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1. Introduction 
 

In the last decades, due to carbon nanotubes (CNTs) 

extremely mechanical, magnetic and thermal properties the 

use of them is attracted a great deal of interest of 

researchers. They have many applications in polymer 

composites as reinforcement. Thus, nowadays, these 

materials are used as reinforcement in micro or sub micro 

scales to enhance the stiffness of micro composite structures 

such as bar, beam, plate and shell. It is reported in some 

experimental studies that the structures become stiffer in 

smaller scales such as Poole et al. (1996), Lam et al. (2003) 

and McFarland and Colton (2005). Moreover, these 

materials are used in nanotechnology because of the 

intensive reduces in grain sizes of nanocrystalline materials 

(NcMs), a large volume fraction of atoms reside in the 

interface regions between crystals forming anatom-cloud 

phase with a distinct atomic structure (Shaat 2015). 

Moreover, the surface to volume ratio of the grain increases. 

Thus, its surface energy will significantly affect the mecha- 

nical properties of NcMs (Shaat 2015). There are many 
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mathematical and physical theories in order to simulate the 

effect of micro/ nano scale in various structures, but 

classical continuum theories do not predict the 

microstructure-dependent deformation behavior of micro 

and Nano-sized structures (Aifantis 1999). Thus, to 

consider the size dependent effect, the researchers are 

employed several non-classical continuum theories such as 

micropolar (Eringen 1967) and nonlocal elasticity (Eringen 

1972), surface stress effect, and strain gradient (Fleck and 

Hutchinson 1993, 2001) and couple stress theories (Koiter 

1964). Some researchers investigated bending, buckling and 

free vibration analysis of various structures based on size 

dependent effects at micro or nano scales. Shaat and 

Abdelkefi (2015) considred influences of the nano 

crystalline silicon (Nc–Si) material structure on the pull-in 

instability of nanobeams subjected to a distributed 

electrostatic force. They presented a size-dependent 

micromechanical and atomic lattice models for multi-phase 

materials considering the in homogeneities surface energy 

effects and in order to investigate elastic modulus of the 

interface of NcMs, respectively. Also, in the other study 

(Shaat and Abdelkefi 2017), they discussed about effects of 

the grain size, the voids percent and size, and the grain 

boundary (interface) of nonlinear model for electrostatically 

actuated nanocrystalline beams accounting for the beam 
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Abstract.  In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by 

single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic 

medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro 

scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size 

dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized 

rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. 

Then, the governing equations of motions are derived using Hamilton’s principle and energy method. Numerical results are 

presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic 

intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of 

micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The 

obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic 

foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, 

buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are 

important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material 

length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of 

micro composite beams. 
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material structure. Akgöz and Civalek (2015a) investigated 

bending response of non-homogenous microbeams 

embedded in an elastic foundation based on modified strain 

gradient elasticity theory (MSGT) in conjunctions with 

Euler-Bernoulli, Timoshenko, Parabolic (third-order) beam, 

and sinusoidal (trigonometric) beam theories. Simsek and 

Reddy (2013) studied influences of the material length scale 

parameter, different material composition, and shear 

deformation on the bending and free vibration behaviors of 

functionally graded (FG) microbeams based on modified 

couple stress theory (MCST). Mohammadimehr and 

Mehrabi (2017) developed stability and free vibration 

analyses of double-bonded micro composite sandwich 

cylindrical shells conveying fluid flow under magneto-

thermo-mechanical loadings based on the MCST and third 

order shear deformation cylindrical shells theory (TSDT). 

They investigated that the effect of static fluid flow in the 

both of cylindrical shells in comparison with influences of 

flow in the one of them is the same for the moderately 

thick-walled micro cylindrical shells. The effects of power-

low index of material gradient, plate aspect ratio and 

mechanical and electric loadings on the displacement and 

natural frequency of FG piezoelectric micro plate based on 

MCST are demonstrated by Li and Pan (2015). 

Ghorbanpour Arani and Roudbari (2014) considered the 

electro-thermal nonlocal wave propagation of fluid-

conveying single-walled boron nitride nanotubes 

(SWBNNTs) using nonlocal piezo-elasticity with surface 

stress, initial stress and Knudsen-dependent flow velocity 

effect. They showed that the results of their article can be 

used in design and manufacturing of smart micro electro 

mechanical systems (MEMS) and nano electro mechanical 

systems (NEMS) in advanced medical application such as 

drug delivery systems with great application in 

biomechanics. Ansari et al. (2011) showed that the value of 

gradient index plays an important role in the vibrational 

response of the FG Timoshenko micro beams. Lei et al. 

(2013b) studied the buckling analysis of functionally graded 

carbon nanotube reinforced composite (FG-CNTRC) plates 

under various in-plane mechanical loads, using the element-

free-kp-Ritz method. Their results demonstrated that the 

change of carbon nanotube volume fraction, loading 

condition and temperature have especial effect on buckling 

strength of CNTRC plates. Akgöz and Civalek (2014a) 

illustrated a new microstructure-dependent sinusoidal beam 

model for buckling of micro beams that the size 

dependency becomes more important when the thickness of 

the micro beam is closer to material length scale parameter. 

Mohammadimehr et al. (2016b) investigated bending, 

buckling and free vibration behaviors of micro composite 

plate reinforced by FG-SWCNT under hydro-thermal 

environments using TSDT and MSGT. They are shown that 

with increasing of moisture change reduces the natural 

frequency and critical buckling load and increases the 

deflection of micro composite plate. Civalek et al. (2009) 

studied static analysis of CNT using nonlocal Euler-

Bernoulli beam theory (EBT). They used differential 

quadrature method (DQM) for bending analysis of 

numerical solution of CNTs. Afshin and Taheri (2015) 

discussed about static bending analysis of the interlaminar 

stresses and free edges effect in a laminated composite 

beam resting on the Winkler-type elastic foundation and 

demonstrated that the magnitude of interlaminar stresses are 

significant and should be considered in the structural 

design. Ma et al. (2008) considered the static and free 

vibration problems of MCST and classical Timoshenko 

beams that both the deflection and rotation of the simply 

supported beam predicted by the MCST are smaller than 

those predicted by the classical Timoshenko beam. Thai and 

Vo (2013a) used from a new sinusoidal shear deformation 

theory for bending, buckling and vibration analyses of FG 

plates and concluded that this theory is accurate and 

efficient in predicting the bending, buckling and vibration 

responses of FG plates. Lei et al. (2013a) introduced a 

novel size-dependent beam model made of FGM based on 

MSGT and established that the FG micro beams exhibit 

significant size-dependent when the thickness of the micro 

beam approach to the material length scale parameter. 

