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1. Introduction 

 
Recently, based on the properties of CNTs such as high 

strength and stiffness, high elastic medium and aspect ratio 
using these materials have been attracted many 
investigators (Esawi and Farag 2007, Salvetat and Rubio 
2002, Fiedler et al. 2006). Actually, the extraordinary 
effects of CNTs make them excellent choice to reinforce 
polymer composites. In fact, investigating thermal and 
mechanical properties of functionally graded carbon 
nanotube-reinforced composites (FG-CNTRCs) have been 
considered by many investigators. Alibeigloo (2013) 
analyzed static behavior of FG-CNTRC plates embedded in 
piezoelectric layers using theory of elasticity. Mechanical 
and thermal post-buckling analysis of FG rectangular plates 
with various supported boundaries resting on nonlinear 
elastic foundation was studied by Zhang and Zhou (2015). 
Shen (2009) discussed nonlinear bending of FG-CNTRCs 
plates in thermal environments. He used many-body 
reactive empirical bond order potential to describe the 
interaction between carbon atoms. Moreover, he concluded 
that the variation of temperature reduces the elastic moduli 
and degrades the strength of the nano composites. Yas and 
Samadi (2012) carried out free vibration and buckling 
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analysis of CNTRCs Timoshenko beams on elastic medium. 

They considered four different distributions of CNTs to 
calculate frequency and critical buckling loads. They 
approved that,  various distributions of CNTs have 
remarkable results on frequency and critical buckling loads 
of the structures. Differential cubature for vibration analysis 
of embedded FG-CNT- reinforced piezoelectric cylindrical 
shells subjected to uniform and non-uniform temperature 
distributionbs is carried out by Madani et al. (2016). Rabani 
Bidgoli et al. (2015) analyzed Viscous fluid induced 
vibration and instability of FG-CNT-reinforced cylindrical 
shells integrated with piezoelectric layers. 

Classical sandwich structures consist of two faces which 
are made up high strength materials and one thicker layer 
called core. Recently, sandwich structures are vastly 
investigated due to their stupendous features such as high 
stiffness-to-weight and strength-to-weight ratios. 
Ramamoorthy et al. (2016) carried out vibration analysis of 
a partially treated laminated composite magnetorheological 
(MR) fluid sandwich plate. In fact, the core layer of this 
sandwich structure is composed of rubber and MR fluid. 
They concluded that, the size of MR fluid segment have 
noticeable effects on the natural frequency. Post-buckling 
behavior of composite and sandwich skew plates was 
investigated by Upadhyay and Shulka (2013). They 
considered higher order shear deformation theory for 
mathematical modeling of sandwich plates. They used finite 
degree double Chebyshev series method for employing 
spatial discretization of governing equations. Ferreira et al. 
(2008) analyzed static deformations and vibration analysis 
of composite and sandwich plates using a layerwise theory 
and radial basis function discretization with optimal shape 
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parameter. To increase the accuracy, the analysis was based 
on a new numerical scheme which was called radial basis 
functions. Moita et al. (2015) carried out buckling and 
geometrically nonlinear analysis of sandwich structures. 
They utilized Reddy’s third order shear deformation theory 
for the core. In this paper continuity between the layers was 
satisfied. Recently, RZT, proposed by Tessler et al. (2009), 
has been utilized to simulate sandwich structures. This 
theory calculates highly accurate response prediction 
without using shear correction factor. In another study, 
Tessler et al. (2010) presented a consistent refinement of 
first order shear deformation theory for laminated 
composite and sandwich plates using improved zigzag 
kinematic. Therefore, they formulated RZT and compared 
accuracy of this theory with different ones. It was proved 
that, RZT is more accurate among other theories for 
sandwich plates. Iurlaro et al. (2013) carried out assessment 
of RZT for bending, vibration and buckling of sandwich 
plate. Similarly, they compared obtained results with other 
theories and evaluated the accuracy and quality of this 
theory. Ghorbanpour Arani et al. (2016) analyzed RZT for 
vibration analysis of viscoelastic FG-CNTRC micro plates 
integrated with piezoelectric layers. In another paper, 
buckling and post-buckling analyses of piezoelectric hybrid 
microplate subject to thermo-electro-mechanical loads 
based on the MCST were investigaed by Lou et al. (2016). 
The Mindlin plate theory is adopted to describe its 
deflection behavior with the von Karman’s geometric 
nonlinearity taken into account. It is ascertained, increment 
of material length scale parameter leads to increasing the 
dimensionless compressive load. Meanwhile, the effects of 
electric field on the dimensionless compressive load were 
shown. They concluded with increasing of electric field 
dimensionless load become less and vice versa. Also, Lou 
and He (2015) carried out closed-form solutions for 
nonlinear bending and free vibration of FG microplates 
based on the MCST. It is shown that increment of material 
length scale parameter leads to increasing the dimensionless 
frequency and decrement of deflection. 

