Young’s modulus and Poisson’s

ratio respectively. The constitutive relations piezo-magnetic
face sheets are expressed as (Arefi and Zenkour 2017a)

01yP i1 Gz 07 &y
{03} =|ci3 ¢33 O {fzz}
O5 0 0 Yxz

Css
0 0 en(E, 0 0 qui(H,) ©
—[0 0 323{0}— 0 0 %3{0},
831 0 0 E3 631 O 0 H3

in which e; are the piezoelectric coefficients, q; are
piezomagnetic coefficients, E; and H; are the components
of electric and magnetic fields, respectively. The electric
and magnetic fields (E; and H;) are expressed as (Arefi
and Zenkour 2017a)

&)

Shear Layer

Winkler Foundation

Fig. 1 The schematic of a sandwich microbeam subjected to applied voltage
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{{D1,B1}}
{DS'BS} oT
0 0 )
B [{913,‘113} {e1s, q13} e q15}]{ SaT} ©)
_ [{611'0"111} {533,m33}] {E3}

_ [{m116#11} {m33(?#33}] {II:II;}’

where €;, m; and p; are the dielectric, electromagnetic
and magnetic coefficients, respectively. The electric and
magnetic fields are expressed as

oY oY 0¢ 09
{EllEBIHllHB} = _{%’%,ﬁja_f}, (8)

in which ¢ and ¢ are the electric and magnetic potentials.
For a nanobeam excited with initial electric and magnetic
potentials, we can assume electric and magnetic potentials
as follows

B 2,6) = i—flpo —p(x,£) cos (’;—Z)

9
_ _ 27 wZ ®)
o(x,z,t) = EQ—”O — ¢(x,t) cos (E)

in which for simplification, 2=zihz—‘“’i7p, Yo, P are
applied electric and magnetic potentials and ¥(x,t),
¢(x,t) are electric and magnetic potentials along the
longitudinal directions. For the electric and magnetic
potentials, the following electric and magnetic field can be
derived as

(5 ) = - {5252} = (52 Bhos (),

dx’ 0x ox’d h
oY dp
(B, Hy) = —{a—fa—f} (10)
2 T . (TZ
== (o o} = -0 @)sin (7)

Substitution of strain components into stress relations of
core leads to

E du, d’w,
O-.XX =

1-2\Vax ~ Faxe
dZWZ , (11)
—62q)1 W + V62¢2W3 ,
E ,
v e (12)
duy, d’wy d*w,
+v 6la_z_dx2 - 62@1 _dx2 ,
E dWZ dW3
=—9 (— —) 13
Faz 2(1+v) 272 dx+dx (13)

Also, the stress components of piezo-magnetic face-
sheets are expressed as

du d?w d?w
O'p (61 0 Z_l— 62q) _2>

xx

dx dx? L dx?

' ' lpo mZ
+C136217 mq>2W3 + e13 |5 + '(!) sin h (14)

+q13 [ %o + o ¢>sm (722)] ”

du d?w d?w
ot = (052 Zd—?‘5zq’1d—5>

’ l/)() Z
+c330,Pow3 + 53 |— + —1/) sin . (15)
P

b0 nz
+q53 [ hp +E¢Sln( A )]

P (dwz N dw3> oY (7‘[2)
= C5502P — ) — €315 -CoSs|—
dx dx ox h (16)

p
da¢ nZ
q31 ax Cos )

D

The electric displacement and magnetic induction are
derived as

dw, dw3>
D, B} = ()
{D1,B1} = {e15, 15162 z(d + T

—{€11,m }a—lpcos<z) 17
1M 5o h, @an

d¢ nZ
{mn:#n}axcos )

P

duo d2W1
{D3, B3} = {e13,q13} (51 dx Zdx?

d2W2 '
—62CD1 W + 62 q)2W3

+{e33,m33}[ Z)O + h_l’b sin (ZZ>]