Jahangiri et al. (2015) investigated nonlinear mechanical 

behavior of the FGM micro-gripper under thermal load and 

DC voltage taking into account the effect of intermolecular 

forces based on MCST using the Galerkin based step-by-

step linearization method (SSLM). Yang et al. (2014) 

investigated the vibration and damping characteristics of 

free-free composite sandwich cylindrical shell with 

pyramidal truss-like cores using the Rayleigh-Ritz model 

and finite element method (FEM). Also, their predictions 

for the modal properties of composite sandwich cylindrical 

shell with pyramidal truss-like cores showed good 

agreement with the experimental tests. Dai et al. (2016) 

predicted the nonlinear forced vibration behavior of a 

cantilever nanobeam, essentially considering the surface 

elastic layer. The results of their research demonstrated that 

the combined effects of the residual stress and aspect ratio 

on the maximum amplitude of the nanobeam may be 

pronounced. Zhu et al. (2012) examined the effects of 

carbon nanotubes volume fraction, plate width-to-thickness 

(aspect) ratio, plate side ratio, boundary conditions, load 

type and distribution type of CNTs on the dynamic 

responses of CNTR-FG plates using the element-free-KP-

Ritz method and finite element method (FEM) based on 

first order shear deformation theory (FSDT). Shen (2009) 

investigated the nonlinear bending of FG nanocomposite 

plates reinforced by SWCNTs subjected to a transverse 

uniform or sinusoidal load in thermal environments. Their 

results showed that the load-bending moment curves of the 

plate can be significantly increased as a result of FG 

reinforcement. Ansari and Sahmani (2011) considered the 

effects of surface stresses on free vibration behavior of 

classical (CLPT) and FSDT nanoplate and found that the 

difference between the results predicted by the classical and 

non-classical solutions relies on the sign and magnitude of 

the surface elastic constants. 

The study of the researches indicates that there is not 

any work about static, buckling and free vibration analyses 

of a sinusoidal micro composite beam reinforced by SW-

CNTs with considering temperature-dependent material 

properties embedded in an elastic medium in presence of 

magnetic field under axial and transverse uniform loads is 

presented. In this work, the size dependent effects based on 
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the surface stress effect and MSGT are considered 

simultaneously. The generalized rule of mixture is 

employed to predict temperature-dependent mechanical and 

thermal properties of micro composite beam. Then, the 

governing equations of motions are derived using 

Hamilton’s principle. Numerical results are presented to 

investigate the influence the material length scale 

parameters, elastic foundation, composite fiber angle, 

magnetic intensity, temperature changes and CNTs volume 

fraction on the bending, buckling and free vibration 

behavior of micro beam. It is noted that in this study, the 

effects of fiber angle and intensity of magnetic field are 

considered as well as temperature change on the 

dimensionless natural frequencies, critical buckling load 

and maximum deflection of micro composite beam that 

there is not in the previous researches. Also, it can be seen 

that the considering of the surface stress effect on the 

behaviors of micro sinusoidal beams is the other novelty of 

this article. 
 

 

2. Geometry of sinusoidal micro composite beam 
reinforced by CNTs 
 

According to Fig. 1(a), the micro composite sinusoidal 

beam reinforced by CNTs in presence of magnetic fields 

considered with length L, width b and thickness h. 

This micro composite beam rested on elastic foundation 

with Winkler spring coefficient kw and Pasternak shear 

modulus kG. Uniformly distribution (UD) of single-walled 

carbon nanotubes (UD-SWCNTs) in micro beam are 

considered that is shown in Fig. 1(b). Carbon nanotubes 

volume fraction for this distribution is defined as follows 

(Mohammadimehr et al. 2016b, Lei et al. 2013a) 
 

*( )CNT CNTV z V  (1a) 

where 
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CNT
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CNT
CNT CNT
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w
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(1b) 

 

where wCNT, ρm and ρCNT are SWCNTs mass fraction, matrix 

density and SWCNTs density, respectively. 
 

 

3. Extended mixture rule 
 

According to the extended mixture rule, effective 

material properties of micro composite sinusoidal beams 

can be expressed as follows (Ansari and Sahmani 2011) 
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where 𝐸11
𝐶𝑁𝑇

 and 𝐸22
𝐶𝑁𝑇

 are Young’s modulus of SWCNTs 

in longitudinal and transverse directions, respectively. 

𝐺12
𝐶𝑁𝑇

 is the shear modulus of SWCNTs. Em and Gm denote 

Young’s modulus and shear modulus of the isotropic matrix. 

Also εi (i = 1, 2, 3) denotes force transformation between 

 

 

 

(a) 
 

 

(b) 

Fig. 1 (a) Geometry of micro composite sinusoidal beam in an elastic foundation in the presence of magnetic field; 

(b) distribution of SWCNTs in micro composite sinusoidal beam 
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Table 1 εi coefficient of SWCNTs (Mohammadimehr et al. 2016b) 

0.11 0.149 0.934 0.934 

0.14 0.150 0.941 0.941 

0.17 0.149 1.381 1.381 
 

 

 

SWCNTs and polymeric matrix. It is defined the extended 

mixture rule as the following form 
 

1m CNTV V   (3) 

 

where Vm is the matrix volume fraction. 

The temperature-dependent mechanical properties of 

PmPv as the matrix are considered as follows (Lei et al. 

2013c, Mohammadimehr et al. 2016b) 
 

0.34m   (4a) 

 
645(1 0.0005 ) 10 /m T K      (4b) 

 

(3.51 0.0047 )mE T GPa   (4c) 

 

where ΔT = T ‒ T0 and T0 = 300 K. It is noted that the 

temperature of the top and bottom surfaces is the same. 

