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1. Introduction 

 
Integral abutment bridges (IABs) have no joint across 

the length of the bridge, and are therefore also known as 
jointless bridges. IABs have been built and successfully 
operated for several decades, especially in the U.S. and 
Europe, because of their many benefits. IABs have many 
advantages, such as structural integrity, efficiency, and 
stability. More importantly, IABs have proven to have low 
maintenance and construction costs. However, due to the 
restraints at both ends of the girder special design 
considerations are in need. For example, while replacing the 
deck slabs to extend the service life of IABs, the buckling 
strength of the steel girders without the deck slab could be 
much smaller than the strength with the deck slab present. 
With the addition of thermal expansion in the steel girders 
with no deck slab, a passive earth pressure from the 
abutment will be generated and if the generated axial force 
is greater than the buckling strength of the steel girders, 
buckling failures could occur. Many experimental and 
numerical studies have shown that IABs are influenced by 
thermal expansion, bridge length and soil stiffness (Laman 
and Kim 2009, Frosch et al. 2009, Ahn et al. 2011, Kim and 
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Laman 2012, Civjan et al. 2013, Faraji et al. 2001, Dicleli 
and Albhasi 2004a, b, Pugasap et al. 2009, Baptiste et al. 
2011). 

By recent studies from LaFave et al. (2016) and William 
et al. (2012), it was also found that the bridge expansion is 
90% of free expansion and determined mostly by thermal 
coefficients of materials used in girders. 

In particular, the superstructure experiences a cyclic 
axial force and bending moment due to thermal movement 
over a bridge service life. The results from this research 
have led to a set of design equations (Kim et al. 2012, Kim 
and Laman 2013, Lee et al. 2016). NCHRP 20-07/106 
report (2002) states that improperly predicting the thermal 
movement of an integral bridge may cause abutment 
damage and this movement may lead to severe damage if it 
is not properly designed for integral construction. 

One component of the superstructure in an IAB, the 
deck slab, carries significant axial forces due to the thermal 
expansion of the superstructure in service conditions. 
However, unlike conventional jointed bridges, during deck 
replacement for maintenance, girders remain fixed at both 
abutments and the abutment is in contact with the backfill. 
In this fixed condition, the steel girders of IABs are 
subjected to significant axial forces during thermal 
expansion and could finally buckle along their weak axis as 
shown in Fig. 1. 

Fig. 1 shows deformed shape of a girder due to thermal 
expansion during deck replacement. In this study, numerical 
simulations were performed to estimate the buckling  
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Fig. 1 Buckled steel girder of an IAB, MI, USA 

 
 

strength of the typical steel girders in IABs. The effects of 
girder length, flange width and thickness, imperfections due 
to fabrication and construction errors on the buckling 
strengths of multiple and single girders in IABs were 
studied. In analytical program, the imperfection is used to 
superposition of buckling eigenmodes obtained from 
buckling analysis. The scale factor (%) used in this study is 
relative structural dimension. In this study, it is defined as 
deformation values of each mode shape multiplied by an 
associated scale factor. The girder spacing, span length ratio 
(for three span girders) and self-weight effects on the 
buckling strength of the steel girder were also studied. A 
parametric study for varying these key parameters was 
performed and regression curve fits into the analysis results 
were found. Finally, equations predicting the buckling of 
girders were proposed. For estimation of the reaction force 
of the abutment generated by the passive earth pressure of 
the backfill, design guidelines such as BA 42/96 (2003), 
PennDOT DM4 (2015) and the LTI (2009) equations were 
used and compared with the buckling strength of the steel 
girders. Field research by Lemnitzer et al. (2012) to 
estimate the passive earth pressure coefficient (Kp) were 
also referenced. Backfill pressure distribution along the 
height of the abutment from BA 42/96 (2003) could be 
found from Lock (2002). 

 
 

2. Description of the numerical model 
 
To develop the numerical model, a commercial finite 

element program, Abaqus 6.13 (Standard) was used. For the 
material properties, typical steel properties were used, with 
an elastic modulus of 205 GPa, Poisson’s ratio of 0.3 and a 
yield stress of 520 MPa. Steel hardening behavior was also 
considered in the model for the post-buckling analysis. For 
the buckling analysis, only the elastic material properties 
were considered, while the post-buckling analysis uses the 
elastic-plastic hardening behavior of the steel. 

 
2.1 Dimensions of steel girders and 

boundary conditions 
 
The steel girders of an IAB for this study are shown in 

Fig. 2. The typical type of steel girder for 120 m bridge was 
selected. The steel girders of the IAB were modeled using 
Abaqus 6.13, however no deck was considered, since it was 
removed for deck replacement. 