Since it is demonstrated that in micro- and nano-scale, 
classical elasticity theory is not capable of size effects. 
Therefore, it is necessary to employ higher order continuum 
theories such as nonlocal elasticity theory, modified couple 
stress and modified strain gradient theories. Size dependent 
buckling analysis of functionally graded micro beams based 
on MCST was presented by Nateghi et al. (2012). Their 
analysis was done with three different theories: classical, 
first and third order shears deformation beam theories. Li 
and Pan (2015) evaluated static bending and free vibration 
of a FG piezoelectric microplate based on MCST. They 
extended concept of functionally graded material (FGM) 
into the piezoelectric material which was called functionally 
graded piezoelectric materials (FGPMs). Mohammad-Abadi 
and Daneshmehr (2014) carried out size dependent buckling 
analysis of microbeams based on MCST with higher order 
theories and general boundary conditions. They used Euler-
Bernoulli, Timoshenko and Reddy beam theories to 
simulate the microbeam and generalized differential 
quadrature (GDQ) as well as analytical methods to solve the 
governing equations. A MCST for buckling analysis of 

sigmoid-FGM nanoplates embedded in Pasternak elastic 
medium was discussed by Jung et al. (2014). Ghorbanpour 
Arani et al. (2015a) studied vibration of bioliquid-filled 
microtubules embedded in cytoplasm including surface 
effects using MCST. 

Imposing magnetic field to CNTs can be an effective 
parameter to control the mechanical responses of them. 
Therefore, magnetic field can be applied as a controller 
parameter in structures reinforced with CNTs, too. 
According to this fact, many investigations have been done 
to study the influences of magnetic field on the mechanical 
responses of CNTs and also structures reinforced with 
CNTs. Wave propagation in single-walled carbon nanotube 
under longitudinal magnetic field using nonlocal Euler-
Bernoulli beam theory was researched by Narendar et al. 
(2012). The governing equations of motion have been 
derived by considering Lorentz magnetic force obtained 
from Maxwell’s relations. They found that nonlocality 
declines the wave velocity. Kiani (2014a) evaluated free 
vibration of conducting nanoplates exposed to 
unidirectional in-plane magnetic fields using nonlocal shear 
deformable plate theories. Characterization of free vibration 
of elastically supported double-walled carbon nanotubes 
subjected to a longitudinally varying magnetic field was 
presented by Kiani (2013). In this work frequencies as well 
as the corresponding vibration modes are evaluated for 
different varying magnetic fields. The obtained results 
display that the flexural frequencies magnify with the 
magnetic field strength. The effect of variation of the axial 
magnetic field on the vibrational mode patterns of both the 
innermost and outermost tubes is also illustrated. In another 
paper, Kiani (2014b) investigated magnetically affected 
SWCNTs as nanosensors. This is shown that the mechanical 
sensing of SWCNTs is enhanced by application of the 
longitudinal magnetic field. Revisiting the free transverse 
vibration of embedded single-layer graphene sheets acted 
upon by in-plane magnetic field was performed by Kiani 
(2014c). Elastic wave propagation in magnetically affected 
double-walled carbon nanotubes was carried out by Kiani 
(2015a). In another paper, Kiani (2015b) Column buckling 
of magnetically affected stocky nanowires carrying electric 
current. By adopting Gurtin–Murdoch surface elasticity 
theory, the governing equations of the nanostructure are 
obtained based on the Timoshenko and higher-order beam 
models. The results show that the surface energy effect 
becomes important in buckling behavior of the current 
carrying nanowires. 

To the best of our knowledge, the mechanical responses 
of SMP have not been received enough attentions so far. 
Motivated by these considerations, the main purposes of 
this paper are to study the buckling and free vibration 
analysis of SMPs resting on elastic foundation. The core 
layer which is integrated with ZnO layers, is reinforced with 
four type of different distributions of CNTs along the 
thickness direction. The SMP is subjected to 2D magnetic 
field so that the CNTs respond as they are exposed to 
magnetic field. Accordingly, magnetic field and external 
applied voltages play an inevitable role in mechanical 
responses of SMP. Theoretical formulations of sandwich 
structure are presented based on RZT. The MSCT is 
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employed to consider size effects. To achieve the governing 
motion equations, energy method and Hamilton’s principle 
is applied and using an analytical solution the critical 
buckling loads and natural frequency are obtained. The 
effects of small scale parameter, electric and magnetic 
loadings, distribution of CNTs, elastic foundation, thickness 
of each layer and mode numbers on the buckling and 
natural frequency of SMP are illustrated. 

 
 

2. Mechanical formulations 
 
Fig. 1 shows a schematic geometry of a sandwich pale 

integrated with two piezoelectric layers as actuators and 
embedded in orthotropic Pasternak foundation. As seen in 
Fig. 1, ht, a, b describe the total thickness, length and width 
of the structure, respectively. h1 is the thickness of lower 
and upper layers and hm represents the and core layer 
thickness. 