   The temperature-dependent material properties of 

SWCNTs as reinforcement are obtained as quadratic curve 

using Lagrange polynomials from data in Lei et al. (2015) 
 

5 2 9 12

11 (7.425 10 ) (1.173 10 ) (5.9317 10 )CNTE T T       (5a) 

 
5 2 9 12

22 (9.3125 10 ) (1.471 10 ) (7.4375 10 )CNTE T T       (5b) 

 
5 2 8 12

12 ( 2.4625 10 ) (2.96 10 ) (1.8779 10 )CNTG T T        (5c) 

 
34000( / )CNT Kg m   (5d) 

 

11 2 8 8

11 ( 1.1826 10 ) (1.4850 10 ) (6.7913 10 )CNT T T          

11 2 8 8

11 ( 1.1826 10 ) (1.4850 10 ) (6.7913 10 )CNT T T           
(5e) 

 

Finally, εi coefficient for different SWCNTs volume 

fractions are shown in Table 1 (Zhu et al. 2012). 
 

 

4. Formulation 
 

4.1 Displacement equations 
 

Formulation of bending, buckling and free vibration of 

micro composite beams is derived using Hamilton’s 

principle. The displacement fields based on the sinusoidal 

shear deformation theory (SSDT) can be expressed as 

follows (Akgöz and Civalek 2014a). 

 

0
0
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 (6a) 

 

( , , ) 0v x z t   (6b) 

 

0( , , ) ( , )w x z t w x t  (6c) 

 

In which 
 

( ) sin( )
h

R z z
h




  (6d) 

 

where u, υ and w are the displacements of micro beam in x, 

y and z direction, respectively, and ϕx is the angle of rotation 

of the cross-section of any point on the mid-plane of the 

beam. R(z) is a function of z and plays a role in calculation 

of the transverse shear strain and stress distribution 

throughout the height of the beam. 

 

4.2 The modified strain gradient theory 
 

One of the non-classical theories is the modified strain 

gradient theory (MSGT) (Akgöz and Civalek 2015a), in 

which, there are higher-order deformation gradients. 

According to this theory, the first variation of strain energy 

U can be written with infinitesimal deformations as (Akgöz 

and Civalek, 2014b, 2015a, 2016) 
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where 𝜎𝑖𝑗 , 𝑝𝑖 , 𝜏𝑖𝑗𝑘
(1)

, 𝑚𝑖𝑗
(𝑠)

 are the components of classical 

𝜎  and higher-order stress tensor P, 𝜏
(1)

, 𝑚𝑖
(𝑠)

 can be 

described as follows (Mohammadimehr et al. 2016a, Attia 

and Mahmud 2016) 
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where in Eq. (8a), 𝛼11  is thermal expansion coefficients 

that is defined in Eq. (2), ΔT, is temperature changes  and 

C11 is the transformation reduced plane stiffness, C55 is the 

transformation transverse shear stiffness and they can be 

defined as (Yang et al. 2014) 
 

 4 2 2 4

11 11 12 66 222 2C Q cos Q Q sin cos Q sin        (9a) 

 

55 55C Q  (9b) 

 

where ζ is the composite fiber angle and [Qij](i, j = 1, 2, 5, 

6) are the local fiber-adapted coordinate reduced stiffness 

coefficients and can be describe as (Lei et al. 2013a) 
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In addition l0, l1 and l2 are additional material length 

scale parameters related to dilatation, deviatoric stretch and 

rotation gradients, respectively. Also, the components of the 

classical strain tensor ε, the dilatation gradient vector γ, the 

deviatoric stretch gradient tensor ε(1) and the symmetric 

rotation gradient tensor χ(s) are defined as follows (Lei et al. 

2013a, Mohammadi and Mahzoon 2013, Akgöz and 

Civalek 2015b) 
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where ui are the components of displacement field in x and z 

directions, eipq is the alternate tensor (e123 = e231 = e312 = 1, 

e321 = e132 = e213 = ‒1) and δij is the Kronecker delta. It is 

noticeable that these equations are derived in Appendix A. 

By using Eqs. (11a)-(11d) and substituting them into Eqs. 

(8a)-(8d) and finally substituting these equations into Eq. 

(7), the first variation of strain energy U is defined as 

 

(0) (0) (0) (0)

, , , , , 0

(0) (1) (0) (1) (0) (1) (1) (0)

, , , , , , , ,

0(0) (0)

, ,

(1) (2)

, ,

x x x xx xxx xx xyy xx xzz xx

x xx x xxx z xx xxx xxx xxz xx xyy xxx xzz xxx yyz xx

zzz xx xy xx

xz x x x xx

N P T T T u

M P P T T T T T
U b w

T M

Q M P P



 

      

        
   

   

  


0

(1) (2) (3) (1) (2) (3) (2)

, , , , ,

(3) (1) (1) (1) (0)

, , ,

L

z x xxx xx xxx xxz x xyy xx xyy xzz x

xzz yyz x zzz x xy x yz

dx

T T T T T T

T T T M M


 
 
 
 
  
 
 
 

       
  
        



 

(12) 

 

where 
 

(0) (1) 2

2

( , , ) (1, , )
h

hx x x xN M M z R dz


   (13) 

 

2

2

h

hxz s xz

R
Q k dz

z







  (14) 

 

(0) (1) (2) 2

2

( , , ) (1, , )
h

hx x x xP P P p z R dz


   (15a) 

 

(0) (1) 2

2

( , ) (1, )
h

hz z z

R
P P p dz

z




  (15b) 

 
2

(0) (1) (2) (3) 2
2

2

2
( , , , ) (1, , , )

5

h

hxxx xxx xxx xxx xxx

R
T T T T z R dz

z







  (16a) 

 
2

(0) (1) (2) (3) 2
2

2

3
( , , , ) (1, , , )

5

h

hxzz xzz xzz xzz xzz

R
T T T T z R dz

z







  (16b) 

 
2

(0) (1) (2) (3) 2
2

2

3
( , , , ) (1, , , )

5

h

hxyy xyy xyy xyy xyy

R
T T T T z R dz

z







  (16c) 

 

(0) (1) 2

2

4
( , ) (1,2 )

5

h

hxxz xxz xxz

R
T T dz

z







  (16d) 

 

(0) (1) 2

2

1
( , ) (1,2 )

5

h

hyyz yyz yyz

R
T T dz

z







  (16e) 

 

(0) (1) 2

2

1
( , ) (1,2 )

5

h

hzzz zzz zzz

R
T T dz

z







  (16f) 

 

(0) (1) 2

2

( , ) (1, )
2

h

hxy xy xy

R
M M m dz

z




  (17a) 

 
2

(0) 2
2

2

1

2

h

hyz yz

R
M m dz

z




  (17b) 

 

4.3 The variation of surface stress effect 
 

The classical ideas of continuum mechanics do not have 

the ability to apply the atomic features of the nano-

structures. In this article, the modified continuum elasticity 

based on Gurtin-Murdoch theory is considered to develop 

analytical solutions for bending, buckling and free vibration 

of the micro composite beams reinforced by CNTs. The 

resulting in-plane loads lead to surface stresses which can 

be calculated using surface constitutive equations as (Ansari 

and Sahmani 2011, Lu et al. 2009a, b) 
 

(2 )s s s s

x x        (18a) 

 

s s

xz

w

x
 





 (18b) 

 

In which 2μ + λs can defined as surface Lame constant 

(Ansari and Sahmani 2011) 
 

2s s sE     (19) 

 

where ηs and Es are the residual stress and surface Lame 

constants, respectively. 