P p p

) J
+{ms3, 33} [ 20 - %‘P sin (%)]
P

After completion of magneto-electro-elastic relations, in
this stage we can start formulation of strain gradient theory.
The basic relations for strain gradient theory are expressed
as follows (Wang et al. 2010, Lam et al. 2003)

(18)

pi = 2ul§yy, T = 2uling, my =2pliy;,  (19)
in which p; are stress couples, 7, and m; are higher-
order stress tensors, n;, and y; are deviatoric stretch
gradient tensor and symmetric gradient rotation tensor and
y; is dilatation gradient tensor. In addition, u is the bulk
shear modulus and [,, I; and [, are three micro-length-
scale parameters. In Eq. (21), the deviatoric stretch gradient
tensor, symmetric gradient rotation tensor and corres-
ponding dilatation are defined as (Wang et al. 2010)
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_ 6£kk
vi= ox;’
1
Mije = Nijk — §(5ij Mmmk + Gk Momi + S Mmmj )' (20)
1 0gy 0gyi
Xy = Z(Gipq ax, Ty )

0%y, a%u; a%uy,
Ox0x;  0x;0x;
permutation symbol and &;; is Kronecker delta.

By using the displacement field defined in Eq. (3), the
nonzero higher-order strains n;;, and summation of them
are derived as

in which 73, :%( ) ey is the

Ox;0xy

s dzuo d3W1
N1 = 1@‘953@— 1(Z) d 3,

S p— S —_ S
N113 = N131 = N311

1 dzwl d?ws . d?w,
=z + 6 | P~ 2 +(@1 —2¢1)W )

3 dx?
Ni33 = MN313 = N331
_ 16 (Zcb' dws " dwz)
32 2 dx ax /)

s "
N333 = 6, P, w3,

Nmm1 = M1 + M321 + N331 (21)
d?uy, d3w,
Uagxz ~ 37 ax3

d3W2 1 ' dW3
8 | O+ (2@2 -
Nmm3 = M1z + N323 + N333

1 d2W1 d2W3
“31 ax? 52 g

" dWZ
e a) '

The elements of dilatation gradient tensor y, are
derived as

dzuo d3W1 d3W2 dw.
N=0%"4373 243 — 6,01 —— e + 8,0, —— d
(22)
d?w, d’w,

V3=—W—52‘b1 12 +5,D, w3,

and finally all none-zero components of deviatoric stretch
gradient tensor and symmetric gradient rotation tensor (7, ,

Xi;) are derived as

—26 d®uy, 2 d3w,; 26 d3w,
M TE G 5 a5 AR (o3
26(1)’ dW3+16 ,,dW2
527%dx 5722 dx’

2 dzuo

=58 g e 5t O

dws dw
552q>2 » 562c1>2 d (23b)
1 dzuo 1 dw1+1 o d3w,
5% 42 T5% g2 T5%2%1 g3
+8 ©' dws 4 ®" dw,
15 272 dx 15 2! dx’

M33 =
(23c)

4 d*w, N 4 ® d?w;,
Mi13 = —3c 3.2 77292275
15 dx 15 dx (23d)

4 , d2W2

dZ
X12 =__[d > +52(¢1+¢2)

d2W3
+62q)2 dx2

(23e)

After derivation of required terms for y;, x; and 7,
the corresponding stress components p;, m;; and 7;; are
expressed as

o [ d*ug
p1 = 2ulp 51@ o)
a
d3W1 5D d3W2 s CI) d
253 " 2%Prgs + 0,9, d )

5 dzw d?w,
P3 22[110 dx -7 62(1)1 dx 2 +62¢2W3 B (24b)

4 d’u, d’w,;
T111 —5H11 01— dx2 _ZW
(24c)
d3w, cdws 1, dw,
-4, (Dldg—q)zd + = q)ldx
2 d?w, d?ws
T333—5/il1 Tz % CDZF
(24d)

T133 = 1313 = 1331
_ l _5 dzuo d3W1
ST s (24e)

d3W2 8 dW3 4 sz
B e e e S |

2dx 37! dx

T133 = T313 = 1331

— ]2
=K [ O g Y (249)
< d3W2 8 , dW3 4 sz)]
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1 12 d2W1
My = =S Wz |55
2 dx 2 2 (249)
’ d wy d w3
+62(¢’1 + CDZ)F + SZCDZ W .