 
2.1 Material properties of CNTRC plates 
 
As stated above, in this work different distributions of 

CNTs such as uniformly distributed (UD), FG – Λ, FG – X 
and FG – O are considered. With respect to the rule of 
mixture, the effective mechanical properties of the CNTRC 
microplate (effective Young’s modulus and shear modulus) 
can be expressed as Alibeigloo (2013) 

 

11 1 11 ,cnt m
cnt mE V E V Eη= +  (1a) 

 
2

22 22

,cnt m
cnt m
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where 𝐸𝐸11

𝑐𝑐𝑐𝑐𝑐𝑐 , 𝐸𝐸22
𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐺𝐺12

𝑐𝑐𝑐𝑐𝑐𝑐
 are the Young’s moduli and 

shear modulus of SWCNT, respectively. Gm and Em indicate 
the corresponding properties of the isotropic matrix, 
respectively. ηj (j = 1, 2, 3) is the CNT efficiency parameter. 
Vcnt and Vm are the CNT and matrix volume fractions and 
are related by 

 
 1.m cntV V+ =  (2) 

 
 

 
Fig. 1 Configuration of sandwich micro plate 

The following equations can be written to express the 
relation of mass density ρ and Poisson’s ratio υ as follows 

 

12 12 ,cnt m
cnt mV Vυ υ υ= +  (3a) 

 
,cnt m

cnt mV Vρ ρ ρ= +  (3b) 
 
Poisson’s ratios of matrix and CNT, respectively. Also, 

different volume fractions for uniform distributions and 
other three FG distributions of the CNTs along the thickness 
z direction can be described as 

 
*:               ,cnt cntUD V V=  (4a) 
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where 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐∗  can be described as: 
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in which Wcnt is the mass fraction of CNTs. 

 
2.2 Modified couple stress theory 
 
In nanotechnology problems, it is necessary to consider 

small length-scale. The benefits of MCST are using only 
one length scale parameter and assuming symmetry of 
couple stress tensor. It should be mentioned that, the strain 
energy density is associated with strain and symmetric part 
of the curvature tensor. The strain energy occupying region 
V can be written as Li and Pan (2015) 

 

( ) ( )1  ,  , , , ,
2

k k k k
ij ij ij ijV

U m dV i j x y zσ ε χ= + =∫  (6) 
 

where 𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘  is the symmetric curvature tensors, 𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘  is the 
strain tensor and the superscript k = (a, b and c) represent 
the lower layer, core layer and upper layer, respectively. 
Therefore, the components of rotation vector of kth layer, 
𝜃𝜃𝑖𝑖𝑘𝑘 , electric field, Eii, symmetric curvature tensors and strain 
tensor can be written as follows 

 

( ), ,
1 ,
2

k k k
ij i j j iu uε = +  (7a) 

 

( ), ,
1 ,
2

k k k
ij i j j iχ θ θ= +  (7b) 
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2

k k
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275



 
Farzad Kolahdouzan, Ali Ghorbanpour Arani and Mohammad Abdollahian 

 

, , ( =1,2),k
ii iiE α α= −Φ  (7d) 

 
where 𝑢𝑢𝑖𝑖𝑘𝑘  are components of displacement vector and Φ is 
electric potential distribution in the thickness direction. The 
constitutive relations for SMP can be described as 

 
,k k k k k

ij ijnl nl ijn nQ e Eσ ε= +  (8a) 
 

,k k k k k
ii inl nl in nD e Eε µ= +  (8b) 

 
2

442 ,k k k
ij ijm Q l χ=  (8c) 

 
where 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘 , 𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 , 𝑚𝑚𝑖𝑖𝑖𝑖

𝑘𝑘 , 𝑄𝑄𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑘𝑘 , 𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘 and 𝜇𝜇𝑖𝑖𝑐𝑐𝑘𝑘  are stress, electric 
displacement, couple stress tensor, the elastic, piezoelectric 
and dielectric coefficients, respectively. Also, l is the 
material length scale parameter measuring the couple stress 
effect. 

 
2.3 Refined zigzag theory 
 
In this paper, in order to simulate the sandwich structure 

RZT have been applied Tessler et al. (2010); in which 
displacement components vector of the kth layer of the 
structure 𝑈𝑈1

𝑘𝑘 , 𝑉𝑉1
𝑘𝑘  and W1 along the coordinate directions x,  

y and z respectively, are written as 
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where u, v and w are the components of mid-plate and t 
represents the time. θ1 and θ2 are also, bending rotations of 
the transverse normal about the positive y axis and the 
negative x axis directions, respectively. ψ1 and ψ2 describe 
the spatial amplitudes of zigzag rotation. The advantage of 
RZT over other theories for sandwich structures, is adopting 
zigzag function 𝜙𝜙𝛼𝛼𝑘𝑘(𝑧𝑧), (α = 1, 2) which is related to the 
thickness and elastic stiffness coefficients of each layer. 
Using Eqs. (7), the strain and curvature components can be 
expressed as 
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Since the core layer of SMP integrated with 

piezoelectric layers, the following relations can be written 
for upper and lower layers Ghorbanpour Arani et al. (2016) 

 

( )

1

1 1

1

1sin , ,

                  

( , , , )
2

2
     ,

m

m

z x y thx y z t h

h V hz

π ϕΦ =
  − −  

  
 + − − 
 

 (11a) 

 

( )

2

2 1

1

2sin , ,

                       

( , , , )
2

,
2

m

m

z x y thx y z t h

h V hz

π ϕ  −  
  

 + − 

=

 

Φ
 (11b) 

 
where φ1 and φ2 describe spatial distribution of electric 
potentials, V1 and V2 indicate the external applied voltages 
on actuator layers. The constitutive equation for local 
stresses, electric displacements for the kth layer of the SMP 
are 
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where Shen (2009) 
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where 𝐸𝐸11

𝑘𝑘  and 𝐸𝐸22
𝑘𝑘  are effective Young’s moduli of each 

layers; 𝑄𝑄44
𝑘𝑘 , 𝑄𝑄55

𝑘𝑘  and 𝑄𝑄66
𝑘𝑘  are the shear moduli and υ12 

and υ21 describe the Poisson’s ratios. 
 