In the classical theories assumed that ζz = 0, because the 

stress component ζz is small in comparison with the 
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components of stress. Thus, it is unreal that omitted the ζz 

and does not satisfy the surface conditions considered in the 

Gurtin-Murdoch model. So, it is assumed that ζz varies 

through the beam thickness and satisfies the balance 

conditions on the upper and lower surfaces. On this 

assumption, ζz can be calculated as (Ansari and Sahmani 

2011, Shaat et al. 2012) 
 

2 2
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2 2
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 (20) 

 

by using Eqs. (18) and (20), the stress component ζz is 

defined as 

2 2

0 0

2 2

2
( )s s

z

w wz

h x t
  

 
 

 
 (21) 

 

also, the first variation of surface energy can be written as 

(Mohammadimehr et al. 2014) 
 

( )s s s

x x xz xz
A

U dA       (22) 

 

Substituting Eq. (18) into Eq. (22), the variation of 

surface energy is defined as 
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where 
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4.4 The variation of kinetic energy 
 

The variation of the kinetic energy of the micro 

composite sinusoidal beams can be given by Simsek and 

Reddy (2013) 
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where ρ is the mass density of sinusoidal micro composite 

beam. By using Eqs. (6a)-(6c) and Eq. (25), the first 

variation of the kinetic energy is given by 
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(26) 

where 
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4.5 The variation of work done 
due to the external work 

 

In this study, the work done due to the external forces 

are considered as follows: 
 

(a) The effects of elastic foundation; 

(b) The effects of magnetic field in z direction; 

(c) The effects of external Load q(x); 

(d) The effects of temperature changes; 

(e) The effects of axial buckling load. 
 

In this section, the first variation of components of work 

done due to the external forces is described 

(Mohammadimehr et al. 2015) 
 

0
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2

L
elastic elasticV F w dx   (28a) 

 
2

0 0

elastic

w gF k w k w    (28b) 

 

where Velastic denotes the work done due to the elastic 

foundation and it is defined as 
 

(0,0, )zH H  (29) 

 

The Maxwell relations and variation of external work 

done by magnetic field for the micro composite beams can 

be expressed as (Mohammadimehr et al. 2014) 
 

(0,0, )zH H  (30a) 

 

( )h U H   (30b) 

 

j h  (30c) 

 

( )lf j H   (30d) 

 

where 𝐻   , ℎ  , 𝑈   , 𝐽 , 𝑓𝑙    and ε are magnetic intensity vector, 

perturbation of magnetic field vector, displacement vector, 

electric current density vector, Lorentz forces and magnetic 

permeability, respectively. Substituting Eqs. (6a)-(6c) into 

Eq. (30) yields the following equation 
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and finally, the first variation of magnetic external works is 

defined as 
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(32) 

518



 

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under... 

where 
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The external applied force q(x) and axial buckling load 

can be expressed by 
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4.6 The governing equations of 
micro composite sinusoidal beams 

 

In this work, Hamilton’s principle is used to derive the 

governing equations of motion. According to Hamilton’s 

principle, the actual motion minimizes the difference of the 

kinetic and total potential energy for a system with 

prescribed configurations at t = 0 and t = T that is (Ma et al. 

2008, Ebrahimi and Barati 2016b) 
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(35) 

 

where T, U, Us, Velastic, Vfl and V are the kinetic energy, total 

potential energy, surface energy and work done by elastic 

medium foundation, magnetic field and the effects of  

external and axial buckling loads, respectively. 

Substituting Eqs. (12), (23), (26), (29), (32) and (34) 

into Eq. (35), the governing equations of motion are 

derived. 
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where t is the thickness of surface layer that it is considered 

0.1×h. 

Also, Ks is the shear correction factor that it is equal to 1 

for the classic (Euler-Bernoulli model) and higher order 

shear deformation theories such as sinusoidal beam models 

while this parameter is equal to 5/6 for Timoshenko beam 

theory. Thus, it is noted that in the Eq. (37c), this parameter 

is introduced. 
 

 

5. Solution method 
 

In this article, Navier’s type solution is employed to 

obtain the static, buckling and free vibration of the micro 

composite sinusoidal beam reinforced by SWCNTs 

embedded in an elastic foundation for two edges simply 
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supported boundary conditions. The simply supported 

boundary conditions of micro composite beams at x = 0 and 

x = L are given as (Lei et al. 2013a) 
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the following expansion of the displacement field is defined 

as follows (Ebrahimi and Barati 2016a) 
 

0

1

( , ) cos( ) i t

m

m

m
u x t U x e

L





  (39a) 

 

0

1

( , ) sin( ) i t

m

m

m
w x t W x e

L





  (39b) 

 

1

( , ) cos( ) i t

x m

m

m
x t x e

L


 





  (39c) 

 

where Um, Wm and ϕm are the undetermined Fourier 

coefficients, respectively. Also, ω is the vibration frequency, 

m is transverse wave number and 𝑖 =  −1. 

Substituting Eq. (52) into Eq. (49) yields 
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(40) 

 

where Kij, Mij, Nij and fi are shown in Appendix B. 

Also, the external applied force q(x) and temperature 

changes are expanded by Fourier series as follows 
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Table 2 The amounts of δ coefficient in various analyses of micro 

composite sinusoidal beam reinforced by carbon nano-

tubes (CNTs) 

 δ1 δ2 δ3 

Bending analysis 0 0 1 

Buckling analysis 0 1 0 

Free vibration analysis 1 0 0 
 

and the other parameters are determined similarly. 

In Eq. (40), the δ coefficients used for the static, 

buckling and free vibration analysis of micro composite 

sinusoidal beam reinforced by SWCNTs in which the 

amount of δ coefficient in various analyses is shown in 

Table 2. 
 