After derivation of the required expressions for stresses,
electric displacements and higher-order stresses corres-
ponding to strain gradient theory, the dynamic version of
principle of virtual work & [(U—W —T)dt =0 may be
employed for derivation of the governing equations of
magneto-electro-elastic bending as follows

SU = j pibyi + 0y 6y + Ty SNy v,

sW = f b (q5w|z=ﬁ - Rf5w|2=_£) dx,
2 2 (25)

Rf = (K1 - K2 VZ)W;

6T = ff pludi + wéw]dzdx,

in which R, is reaction of Pasternak’s foundation. In
addition, U is strain energy, W is the work performed by
external works and T is the kinetic energy. In addition, p
denotes material density, K; and K, are direct and shear
parameters of Pasternak’s foundation. Substitution of
variation of strains &¢;;, dilatation gradient tensor &y;,
deviatoric stretch gradient tensor &7, , symmetric rotation
gradient tensor 8y, electric field 6E; and magnetic field
8H; into variation form of energy equation and integration
by part on the derived equations. After completion of
required terms of strain energy and energy due to external
works, the final governing equations of magneto-electro-
elastic bending are derived as

Sun d*N; _dNyy Ed2N111 B §d2N133
" dx2  dx 5 dx? 5 dx?
(26a)
d W dW1
Bluo + Bz d Bg dx
Sw - d3s _ d?F; _ d2S;; _dhy  1dhy
Iax3  dx? dx? dx 5 dx
2d3S;;y  1d’Lsz;  3d%Siss
5 dx3 5 dx2 5 dx3
5dJ133  4d%Lys3
5 dx 5 dx? (26b)
1d20,, diiy,  dy
T2 ax?z (q_Rf)62 _B3E+BS dx?
d?vi .. ..
+Bs—— 2 — Bgw, — Byp Wi — By1wis,
d3M, N, d*My;  2d3My,
ows: dx3  dxz  dx? 5 dx3 (26c)

1d?Ngz;  3d°My3;  12d*Nyyg

1d2M,,

5 dx2 5 dx® 15 dx?
=(q—R;)ow, — B dilg | g, &0
=\q f)OW2 2 4x 44y 2

dW1

+Bs—— P — B;w, — Bgw; — Bgwsy,

do, dhs
5W3: —d—+63+Q33 d +5 dx
1d%l333 2 8dQq33
_G —_—
TS5 a2 50 TS ax
4d2l,, 3
5 dx2 5 13

2dQ11

1d21I,

2 [ ®, 4 —Rd ]
27dx? = 02Ty T P

—Bgw, — By; Wy — BypWs,

61/): _+l_)3= ,

6¢: —+B3=0,
¢: ——+Bs
in which the resultant components are defined as

{N1,M;,51,Q:} = fp1{51.512.52¢1,52¢12}d2,
{N3, F5,G3} = fps'{l' 52‘1’,1:5262’}(12»
{N11, My1, 511} = f011{51,512, 8, P4}dz,

{l13,Q33} = J-52{¢2013'¢,2033}d2.
{N111, M111, S111, Qu11,J111}
= f’f111{51'5121 8,D1, 8, P, 8,1 }dz,
{N133, M133, S133, Q133, /133 }
= fT133{1'Z; 8,1, 8,D;, 5,P1 }dz,

{N113, 1113, L113, G113}

= jT113{1' 8,®,8,(1 — 2d7), 8,P; }dz,

{N333' 1333' L333' 6333}

- f Ta33{1,8,%5, 8, (1 — 20)), 8,®} }dz,

{Mi3, 112,012} = fm12{1, 8,®,, 6,(P) + P,)}dz,

{D;,B;} = f{Dl,Bl}cos< A )dz
P

{D;,B5} = f{Dl,Bl} sin <7;z )dz
hy P

T2 dx?