 

3. Equations of motion 
 
The Hamilton’s principle may be written as follows 
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where δU, δW and δK are the variations of strain energy, 
external works and kinetic energy, respectively. 

 
3.1 Strain energy 
 
Eq. (6) is rewritten to obtain the strain energy of SMP as 
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Substituting Eqs. (10) to (12) into Eq. (15) yields 
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where 𝑁𝑁𝑖𝑖𝑖𝑖 , 𝑀𝑀𝑖𝑖𝑖𝑖 , 𝑀𝑀𝑖𝑖𝑖𝑖
𝜙𝜙𝛼𝛼 , 𝑄𝑄𝛼𝛼 , 𝑄𝑄𝛼𝛼

𝜙𝜙 , 𝑃𝑃𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑖𝑖
𝜙𝜙𝛼𝛼 and 𝐴𝐴𝑖𝑖𝑖𝑖

𝜙𝜙𝛼𝛼  are 
defined as follows 
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3.2 External works 
 
The external works exerted to the systems are: 
 
• Two dimensional magnetic field, 
• Orthotropic Pasternak foundation, 
• External applied voltages, 
• Biaxial uniform compressive loads. 
 
3.2.1 Magnetic fields 
Core layer of micro structure is composed of CNTs 

which are sensitive to magnetic field. When a solid 
structure is affected by a magnetic field, magnetic forces 
would apply on each element of the structure. Based on 
Maxwell relations, �𝐽𝐽�,  current density, �ℎ�⃗ �,  disturbing 
vectors of magnetic field, (𝑒𝑒), strength vectors of electric 
field, �𝑈𝑈��⃗ �, the vector of displacement and �𝐻𝐻��⃗ �, magnetic 
field vector can be written as Narendar et al. (2012) 
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The Lorentz force can be expressed as 
 

( ) ,mf J Hη= ×
 

 (18b) 
 

where η is the magnetic permeability. In electro-magnetism, 
permeability is the measure of the ability of a material to 
support the formation of amagnetic field within itself. 
Hence, it is the degree of magnetization that a material 
obtains in response to an applied magnetic field. The 
magnitudes of the exerted forces mainly rely upon the 
strength of the applied magnetic field and magnetic 
permeability of the continuum under study as well as its 
deformation regime. The SMP is under two-dimensional 
magnetic field. when magnetic field is imposed along the α-
direction, it could be written as 𝐻𝐻��⃗ = 𝐻𝐻��⃗ 𝑥𝑥𝛿𝛿𝑥𝑥𝛼𝛼 𝑒𝑒𝑥𝑥 + 𝐻𝐻��⃗ 𝑦𝑦𝛿𝛿𝑦𝑦𝛼𝛼 𝑒𝑒𝑦𝑦 , 
where 𝛿𝛿𝛽𝛽𝛼𝛼  is Kronecker delta tensor (α, β = x, y). To 
expand Eqs. (18) and using Eqs. (10), the Lorentz force 
terms along the x, y and z directions can be expressed as 
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where Hx and Hy are the terms of magnetic field in x and y 
directions, respectively. The resultant forces and the 
bending moments are expressed as follows Ghorbanpour 
Arani et al. (2016) 
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Therefore, the external work due to the magnetic field is 
obtained as follows 
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3.2.2 Orthotropic Pasternak foundation 
The external work exerted to the SMP from surrounding 

elastic medium can be expressed as Ghorbanpour Arani et 
al. (2016) 
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in which kw presents the spring constant of Winkler type, kgx 
and kgy are shear foundation parameters in ξ and in η 
direction, respectively. 

 

3.2.3 Electric and mechanic forces 
Nxe, Nye and Nxm, Nym describe electric forces and 

uniform compressive loadings along x ‒ and y ‒ axes, 
respectively and can be written as follows 
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0,    ,xm ymN N N k N= − = −  (23b) 
 

in which k0 is the load factor, V1 and V2 indicate the external 
applied voltages of lower and upper layers, respectively. 
Therefore, the external work due to external applied 
voltages and compressive loads can be written as follows 
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3.3 Kinetic energy 
 

The total kinetic energy of SMP may be defined as 
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Using Hamilton’s principle and substituting Eqs. (15), 
(21), (22), (24) and (25) into Eq. (14) the governing 
equations of motion can be expressed as 
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,1 1, :  + 0,xx x yy y zzL L L hδ πϕ + =  (26h) 
 

2 , 22 , 2 1 :  0,xx x yy y zzL L L hδ πϕ −+ =  (26i) 
 

where I0, I1 and I2 define the mass moments of inertia of kth 
layer and can be written as 
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The simply supported mechanical and electrical 
boundary conditions can be expressed as 
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Other parameters in Eqs. (26) are defined in Appendix 
A. It is convenient to define the following dimensionless 
parameters as 
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Substituting Eqs. (17) into Eqs. (26) and using Eq. (29) 

yields the dimensionless governing equations. 
 
 

4. Solution method 
 
In the present manuscript, an analytical solution is 

selected to obtain free vibration and buckling responses of 
simply supported SMP are obtained separately based on the 
MCST. 