 

6. Validation 
 

6.1 The validation of static bending and 
buckling analysis of micro sinusoidal beams 

 

In this section, the dimensionless maximum deflection 

and critical buckling loads for FG micro beams are 

compared with the obtained results calculated by numerical 

solution methods to establish the validity and accuracy of 

the present solution method. In order to validate the effects 

of these behaviors, the obtained results are compared with 

the reported results by Akgöz and Civalek (2015a) based on 

modified strain gradient theory (MSGT) for static analysis 

and with the presented results by them (Akgöz and Civalek 

2015a) based on modified couple stress theory (MCST) for 

buckling analysis. Also, numerical examples are presented 

to investigate the deflection and buckling behaviors of FG 

microbeams. It is assumed that the material properties vary 

smoothly along the thickness of FG micro beam. For this 

purpose, the following material and geometric parameters 

are used (Akgöz and Civalek 2014b, 2015b) 
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Tables 3 and 4 give the maximum dimensionless 

deflection of the FG micro beam subjected to uniform 

transverse load without elastic foundation and dimension-

less critical buckling loads of FG micro beams for simply 

supported edges. It is seen that results agree well with each 

other. 
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0
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6.2 The validation of free vibration analysis 
of micro sinusoidal beams 

 

In this article, in order to display the efficiency of the 

present model, the results of this model are carried out 
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Table 3 The comparison of the maximum deflection for 

FG micro beam with q0 = 10 μN/m, l = 15 μm, L = 6h 

based on MSGT 

 
ℎ

𝐼
 

Maximum dimensionless deflection 

k = 0.5 k = 1.0 k =2.0 

Present work 

1 

0.1972 0.2422 0.3098 

Akgöz and 

Civalek 2015a 
0.1940 0.2382 0.3050 

Present work 

2.5 

0.9693 1.2043 1.5477 

Akgöz and 

Civalek 2015a 
0.9571 1.1892 1.5280 

Present work 

5 

2.2210 2.8108 3.6206 

Akgöz and 

Civalek 2015a 
2.2019 2.7864 3.5877 

 

 

 

Table 4 The comparison of the first dimensionless buckling load 

for FG micro beam with l = 15 μm and L = 10h based on 

MCST 

 
ℎ

𝐼
 

Maximum dimensionless deflection 

k = 0.3 k = 0.6 k =0.9 

Present work 

1 

249.7506 211.7566 186.3461 

Akgöz and 

Civalek 2014b 
249.7506 211.7576 186.3461 

Present work 

4 

52.5767 43.1523 37.2388 

Akgöz and 

Civalek 2014b 
52.5768 43.1523 37.2388 

Present work 

8 

42.7179 34.7220 29.7835 

Akgöz and 

Civalek 2014b 
42.7180 34.7220 29.7834 

 

 

 

Table 5 The comparison of the first dimensionless natural 

frequency for homogenous micro beam whit l = 17.6 μm 

and L = 10h based on CT, MCST and MSGT 

 
Dimensionless natural frequencies (𝜔 ) 

CT MCST MSGT 

Present work 0.2791 0.3828 0.5617 

Lei et al. 2013c 0.2790 0.3827 0.5625 

Ansari et al. 2011 0.2854 0.3863 0.5430 
 

 

 

which are compared with the results of the previously 

papers. Table 5 demonstrates the comparison of the first 

dimensionless natural frequencies of the homogenous micro 

beam for classical theory (CT), MCST and MSGT. In this 

study, based on the MSGT, the static, buckling and free 

vibration analysis of the micro composite sinusoidal beams 

reinforced by SWCNTs is presented. If the material length 

scale parameters (l0, l1) are equal to zero, the model is 

named as the MCST while, for all the material length scale 

parameters are equal to zero, it is said the CT. Also, the 

following first dimensionless natural frequency can be 

defined as (Lei et al. 2013c) 
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In Table 5, there are some small differences of the first 

dimensionless natural frequency between the present results 

and the obtained results by Ansari et al. (2011), which it is 

due to the effect of the sinusoidal shear deformation. 
 

 

7. Numerical results and discussion 
 

In this study, based on modified strain gradient theory 

(MSGT), the effects of length scale parameter, surface 

stresses, magnetic field and temperature changes on the 

bending, buckling and free vibration behaviors of the micro 

composite sinusoidal beam reinforced by SWCNTs 

embedded in an elastic medium are presented. It is assumed 

that the material length scale parameter of micro beam to be 

l = 17.6 (μm). Also, the used parameters in this section are 

considered as the following form: h = 2l, 4l, b = h, ηs = 1.7 

(N/m), ρs = 7 (μKg/m3), kw = 600 (GN/m3), kg = 1000 

(N/m), ΔT = 20 and Hz = 0.02 (A/μm). 

Table 6 offers the effect of surface layer thickness on the 

static, buckling and free vibration responses of micro beam. 

The results of this Table show that the surface stresses layer 

causes decrease the maximum deflection while increase the 

dimensionless natural frequencies and critical buckling load 

 

 
Table 6 Comparison of surface stresses effect on the static, 

buckling and free vibration behavior of micro composite 

beam reinforced by SWCNT for L = 10h, ΔT = 30, 

Es = ‒3 N/μm and, kw = kg = 0 

 
ℎ

𝐼
 t = 0 t = 0.05h t = 0.1h t = 0.15h 

𝑊 max  

2 0.340154 0.319821 0.298160 0.274909 

4 0.482693 0.462097 0.437992 0.409947 

8 0.579695 0.569682 0.556608 0.539251 

𝑃 𝑐𝑟  

2 379.2580 403.3694 432.6744 469.2680 

4 267.2633 279.1755 294.5402 314.6897 

8 222.5412 226.4527 231.7720 239.2319 

𝜔  

2 1.385489 1.428674 1.479480 1.540621 

4 1.163980 1.189589 1.221845 1.262943 

8 1.062435 1.071748 1.084308 1.101737 
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of microbeam because the surface layer lead to increase the 

stiffness of micro structure. In this article, for most realistic 

results the surface stresses are considered. 