(26¢)

(26d)

(26e)

(26f)

(27)
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The substitution of strain components, electric and
magnetic fields gives the resultant components in Appendix
A

3. Analytical solution and numerical results

Before presentation of full numerical results, the
solution procedure must be described. The analytical
solution is presented based on Navier’s method and Fourier
series for a simply-supported microbeam are expressed as

u U, cos(4,x)
Wy w | Vasin(2,x)
Wil _ o Z W, sin(4,x)
ws (=

ll/)J L | Xy sin(2,0) [ 1 (28)

Y, sin(1,,x)
¢ Z, sin(1,,x)

where A, =nn/L and U,, W,, V,, X,, Y,, and Z, are
unknown amplitudes of unknown variables used in our
analysis. In addition, applied electric and magnetic
potentials and transverse loads may be expressed as a single
Fourier series as follows

(@090} = Y (@Yo Z}sind ). (29)
n=1

By substitution of proposed solutions and loadings into
governing differential equations of the microbeam, we have

[K1{2} = {F} + 0?[M]{Z},

where {2} ={U,,V,,W,,X,,Y,,Z,}" , [K] is the
symmetric stiffness matrix and {F} is force matrix. The
elements of the stiffness matrix Kj; = Kj;, mass matrix
M;; = M;; and force matrix are given by

(30)

3

Ky =A% (Al Ef% + 25A53> + A5 Az,
Kip = =2, (As' 25A55 + 25A96)

, 2 4

-1 (Aza + EAW + 2_51498),

5 4 3 3
Kiz = =43 (Az 25A54 25A95) Ay Az7,

, 4 24
Kiy = =4 (A4 - ﬁA 75 A97) An Ay,
Kis = A, 430, K1 = 4,431,
My =By, My, =—A,B3, M3 =—1,B,,
. dNf,  dNf;  dNY? s dNpo

7 T dx dx dx dx ’

4 3
Ky = 25 (25A65 + 25A106 +1‘111)

16 1

16

2
A7+ A + 7c = A124

25A67

1 1 1 4
+§A134 + 25A88 75A108 +2_5A159)'

Ky = 25 (Am + gAM + %Ams) + 8, (Ky + K 22)
2 1
25A74 25A86
1 4 16
+5A133 + thss - %Auz),

+A} (AZO + Agq +

\ 4 1 1 24
Ky =4y (A12 o o Aes o s dgy +5 A135 75
16 32 4- 2
+%A123) VH (75 A0 — oc Sz A12s _EAS‘J

2
—Ayy — Ay — Aso + ﬁA%) + 85D, (Ky + Ky2%

Kys = /131 (Agy
My, = =B34y,
My3 = Bg + A% Bs,

Kye = /1% (A3 — As2),
My, = Byg + A4Bs,
M4 = By,

—As1),

F, = 6,q,

6 4 3
K33 = Ay (A6 75 Sz Aso + 7c A100)

4 48 1 1
+1; (A17 + Azz + 225A114 + 25A78 +3 A130)
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In this stage, we present material properties

for
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calculation of stiffness matrix and numerical results. The
material properties of core and face-sheets are expressed as
(Pradhan and Phadikar 2009)

Core:
E =1.02x10%° MPa, v =0.3.

Piezomagnetic face-sheets (BiTiO3-CoFe204)

c11 = 226 GPa, ¢3 = 124 GPa,

c33 = 216 GPa, 55 = 44.2 GPa,

e;3 =—2.2, ey3 = —2.2, e;s = 5.8,
qis = 275, €11 = 5.64 X 1077,

m11 = 5367 X 10_12,
m33 = 5367 X 10_12,
Ui = —297 x 1076,

633 = 635 X 10_9,

U3z = 83.5 x 10_6.