 
4.1 Free vibration response 
 
The displacements are expanded in double Fourier series 

based on Navier solution for simply supported end 
conditions as follows Iurlaro et al. (2013) 
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in which n and m are half wave numbers, Ω = {𝑈𝑈𝑚𝑚𝑐𝑐 ,
𝑉𝑉𝑚𝑚𝑐𝑐 ,𝑊𝑊𝑚𝑚𝑐𝑐 , Λ𝑚𝑚𝑐𝑐1 , Λ𝑚𝑚𝑐𝑐2 , Ψ𝑚𝑚𝑐𝑐

1 , Ψ𝑚𝑚𝑐𝑐
2 , Π𝑚𝑚𝑐𝑐1 , Π𝑚𝑚𝑐𝑐2 } are the 

amplitude constants, ω is the dimensionless natural 
frequency and 𝑖𝑖 = √−1. Inserting Eqs. (30) into dimen-
sionless governing equations, the following relation can be 
concluded 

 

[ ] [ ]( )2det 0,K Mω− =  (31) 
 

where [K] is the stiffness matrix and [M] is the mass matrix. 
Finally, the dimensionless frequency of the system can be 
calculated from Eq. (31). 

 
4.2 Buckling response 
 
Similarly, the buckling response of the SMP can be 

obtained using Navier method by neglecting the time 
harmonic factors in Eqs. (26) and (30). Therefore, in order 
to obtain the critical buckling loads the following equations 
are solved 

[ ]{ }( )det 0.K Ω =  (32) 
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Table 2 Comparison of uniaxial buckling load parameter, 

2
*

3
11a m

NbN
Q h

=  

𝑖𝑖/ℎ𝑖𝑖  
FSDT 

RZT 
𝑘𝑘𝑥𝑥2 = 𝑘𝑘𝑦𝑦2 = 1 𝑘𝑘𝑥𝑥2 = 𝑘𝑘𝑦𝑦2 = 5/6 𝑘𝑘𝑥𝑥2 = 𝑘𝑘𝑦𝑦2 = 2/3 

0.5 2.6629 2.5393 2.4024 1.8021 
0.6 2.8321 2.7002 2.5537 1.9965 
0.7 3.0231 2.8816 2.7245 2.2233 
0.8 3.2337 3.0816 2.9130 2.4813 
0.9 3.4620 3.2986 3.1180 2.7684 
1.0 3.7066 3.5313 3.3383 3.0824 

 

 
 
Table 3 Comparison of critical buckling load between present 

results 

Method 
ℎ𝑚𝑚/𝑎𝑎 

0.05 0.1 0.2 
Hosseini-Hashemi et al. (2008) 3.9444 3.7864 3.2637 
Shufrin and Eisenberger (2005) - 3.7865 3.2637 

Mizusawa (1993) 3.944 3.784 3.256 
Present work (RZT) 3.7379 3.5168 3.0277 

 

 
 
5. Numerical results and discussion 

 
In this section, the effects of FG distributions and 

volume fraction of CNTs, aspect ratio, surrounding elastic 
medium, external applied voltages, small scale parameter, 
magnetic field, load factor and mode numbers on the critical 
buckling loads and natural frequency of the SMP are 
studied in detail. ZnO is selected for the piezoelectric 
layers. It is supposed that the magnetic permeability of 
SWCNTs equals the magnetic permeability of the medium 
around it, η = 4π × 10-7 (Hosseini and Sadeghi-Goughari 
2015). The effective material properties of matrix polymer, 
SWCNT and ZnO are presented in Table 1 (Alibeigloo 
2013, Ghorbanpour Arani et al. 2016). 

In order to show the accuracy of the results obtained 
based on RZT, the uniaxial critical buckling load of the 
SMP are compared with those obtained based on first order 
shear deformation theory (FSDT) for different values of 
shear correction factors 𝑘𝑘𝑥𝑥2 and 𝑘𝑘𝑦𝑦2  in Table 2. It is demon- 

 
 
Table 4 Validation of the present work with Ref. Lei et al. (2012) 

for dimensionless buckling load 

Method 
Load factors (k0 = ‒1, k1 = ‒1) 

Dimensionless buckling 
load Lei et al. (2012) 

Dimensionless load 
buckling (present) 

UD 5.8831 5.3619 
FG-X 6.4384 5.8910 
FG-O 4.8946 4.4785 

 

 
 
Table 5 Validation of present work with Lei et al. (2012) for 

dimensionless buckling load 

Method 
Load factors (k0 = ‒1, k1 = +1) 

Dimensionless buckling 
load Lei et al. (2012) 

Dimensionless load 
buckling (present) 

UD 28.4768 27.8558 
FG-X 29.1897 28.5080 
FG-O 24.0474 23.4030 

 

 
 
strated in Table 2 that increasing the values of shear 
correction factors decreases the uniaxial buckling load 
factor based on FSDT and results obtained based on FSDT 
become close to those obtained using RZT. 

To the best of the author’s knowledge no published 
paper is available for buckling and free vibration analysis of 
embedded FG-CNTRC micro plate integrated with ZnO 
layers. Therefore, in an attempt to validate this research, a 
simplified analysis of this paper is compared with results 
obtained by Ref. (Hosseini-Hashemi et al. 2008 and 
Mizusawa 1993). The comparison is shown in Table 3. It is 
seen from Table 3 that the present results are in a good 
agreement in comparison with results obtained by Ref. 
(Hosseini-Hashemi et al. 2008 and Mizusawa 1993). 