The steel girder is a 122 m (40.5 m + 40.8 m + 40.5 m) 
long, three span continuous beam. Fig. 2 shows the cross 

 
Fig. 2 Typical cross sectional shape of the steel girders 

 
 

 
Fig. 3 Superstructure model of the IAB 

 
 
section of the selected IAB. The girder spacing is 3.66 m 
and the total number of girders is five. The boundary 
conditions at the ends of the steel girders were considered 
as either fixed or released. If the backwall constraint is 
removed during deck replacement, the boundary conditions 
at both ends could be considered as being free to rotate. 
However, in general, a semi-fixed condition would be a 
practical boundary condition for IABs. In this study, both 
fixed and released boundary conditions are considered. Fig. 
3 summarizes the boundary conditions for each location. 
The supports of girder 3 (G3) at the pier locations were 
transversely (x-axis) and vertically (y-axis) restrained, but 
were released in the longitudinal direction of the bridge. 
Other support locations of the remaining girders (G1, G2, 
G4, G5) were vertically (y-axis) restrained, with other 
boundary conditions as released. 

Four node shell elements (S4R) were utilized in the 
model with reduced integration and a relatively fine mesh 
(approximately 0.125 m). The cross-frame between the 
girders was also included in the model by adding truss 
elements tied to the girders, with no buckling analysis 
considered for the cross-frames. 

 
2.2 Analysis of the steel girders in IABs 
 
In order to estimate the buckling strength and displace-

ment depending on the axial force generated at both 
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Fig. 4 The buckling analysis procedure conducted in study 

 
 
abutments, a two step analysis was considered as shown in 
Fig. 4. Firstly, the model was developed as previously 
outlined and the number of girders, flange geometry, girder 
spacing and span length were selected as the key 
parameters. For the loading conditions, thermal loading and 
gravity load were considered. The other main loads in the 
bridge such as truck wheel load (live load) were not 
considered due to the deck replacement condition. 

The first analysis stage (Step I) is a buckling analysis. 
Many buckling mode shapes could be obtained from this 
step. If the girder has a long length and small moment of 
inertia about the weak axis (Iweak-axis), sinusoidal buckling 
shapes are normally obtained. However, girders with a 
relatively short length and large moment of inertia would 
exhibit local buckling rather than a global sinusoidal shape. 
In this study, buckling mode shapes up to the 3rd were 
calculated based on the assumption that the main buckling 
modes are obtained mostly from the lower order. In this 
step, the linear material behavior (elastic material 
properties) were only considered based on the assumption 
that a small amount of deformation for the initial buckled 
shape would not cause any plastic strain in the steel girders. 
However, in the post-buckling analysis with displacement 
control (Step II), elasto-plastic behavior with hardening 
effects for the steel material was considered. 

After completion of the buckling analysis, a post-
buckling analysis was performed using predefined data 
from the buckled shape obtained from Step I. 

In order to perform a post-buckling analysis, the Riks 
method (Riks 1972, 1979, Wempner 1971) was utilized. 
The Riks method is a load-deflection analysis and is useful 
when both the load and displacement are unknown and the 
failure type is an unstable collapse, such as a buckling 

failure. 
For the Riks algorithm in Abaqus, the initial arc length 

increment needs to be designated. The initially suggested 
arc length increment is 0.01. Other input parameters for the 
Riks method, such as the total arc-length and the minimum 
and maximum arc length increments along the static 
equilibrium path are 1.0, 1E-05 and 1.0, respectively. It was 
confirmed that the load proportional factors are within a 
reasonable scope and the solution was well converged, 
when the selected parameters for utilizing the Riks method 
were used. 

In the post buckling analysis using the Riks method, 
non-linear material properties were considered and a level 
of imperfection based on the previous buckling analysis was 
defined as an initial condition. 

 
 

3. Analysis results from Step I 
(Elastic buckling mode analysis) 
 
Firstly, a single girder analysis was performed and then 

a multi-girder IAB analysis was conducted in order to study 
the coupling effect between girders under the buckling 
loads and the interaction of the three continuous spans. 
Firstly, a single girder with a short length (40 m) and 
another with a long length (200 m) were studied to examine 
the behaviors from the length of the girder. 

 
3.1 Buckling modes of single girder 
 
The single girder analysis was performed with two 

boundary conditions (released for rotation, and fixed for 
rotation). Since the buckling behavior is primarily static 
behavior, only a limited number of dominant buckling 
modes, up to the 3rd mode, were investigated. 

Fig. 5 shows the buckling shapes of the long single 
girder (40 m) with one span. Fulcrum positions for single 
girder are located at both ends. The first two mode shapes 
obtained from both the released and fixed boundary 
conditions exhibit similar shapes, except for the areas close 
to the ends. However, the 3rd mode shapes differ depending 
on the boundary conditions. While the released condition 
exhibits sinusoidal buckling shapes, the fixed condition 
shows lateral torsional buckling. 