Tables 7-9 investigated the effects of surface Lame 

constant on dimensionless maximum deflection, critical 

buckling load and natural frequencies of micro composite 

sinusoidal beam reinforced by single-walled carbon nano- 

 

 

 

 

tubes (SWCNTs) based on MSGT in presence of magnetic 

field and temperature changes. It is shown that increasing 

the surface Lame constant lead to increase the stiffness of 

micro structure. Thus, it is demonstrated that by increasing 

the surface Lame constant, the dimensionless maximum 

deflection reduces while increase the dimensionless 

buckling load and natural frequencies. Also, the presence or 

Table 7 The effects of surface stresses on the bending behavior of micro beam reinforced by 

SWCN in presence of magnetic field and temperature changes for h = 4l and L = 10h 

kw (GN/m3) 

kg (N/m) 
Hz (A/μm) ΔT 

Dimensionless maximum deflection (𝑊 0max ) 

Es
 = ‒50 Es

 = 0.0 Es
 = 50 

kw = 0.0 

kg = 0.0 

0.0 
0 0.454866 0.453187 0.451523 

25 0.442099 0.440463 0.438842 

0.02 
0 0.381322 0.380125 0.378939 

25 0.368093 0.366949 0.365815 

kw = 600 

kg = 0.0 

0.0 
0 0.269177 0.268588 0.268003 

25 0.258505 0.257944 0.257388 

0.02 
0 0.241602 0.241121 0.240643 

25 0.231312 0.230859 0.230410 

kw = 0.0 

kg = 1000 

0.0 
0 0.439155 0.437590 0.436039 

25 0.426395 0.424872 0.423364 

0.02 
0 0.370219 0.369091 0.367972 

25 0.357141 0.356064 0.354996 

kw = 600 

kg = 1000 

0.0 
0 0.263596 0.263032 0.262470 

25 0.253055 0.252518 0.251984 

0.02 
0 0.237097 0.236634 0.236173 

25 0.226939 0.226503 0.226071 
 

Table 8 The effects of surface stresses on the buckling analysis of micro beam reinforced by 

SWCNTs in presence of magnetic field and temperature changes for h = 4l and L = 10h 

kw (GN/m3) 

kg (N/m) 
Hz (A/μm) ΔT 

Dimensionless maximum deflection (𝑃 𝑐𝑟 ) 

Es
 = ‒50 Es

 = 0.0 Es
 = 50 

kw = 0.0 

kg = 0.0 

0.0 
0 284.5594 284.6643 284.7693 

25 292.7792 292.8875 292.9958 

0.02 
0 339.2716 339.3779 339.4843 

25 351.4548 351.5460 351.6731 

kw = 600 

kg = 0.0 

0.0 
0 480.2077 480.3127 480.4176 

25 500.0233 500.1316 500.2399 

0.02 
0 534.9199 535.0262 535.1326 

25 558.6990 558.8081 558.9172 

kw = 0.0 

kg = 1000 

0.0 
0 294.7055 294.8104 294.9154 

25 303.5266 303.6349 303.7432 

0.02 
0 349.4177 349.5240 349.6304 

25 362.2023 362.3114 362.4206 

kw = 600 

kg = 1000 

0.0 
0 490.3538 490.4588 490.5637 

25 510.7708 510.8791 510.9873 

0.02 
0 545.0660 545.1723 545.2787 

25 569.4464 569.5556 569.6647 
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Table 9 The effects of surface stresses on the free vibration response of micro composite beam 

reinforced by SWCNTs in presence of magnetic field and temperature changes for h = 4l 

and L = 10h 

kw (GN/m3) 

kg (N/m) 
Hz (A/μm) ΔT 

Dimensionless maximum deflection (𝜔)     

Es
 = ‒50 Es

 = 0.0 Es
 = 50 

kw = 0.0 

kg = 0.0 

0.0 
0 1.20091 1.20107 1.20123 

25 1.21820 1.21836 1.21853 

0.02 
0 1.31126 1.31141 1.31156 

25 1.33469 1.33484 1.33499 

kw = 600 

kg = 0.0 

0.0 
0 1.56001 1.56014 1.56026 

25 1.59196 1.59209 1.59222 

0.02 
0 1.64646 1.64658 1.64670 

25 1.68277 1.68290 1.68302 

kw = 0.0 

kg = 1000 

0.0 
0 1.22212 1.22229 1.22245 

25 1.24035 1.24051 1.24068 

0.02 
0 1.33072 1.33087 1.33102 

25 1.35494 1.35509 1.35524 

kw = 600 

kg = 1000 

0.0 
0 1.5764 1.57653 1.57665 

25 1.60898 1.60911 1.60923 

0.02 
0 1.66200 1.66212 1.66224 

25 1.69888 1.69900 1.69912 
 

  
 

(a) Maximum deflection (b) First critical buckling load (c) First natural frequencies 

Fig. 2 Effect of temperature changes on the static, buckling and vibration of micro composite sinusoidal beam for L = 10h 

Table 10 The effects of surface stresses on the static, buckling, and free vibration response of 

micro sinusoidal beam in presence of magnetic field for h = 4l , L = 10h and q0 = 10N 

 ΔT Es
 = ‒50 

(N/μm) 
Es

 = 0.0 
Es

 = 50 

(N/μm) 

Wmax(10-12) 

0 7.63045 7.61555 7.60074 

40 7.80404 7.78925 7.77455 

80 8.00223 7.98762 7.97310 

Pcr 

0 53721.702 53732.186 53742.668 

40 52527.024 52533.97 52543.914 

80 51219.965 51229.308 51238.649 

ω 

0 3216899.8 3217133.2 3217366.6 

40 3181206.3 3181429.6 3181652.8 

80 3141866.4 3142078.1 3142289.8 
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absence of elastic foundation, magnetic field and tempera-

ture changes on surface Lame constant are considered. It is 

clear that the effects of elastic medium and magnetic field 

increase the dimensionless critical buckling load and natural 

frequencies and decreases the dimension-less maximum 

deflection because these parameters increase the stiffness of 

micro beam. 

Moreover, it is known that rising temperature lead to 

reduce the stiffness of structures. Therefore, it is expected 

that increasing the temperature changes lead to reduce the 

critical buckling load and natural frequencies and increases 

the deflection of micro beam which it is shown in Fig. 2, 

Table 10. 

Fig. 3 illustrates the effects of material length scale 

parameters on the dimensionless maximum deflection, the 

critical buckling load and the natural frequency of the micro 

composite sinusoidal beam reinforced by SWCNTs based 

on CT, MCST and MSGT, respectively. It is shown that 

considering material length scale parameters lead to 

increase stiffness of micro structure, therefore reduces the 

dimensionless maximum deflection while increase the 

dimensionless critical buckling load and the dimensionless 

natural frequencies. Also, it is presented that the effect of 

material length scale parameters is noticeable for lower 

values of thickness-to-material length scale parameters. So 

that, the various size dependent effects including CT, MCST 

and MSGT are converged by increasing the thickness-to- 

 

 

 
 

material length scale parameters  
ℎ

𝑙
> 20 . 