In another attempt to validate the results of this 
investigation, a FG-CNTRC plate using Ritz method Lei et 
al. (2012). The theory used in this paper is FSDT and the 
amount of critical buckling load for diferrent distributions 
of CNTs are compared and for various load factors. The 
comparisons are shown in Tables 4-5. It is obvious from 
Tables 4-5 that the present results are in a good agreement 
in comparison with results obtained by Ref. (Lei et al. 
2012). 

Table 1 Material properties of MEE layers 

CNT & Matrix ZnO 

𝐸𝐸11
𝑐𝑐𝑐𝑐𝑐𝑐 = 5.6466 (TPa) 𝑄𝑄11 = 207 (GPa) 𝑒𝑒31 = −0.51 (𝐶𝐶/𝑚𝑚2) 

  𝑄𝑄12 = 117.7 (GPa) 𝑒𝑒32 = −0.51 (𝐶𝐶/𝑚𝑚2) 
  𝑄𝑄13 = 106.1 (GPa) 𝑒𝑒33 = 1.22 (𝐶𝐶/𝑚𝑚2) 
 𝑄𝑄22 = 207 (GPa) 𝑒𝑒15 = −0.45 (𝐶𝐶/𝑚𝑚2) 

  𝑄𝑄23 = 106.1 (GPa) 𝑒𝑒24 = −0.45 (𝐶𝐶/𝑚𝑚2) 
 𝑄𝑄33 = 209.5 (GPa) 𝜖𝜖11 = 7.77 × 10−8 (𝐹𝐹/𝑚𝑚2) 

𝜂𝜂1 = 0.149 𝑄𝑄44 = 44.8 (GPa) 𝜖𝜖22 = 7.77 × 10−8 (𝐹𝐹/𝑚𝑚) 
𝜂𝜂2 = 𝜂𝜂3 = 0.934 𝑄𝑄55 = 𝑄𝑄66 = 44.6 (GPa) 𝜖𝜖33 = 8.91 × 10−8 (𝐹𝐹/𝑚𝑚) 
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Fig. 2 Effect the FG distribution of CNTs on the dimension-

less critical buckling mechanical load 
 
 

 
Fig. 3 Effect the FG distribution of CNTs on the dimension-

less critical buckling electric load 
 
 
5.1 Buckling analysis 
 
Figs. 2 and 3 depict the effect of different types of FG 

distribution of CNTs on the critical buckling mechanical 
and electric loads, respectively, versus aspect ratio of the 
length to thickness of the SMP. As can be seen, the FG – X 
distribution of CNTs results higher critical buckling loads. 
This is due to the fact that the in FG – X distribution, 
SWCNTs are close to the top and bottom of the core layer. 
Therefore, the stiffness of the sandwich micro plate 
increases. It should be noticed, the results of UD and FG – 
Λ types are close to each other and FG – O distribution has 
the least effect on the critical buckling loads, consequently. 
Furthermore, it can be seen from Fig. 2 that increasing the 
aspect ratio of length to the thickness of SMP, decreases the 
critical buckling mechanic and electric loads. It should be 
noticed, 𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐶∗ = 0.17,   1/ℎ𝑐𝑐 = 1, 𝑎𝑎/𝑏𝑏 = 1.5 and ℎ1/ℎ𝑚𝑚  
= 0.05 are assumed in these figures. In fact, increasing the 
aspect ratio of length to the thickness make the structure 
looser. 

The variation of critical buckling mechanical and 
electric loads for different CNTs volume fraction versus 

 
(a) Dimensionless critical buckling mechanical load 

 

 
(b) Dimensionless critical buckling electric load 

Fig. 4 Effect of CNTs volume fraction versus aspect ratio of 
the length to thickness (a/ht) 

 
 

aspect ratio of length to thickness, are shown in Figs. 4(a)-
(b), respectively. It is seen from Fig. 4(a) that increasing 
CNTs volume fraction, increases critical buckling loads. It 
is because increasing the volume fraction of CNTs increases 
the stiffness of the structure. Moreover, the CNTs volume 
fraction is more effective on critical buckling mechanic load 
than electric load. 

Fig. 5 shows the effect of four cases of elastic mediums 
including neglecting foundation, Winkler, Pasternak and 
orthotropic Pasternak foundations, on the critical buckling 
mechanical load with respect to aspect ratio and length to 
thickness ratio, respectively. The following data are 
assumed to plot Figs. 4(a) and (b): kw = 30×1012 (N/m3), kg 
= 80 (N/m), kgx = 90 (N/m), kgy = 80 (N/m) and θ = 45°. It 
can be observed that considering elastic medium increase 
the critical buckling loads of SMP. This is due to this fact 
that considering elastic medium makes the structure stiffer. 
Moreover, the effect of Pasternak foundation is more 
considerable than Winkler foundation in increasing the 
critical buckling loads. Because Pasternak foundation 
assumes both shear and normal loads while Winkler 
foundation just assumes normal loads. Also, orthotropic 
Pasternak foundation is more effective than Pasternak 
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Fig. 5 Effect of elastic medium on the dimensionless critical 

buckling mechanical load versus aspect ratio of the 
length to thickness (a/ht) 

 
 

 
Fig. 6 Dimensionless critical buckling load versus 

orthotropy angle of elastic medium 
 
 

foundation to increases critical buckling loads. In fact, 
orthotropic Pasternak foundation estimates a stiffer 
structure than others. Moreover, the effect of elastic 
medium on the critical buckling loads are more visible for 
higher aspect ratio of length to the thickness ratio values. 