9.6

8
1.0E+16 1.5E+16 2.0E+16 2.5E416 3.0E+16
K,

Fig. 2 Variation of fundamental natural frequencies of
microbeam in terms of spring parameter of
Pasternak’s foundation for various shear
parameters of foundation
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Fig. 3 Variation of second natural frequencies of
microbeam in terms of spring parameter of
Pasternak’s foundation for various shear
parameters of foundation
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Fig. 4 Variation of third natural frequencies of
microbeam in terms of spring parameter of
Pasternak’s foundation for various shear
parameters of foundation

The natural frequencies (in GHz) of three-layered piezo-
magnetic microbeam are studied in this section. Fig. 2
shows variation of fundamental natural frequencies of
microbeam in terms of spring parameter of Pasternak’s
foundation for various shear parameters of foundation. It is
observed that with increase of both parameters of
foundation, the fundamental natural frequencies of micro-
beam are increased significantly. Shown in Figs. 3, 4 are
2nd and 3rd natural frequencies of microbeam in terms of
spring parameter of Pasternak’s foundation for various
shear parameters of foundation. It can be concluded that
2nd and 3rd natural frequencies of microbeam are increased
with increase of two parameters of foundation due to
increase of stiffness of foundation. In addition it can be
concluded that the rate of increase of fundamental natural
frequencies is more than second and third natural
frequencies.

The effect of three micro-length-scale parameters 1, [
and [, is studied in this section. for this study, three
dimensionless parameters a, B and y are employed as:
lo =a (17.65 um), |, = B (17.65 yum)and [, =y (17.65
um). Fig. 5 shows fundamental, second and third natural
frequencies of microbeam in terms of first dimensionless
micro-length-scale parameter . It is observed that with
increase of first dimensionless micro-length-scale parameter
a, all natural frequencies of microbeam are increased
significantly. One can conclude that increase of first
dimensionless micro-length-scale parameter « leads to a
stiffer beam and consequently increases natural frequencies.
Figs. 6 and 7 shows variation of fundamental, second and
third natural frequencies of microbeam in terms of second
and third dimensionless micro-length-scale parameter S
and y. The results show that with increase of second and
third dimensionless micro-length-scale parameter f and
y, stiffness of microbeam is increased and consequently all
natural frequencies of microbeam are increased signifi-
cantly.

The main conclusion of Figs. 5, 6 and 7 is that the effect
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Fig. 5 Fundamental, second and third natural frequencies
of microbeam in terms of first dimensionless
micro-length-scale parameter a
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Fig. 6 Fundamental, second and third natural frequencies
of microbeam in terms of second dimensionless
micro-length-scale parameter S
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Fig. 7 Fundamental, second and third natural frequencies
of microbeam in terms of third dimensionless
micro-length-scale parameter y

of second dimensionless micro-length-scale parameter g is
more than effect of first and third dimensionless micro-
length-scale parameter « and y.

4. Conclusions

Free vibration analysis of a three-layered piezo-
magnetic microbeam was studied in this paper. Strain
gradient theory including three micro-length-scale
parameters was employed for analysis of the problem. To
increase accuracy of results and better modeling of the
microbeam, three-unknown shear and normal deformations
beam theory was used. The microbeam was rested on the
Pasternak’s foundation. A harmonic solution based on
Navier’s method was wused to predict vibration
characteristics of three-layered microbeam. The numerical
results indicate that two parameters of foundation and three
micro-length-scale parameters have significant influences
on the vibration characteristics of microbeam. Some
significant conclusions of our analysis are expressed as
follows:

The foundation’s characteristics including spring and
shear parameters have significant effects on the first three
natural frequencies of microbeam. The vibration analysis of
microbeam shows that with increase of spring and shear
parameters of foundation, fundamental, second and third
natural frequencies are increased significantly.

The numerical results indicate that change of three
micro-length-scale parameters «, § and y leads to
significant changes of natural frequencies of microbeam.
One can conclude that increase of three parameters a,
and y leads to significant increase of fundamental, second
and third natural frequencies of microbeam. In addition, it
can be concluded that influence of second dimensionless
parameter £ is more important among three dimensionless
parameters.
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