Fig. 4 illustrates the effect of different values of elastic 

foundation on the static bending, buckling and free 

vibration analyses of micro composite sinusoidal beam 

reinforced by SWCNTs. It is shown that with increasing the 

Winkler spring constant (kw) decreases the maximum 

deflection of micro composite beam because the strength of 

micro beam increases under various loads with increasing 

the stiffness of structure [Fig. 4(a)]. Thus, this increases the 

stiffness causes to increase the dimensionless critical 

buckling load and natural frequencies. Then, it can be seen 

that the resonance phenomena delays [Figs. 4(a) and 3(b)]. 

Also, it is shown that the Pasternak shear modulus has 

greater influence on the behaviors of micro beam. So that 

the effect of Pasternak shear modulus is more important 

than Winkler spring constant. 

Fig. 5 shows the effect of composite fiber angle on the 

dimensionless maximum deflection, critical buckling load 

and natural frequency of micro composite sinusoidal beam 

based on MSGT. It is observed from this figure that with 

increasing the composite fiber angle, the dimensionless 

maximum deflection of micro beam reduces while the 

dimensionless natural frequency and the dimensionless 

critical buckling load increase. 

Fig. 6 shows the effects of magnetic field on the static 

bending, buckling and free vibration responses of micro 

composite sinusoidal beam reinforced by SWCNTs based 

   

(a) Dimensionless maximum deflection 

 

(b) Dimensionless first critical 

buckling load 

(c) Dimensionless first natural 

frequencies 

Fig. 3 Effects of material length scale parameter on the static, buckling and vibration of micro beam for L = 10h 

and kw = kg = 0 

   

(a) Dimensionless maximum deflection 

 

(b) Dimensionless first critical 

buckling load 

(c) Dimensionless first natural 

frequencies 

Fig. 4 Effects of elastic medium on the static, buckling and vibration of micro composite sinusoidal beam for L = 10h 
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on MSGT. It is demonstrated that the effect of magnetic 

field is much greater than material length scale parameter 

and elastic foundation. The magnetic field due to the 

presence of carbon nanotubes is caused to create a 

resistance force against structural deformation and thus it 

increases the stiffness of micro composite beam. Therefore, 

it is observed from this figure that increasing the magnetic 

intensity lead to increase the dimensionless critical buckling 

load and dimensionless natural frequency while the 

dimensionless maximum deflection reduces because the 

stiffness of micro structure increases by increasing the 

magnetic intensity. 

Fig. 7 shows the influence of carbon nanotube volume 

fraction on the maximum deflection, first critical buckling 

 

 

 

 

 

 

load and first natural frequencies of the micro composite 

sinusoidal beam embedded in an elastic medium in presence 

of magnetic field versus length-to-thickness ratio. It is 

noticeable that increasing the carbon nanotube volume 

fraction lead to increase stiffness of micro beam. Thus, it 

can be seen that the critical buckling load and natural 

frequencies increasing with increasing of SWCNT volume 

fraction while decreases the dimensionless maximum 

deflection. Also, it is noted that in this figure the maximum 

deflection, first critical buckling load and first natural 

frequencies of micro beam are depicted because of there are 

L / h parameter in the Eq. (42). Thus, it is necessary do not 

curve as dimensionless parameter. 

Fig. 8 depicts the effect of Pasternak shear moduli on 

   

(a) Dimensionless maximum deflection 

 

(b) Dimensionless first critical 

buckling load 

(c) Dimensionless first natural 

frequencies 

Fig. 5 Effects of composite fiber angle on the behaviors of micro composite sinusoidal beam for kw = kg = 0, and Hz = 0 

   

(a) Dimensionless maximum deflection 

 

(b) Dimensionless first critical 

buckling load 

(c) Dimensionless first natural 

frequencies 

Fig. 6 Effects of magnetic field on the behaviors of micro composite sinusoidal beam L = 10h and kw = kg = 0 

   

(a) Maximum deflection (b) First critical buckling load (c) First natural frequencies 

Fig. 7 Effects of carbon nanotubes volume fraction on the behaviors of micro composite sinusoidal beam for h = l 
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the dimensionless maximum deflection, critical buckling 

load and free vibration behaviors of sinusoidal micro 

composite beam reinforced by SWCNTs for first three axial 

wave numbers. In the present study, the Navier’s solution 

type is used to calculate natural frequencies, critical 

 

 

 

 

buckling load and maximum deflection of micro beam and 

m introduces as wave number that it shows mode numbers. 

As it is seen in this figure increasing mode number leads to 

increase the dimensionless natural frequencies and critical 

buckling load while reduces dimensionless maximum 

  

(a) Dimensionless maximum deflection (b) Dimensionless first critical buckling load 
 

 

(c) Dimensionless first natural frequencies 

Fig. 8 Effects of Pasternak shear moduli versus axial wave numbers (m) 

  

(a) Dimensionless maximum deflection (b) Dimensionless first critical buckling load 
 

 

(c) Dimensionless first natural frequencies 

Fig. 9 Effects of thickness-to-length scale parameter versus various Pasternak shear moduli 
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deflection. Also, it is depicted that due to use the Pasternak 

shear moduli enhances the micro structure stiffness and 

these increasing have a special role on static and dynamic 

responses of micro composite beam. So that, the effect of 

Pasternak shear moduli is the same in various mode 

numbers and leads to increase stiffness of micro structure. 

Fig. 9 considers the effect of Pasternak shear moduli on 

the dimensionless maximum deflection, critical buckling 

load and free vibration behaviors of sinusoidal micro 

composite beam reinforced by SWCNTs versus thickness-

to-length scale parameter based on MSGT. As it is said that 

in the Fig. 3, the effect of material length scale parameters 

is noticeable for lower values of thickness-to-material 

length scale parameters. But, in this figure the effect of 

elastic foundation is considered and it is showed that the 

static and dynamic behaviors of microbeam are different for 

the various value of thickness-to-length scale parameter in 

presence of Pasternak shear moduli and Winkler spring 

constant. So that, the first dimensionless buckling load and 

natural frequencies decrease for 
ℎ

𝑙
< 3 while these para-

meters increase for 
ℎ

𝑙
> 3. Moreover, when the thickness-

to-length scale parameter is small  
ℎ

𝑙
< 3  the dimension-

less maximum deflection enhances while this parameter is 

decreases with increasing the thickness-to-length scale 

parameter. 
 