In order to show the effect of surrounding elastic 
medium completely, Fig. 6 is plotted to find out the effects 
of orthotropic foundation on critical buckling mechanical 
load versus orthotropy angle for different Pasternak shear 
constants. As observed from Fig. 6 and due to the Eq. (22), 
assuming θ = 90° yields the dimensionless critical buckling 
load at its maximum value. It is due to the fact that 
orthotropic Pasternak model considers not only the normal 
stresses but also the transverse shear deformation and 
continuity among the spring elements. In this section, 
𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐶∗ = 0.17,   1/ℎ𝑐𝑐 = 1, 𝑎𝑎/𝑏𝑏 = 1.5  and ℎ1/ℎ𝑚𝑚 = 0.05 
are hypothesized. 

Dimensionless critical buckling mechanical load 
according to different amount of dimensionless external 
applied voltages versus aspect ratio of length to width of the 
SMP are shown in Fig. 7. As can be seen, imposing applied 
voltages from negative to positive values, decreases the 

 
Fig. 7 Effect of external applied voltages versus aspect ratio 

of length to width (a/b) on the dimensionless critical 
buckling mechanical load 

 
 

 
Fig. 8 Effect of both external applied voltage and magnetic 

field along x- direction on the dimensionless critical 
buckling mechanical load 

 
 
critical buckling loads. Indeed, imposing positive and 
negative external voltages generate axial compressive and 
tensile forces on the bottom and top of the SMP, 
respectively. Therefore, the applied external voltage is an 
effective controlling parameter for buckling of the system. 
Furthermore, the effect of external applied voltages on the 
critical buckling loads becomes more distinguished at 
higher aspect ratio of length to width values. Volume 
fraction of CNTs, thickness ratio, aspect ratio and load 
factor assumed in this figure are respectively 0.14, 0.05, 1.5 
and 0.8. 

In order to reveal the effect of coupling between electric 
and magnetic fields and the use of these parameters to 
control the mechanical behaviors of SMP, Fig. 8 is plotted. 
As can be seen, increasing the external voltage, decreases 
the dimensionless critical buckling load. Increasing 
magnetic field along x- direction causes enhances the 
dimensionless critical buckling mechanical load. This is due 
to this fact that the magnetic field creates a force to the 
structure. In Fig. 8, 1/ℎ𝑐𝑐 = 1,  𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐶∗ = 0.14,  𝑎𝑎/𝑏𝑏 = 1.5 
and ℎ1/ℎ𝑚𝑚 = 0.05  are supposed and foundation 
parameters are assumed zero. 
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Fig. 9 Effect of small scale parameter versus aspect ratio of 

length to width (a/b) on the dimensionless critical 
buckling mechanical load 

 
 

 
Fig. 10 Effect of small scale parameter on the dimension-

less critical buckling electric load versus magnetic 
field (Hx) 

 
 
Fig. 9 represents the effects of small scale parameter (l) 

on the critical buckling mechanical load with respect to the 
aspect ratio of length to width, respectively. It is shown that, 
by increasing small scale parameter values, the critical 
buckling loads increases. It is due to the fact that according 
to Eq. (6), increasing the small scale parameter increases 
the total strain energy of the SMP. Moreover, the small scale 
parameter is more effective at higher aspect ratio of length 
to width values. Meanwhile, 𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐶∗ = 0.17, k0 = 0.8, a/b = 
1.5 and ℎ1/ℎ𝑚𝑚 = 0.05  and foundation coefficients are 
assumed zero. 

Dimensionless critical buckling mechanical load versus 
magnetic field along x- direction is presented in Fig. 10. It 
can be concluded that, as the structure is subjected to 
magnetic field, the critical buckling load increases. Because 
imposing magnetic field in x-direction creates a force to 
structure and results higher critical buckling loads. It can be 
understood that applying magnetic field is more effective 
than other controlling parameters. In this figure, k0 = 0.8, 
1/ℎ𝑐𝑐 = 1, 𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐶∗ = 0.14, and a/b = 1.5. 

Effects of mode numbers on the dimensionless critical 

 
Fig. 11 Effect of mode numbers on the dimensionless 

critical buckling mechanic load 
 
 

 
Fig. 12 Effect of load factor on the dimensionless 

critical buckling mechanical load 
 
 

buckling mechanic load are also illustrated in Fig. 11. 
As can be seen from Fig. 11, the critical buckling load 

increase as the mode numbers are increased. 
Finally, Fig. 11 shows the effect of load factor (k0) on 

the critical buckling mechanic load versus the aspect ratio 
of length to width. It is seen from Fig. 12 that with 
increasing the load factor the critical buckling load 
decreases. Because with increasing load factor, the 
compressive uniform load increases. 

 
5.2 Free vibration analysis 
 
Fig. 13 illustrates the influences of magnetic field 

intensity along x- and y- directions on the dimensionless 
natural frequency with respect to the aspect ratio of length 
to thickness, respectively. As can be seen from Figs. 13 and 
14, increasing magnetic field intensity along both x- and y- 
directions, make the system stiffer and that leads to increase 
the natural frequency, consequently. Also, the effect of 
magnetic field along both x- and y- directions is more 
distinguished at lower aspect ratio values. Moreover, 
comparing Figs. 13 and 14 show that the magnetic field 
along y- direction is more effective on the natural frequency 
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Fig. 13 Effect of magnetic field along x- direction on the 

dimensionless natural frequency versus aspect 
ratio of the length to core thickness (a/hm) 

 
 

 
Fig. 14 Effect of magnetic field along y- direction on the 

dimensionless natural frequency 
 
 

 
Fig. 15 Effect of elastic medium on the dimensionless 

natural frequency versus length -thickness (a/hm) 
 
 

of the system. In fact, magnetic field can be used as a 
controlling parameter on the natural frequency. The amount 
of 1/ℎ𝑐𝑐 = 1 , 𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐶∗ = 0.14 , 𝑎𝑎/𝑏𝑏 = 1.5   and ℎ1/ℎ𝑚𝑚 =
0.05 are considered and external voltage is zero. 

 
Fig. 16 Effect of external applied voltage on the dimension-

less natural frequency versus length-thickness (a/hm) 
 
 
The effect of surrounding elastic medium on the 

dimensionless natural frequency is shown in Fig. 15. It can 
be understood considering elastic medium increases natural 
frequency. Because elastic medium make the structure 
stiffer. Furthermore, it is seen from Fig. 15 that the 
orthotropic Pasternak foundation is more effective than 
Winkler and Pasternak ones. It is due to the fact that 
orthotropic Pasternak elastic medium predicts stiffer 
structure than others. The following data are supposed to 
depict Fig. 14: kw = 30×1012 (N/m3), kg = 550 (N/m), kgx = 
500 (N/m), kgy = 650 (N/m), θ = 90°, 1/ℎ𝑐𝑐 = 1, 𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐶∗ =
0.14 , 𝑎𝑎/𝑏𝑏 = 1.5 , ℎ1/ℎ𝑚𝑚 = 0.05   and electro-magnetic 
field’s are neglected. 

Fig. 16 presents the effect of dimensionless external 
applied voltage on the dimensionless natural frequency. 
Imposing positive values of external applied voltage 
decreases the natural frequency of the SMP. Indeed, 
imposing positive and negative external voltage values 
generates axial compressive and tensile forces on the 
bottom layer of the structure, respectively. In fact, this 
parameter is useful to control the natural frequency of the 
system, too. In this f igure,  1/ℎ𝑐𝑐 = 1, 𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐶∗ = 0.14, 
𝑎𝑎/𝑏𝑏 = 1.5, ℎ1/ℎ𝑚𝑚 = 0.05 are assumed and foundation 

 
 

 
Fig. 17 Effect of small scale parameter on the dimensionless 

natural frequency versus length-thickness (a/hm) 
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Fig. 18 Effect of mode numbers on natural frequency 

 
 
coefficients are hypothesized zero. 

The effect of small scale parameter on the natural 
frequency is illustrated in Fig 17. Increasing small scale 
parameter increases the natural frequency of the SMP. It is 
due to the fact that according to Eq. (6), the total strain 
energy increases with increasing small scale parameter. 
Also, as the aspect ratio of length to core thickness 
increases, the small scale parameter losses its effect. It 
should be noticed, 1/ℎ𝑐𝑐 = 1 , 𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐶∗ = 0.14 , 𝑎𝑎/𝑏𝑏 = 1.5 , 
ℎ1/ℎ𝑚𝑚 = 0.05  are considered and foundation coefficients 
are hypothesized zero. 

Effects of mode numbers on the dimensionless natural 
frequency versus the aspect ratio of length to core thickness 
are also shown in Fig. 18. 

As can be seen from Fig. 18 the natural frequency 
increase as the mode numbers are increased. 

 
 

6. Conclusions 
 
Size dependent buckling and free vibration analysis of 

FG-CNTRC micro plate integrated with ZnO actuator 
layers was investigated, for the first time in this study. The 
SMP embedded in orthotropic Pasternak foundation, was 
subjected to electro-magnetic. To obtain the accurate 
results, the RZT as well as MSCT were taken into account. 
Hamilton’s principle and energy method were employed to 
derive governing motion equations. Using an analytical 
solution the buckling and free vibration responses of the 
systems were obtained. The obtained results demonstrated 
that, orthotropic Pasternak elastic medium predicts stiffer 
structure and therefore higher critical buckling loads and 
natural frequency values. Moreover, FG – X and FG – O 
distributions of CNTs in SMPs, has the most and least 
stiffness between the other types, respectively. Meanwhile, 
with increasing the CNTs volume fraction, the critical 
buckling loads and natural frequency increases. 2D 
magnetic field intensity and external applied voltages are 
the two important effective parameter to control the 
mechanical behavior of the system; increasing magnetic 
fields increases critical buckling loads and natural 
frequency. Also, since positive and negative voltages 
generates compressive and tensile forces, therefore, 

imposing positive voltage values decreases the natural 
frequency of the SMP. Finally, it is hoped that the obtained 
results would be beneficial in design of NEMS and MEMS. 
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