 

8. Conclusions 
 

In this article, bending, buckling and free vibration 

analysis of a micro composite sinusoidal beam reinforced 

by single-walled carbon nanotubes embedded in an elastic 

medium in the presence of magnetic field under transverse 

uniform load with considering surface stress effect based on 

modified strain gradient theory is investigated. The 

governing equations of motion are obtained by Hamilton’s 

principle and the Navier’s type solution is used for simply 

supported boundary conditions. The generalized rule 

mixture is employed to predict temperature-dependent 

mechanical and thermal properties of micro composite 

beam. The influences of the material length scale 

parameters, elastic foundation, composite fiber angle, 

magnetic intensity, temperature changes and carbon 

nanotubes volume fraction on the bending, buckling and 

free vibration behaviors of micro beam are studied. The 

results of this research can be listed as follows: 
 

(1) There is a small different between the presence and 

absence of the surface layer stress. The considering 

surface layer stress leads to decrease dimensionless 

maximum deflection and vice versa for buckling 

and vibration behaviors. 

(2) The effect of surface Lame constant is more 

important than residual stresses, surface mass 

density and surface layer thickness. Moreover, the 

dimensionless critical buckling load and natural 

frequency increase with an increase in surface 

Lame constant while the dimensionless maximum 

deflection decreases. 

(3) The material length scale parameter has greater 

effect on the static, buckling and free vibration 

behaviors of micro composite sinusoidal beam 

reinforced by SWCNTs. This effect leads to 

increase the stiffness of micro structure and it is 

more important for lower thickness-to-material 

length scale parameters of micro beam. 

(4) The influence of the Pasternak shear modulus is 

more than the Winkler spring constant on the 

static, buckling and free vibration of micro 

composite beam. Anyway, with increasing both 

them, the dimensionless critical buckling load and 

natural frequency of micro beam increase while the 

dimensionless maximum deflection decreases. 

(5) The magnetic field increases the stiffness of micro 

composite sinusoidal beam. This increasing 

stiffness is related to the intensity of magnetic 

field. The dimensionless critical buckling load and 

natural frequency increase by increasing the 

intensity magnetic field while the dimensionless 

maximum deflection decreases. Moreover, the 

effect of this parameter is more on the static 

response of micro beam. 

(6) The carbon nanotube volume fraction leads to 

enhance the stiffness of micro composite 

structures. 

(7) With increasing of temperature changes, the 

critical buckling load and natural frequency of 

micro composite sinusoidal beam decrease while 

the maximum deflection increases. Also, the 

influence of temperature changes on the structural 

behavior is less important compared to the other 

parameters. 

(8) It is depicted that due to use the Pasternak shear 

moduli enhances the micro structure stiffness and 

these increasing have a special role on static and 

dynamic responses of micro composite beam. So 

that, the effect of Pasternak shear moduli is the 

same in various mode numbers and leads to 

increase stiffness of micro structure. 

(9) It is showed that the static and dynamic behaviors 

of microbeam are different for the various value of 

thickness-to-length scale parameter in presence of 

Pasternak shear moduli and Winkler spring 

constant. So that, the first dimensionless buckling 

load and natural frequencies decrease for 
ℎ

𝑙
< 3 

while the maximum deflection increases for 
ℎ

𝑙
> 3. 

Moreover, when the thickness-to-length scale 

parameter is small  
ℎ

𝑙
< 3  the dimensionless 

maximum deflection enhances while this 

parameter decreases with increasing the thickness-

to-length scale parameter. 
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Nomenclature 
 

u, v, w Displacement of micro beam in x, y and z 

directions, respectively 

θx Angle of rotation 

SWCNT, SWBNNT Single walled Carbon nanotube and 

boron nitride nanotube, respectively 

MEMS, NEMS Micro electro mechanical system and 

Nano electro mechanical system, 

respectively 

FSDT, TSDT, SSDT First order, Third-order and sinusoidal 

shear deformation theories, respectively  

MCST Modified couple stress theory 

MSGT Modified strain gradient theory 

FGM Functionally graded material 

wCNT, ρCNT, VCNT Mass fraction, density and volume 

fraction of carbon nanotubes, 

respectively 

𝐸11
𝐶𝑁𝑇 , 𝐸11

𝐶𝑁𝑇 , 𝐺12
𝐶𝑁𝑇  Young’s and shear modulus of carbon 

nanotube, respectively 

ρm, Vm density and volume fraction of matrix, 

respectively 

Em, Gm Young’s and shear modulus of matrix, 

respectively 

εi Force transformation between carbon 

nanotubes and matrix 

𝜀𝑖𝑗 , 𝛾𝑖 , 𝜂𝑖𝑗𝑘
(1)

, 𝜒𝑖𝑗
(𝑠)

 Classical strain, dilatation gradient, 

deviatoric stretch gradient and symmetric 

rotation gradient tensors, respectively 

𝜎𝑖𝑗 , 𝑝𝑖 , 𝜏𝑖𝑗𝑘
(1)

, 𝑚𝑖𝑗
(𝑠)

 Components of classical and higher 

order stresses tensors 

α11 Thermal expansion coefficient 

C11, C55 Transformation reduced plane stiffness 

and transformation transverse shear 

stiffness, respectively 

ζ Composite fiber angle 

l0, l1, l2 Additional length scale parameters 

ηs, Es, ρs Residual stresses, Lame constant and 

surface mass density, respectively 

H, h, J, ε Magnetic intensity vector, perturbation 

magnetic field, electriccurrent density 

vector and magnetic permeability, 

respectively 

fl Lorentz forces 

Ks Shear correction factor 

t Thickness of surface layer 

T, U, Us Kinetic, total potential strain, surface 

stress energy 

Velastic, Vfl, V Work done by external work 

Um, Wm, θm Undetermined Fourier coefficient 

ω Vibration frequency 
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Appendix A 
 

The obtained results from Eq. (11) are presented in this 

appendix that they can be written as follows 
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Appendix B 
 

Components of stiffness, mass, buckling and external force 

matrices are showed in this appendix that they can be written as 

follows 
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Where in the above equations, the value of β are considered 

equal to 
𝑚𝜋

𝐿
. 
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