 
3.2 Buckling modes of the multi-girder system 
 
After conducting the single girder analysis, a three-span 

continuous multi-girder system was analyzed with two 
boundary conditions (released or fixed about rotation) in 
order to compare the mode shapes with those from the 
single girder. 

Fig. 6 shows the results from the buckling mode 
analysis of the long multi-girder system. The abutments at 
both ends and the supports are shown as lines in Fig. 6. For 
long multi-girders, as expected global sinusoidal buckling 
shapes were obtained rather than local buckling. As in the 
previous single girder cases, the mode shapes of the long 
multi-girders exhibited similar buckling shapes. It is 
noteworthy that regardless of the boundary conditions at 
both ends, the buckling shape of the center span exhibited 
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(a) 1st mode, released (b) 1st mode, fixed 

 

 

 

 

(c) 2nd mode, released (d) 2nd mode, fixed 
 

   

 

 

(e) 3rd mode, released (f) 3rd mode, fixed 

Fig. 5 Buckling mode analysis of a long single girder 
(40 m) 

 
 

a similar shape to that of the single girder. However, the 2nd 
and 3rd mode shapes of the center span in the multi-girder 
system are different from those of the single girder. 

Interestingly, the buckling shape of the center span for 
the 2nd mode exhibits a relatively more straight line, while 
the other two spans exhibit global sinusoidal buckling 
shapes. For the 3rd buckling shape of the center span, while 
the single girders exhibited one and half cycle sinusoidal 
shapes, the center span of the multi-girder system exhibited 
one cycle of a sinusoidal shape. From this comparison, 

 
 

  
(a) 1st mode, released (b) 1st mode, fixed 

 

 

 

 

(c) 2nd mode, released (d) 2nd mode, fixed 
 

 

 

 

(e) 3rd mode, released (f) 3rd mode, fixed 

Fig. 6 Buckling mode analysis of a long multi-girder 
system (40.5 + 40.8 + 40.5 = 122 m) 

 
 
it can be concluded that depending on the boundary effects 
from the adjacent span, the number of cycles in the critical 
span could be varied. 

Furthermore, unlike in a single girder 3rd buckling mode 
with a fixed boundary condition, there was no torsional 
buckling due to coupling effects between the girders. This 
indicates that if the mode 1 buckling shape only is 

 
 

Table 1 Maximum buckling strength of a single girder 

Single girder 

BC* BL 
(m) 

SL 
(m) 

IL 
(%) 

FW 
(m) 

FT 
(mm) 

GS 
(m) 

SLR 
(m/m) SW λc 

Aone 
(m2) 

Iyy 
(m4) 

Normalized 
strength 

R** 

39 13 1 0.5 38 - 1 - 1.80 0.0554 0.0008 0.1837 
60 20 1 0.5 38 - 1 - 2.71 0.0554 0.0008 0.0961 
81 27 1 0.5 38 - 1 - 3.61 0.0554 0.0008 0.0546 

120 40 1 0.5 38 - 1 - 5.41 0.0554 0.0008 0.0239 
159 53 1 0.5 38 - 1 - 7.22 0.0554 0.0008 0.0135 
180 60 1 0.5 38 - 1 - 8.12 0.0554 0.0008 0.0104 

F*** 

39 13 1 0.5 38 - 1 - 1.23 0.0554 0.0008 0.7996 
60 20 1 0.5 38 - 1 - 1.89 0.0554 0.0008 0.4798 
81 27 1 0.5 38 - 1 - 2.56 0.0554 0.0008 0.2724 

120 40 1 0.5 38 - 1 - 3.79 0.0554 0.0008 0.1257 
159 53 1 0.5 38 - 1 - 2.05 0.0554 0.0008 0.0699 
180 60 1 0.5 38 - 1 - 5.68 0.0554 0.0008 0.0548 

 

*Indicate boundary condition; ** Indicate released at both ends; *** Indicate fixed at both ends 
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Table 2 Maximum buckling strength of multi-girders 

Multi_girder system 

BC* BL 
(m) 

SL 
(m) 

IL 
(%) 

FW 
(m) 

FT 
(mm) 

GS 
(m) 

SLR 
(m/m) SW λc 

Aone 
(m2) Iyy (m4) Normalized 

strength 

R** 

40 13 1 0.5 38 3.67 1 - 1.80 0.0554 0.0008 0.3045 
80 27 1 0.5 38 3.67 1 - 3.61 0.0554 0.0008 0.0743 

120 40 1 0.5 38 3.67 1 - 5.41 0.0554 0.0008 0.0336 
160 53 1 0.5 38 3.67 1 - 7.22 0.0554 0.0008 0.0181 
200 67 1 0.5 38 3.67 1 - 9.02 0.0554 0.0008 0.0088 
120 40 1 0.25 38 3.67 1 - 12.49 0.0364 0.0001 0.0067 
120 40 1 0.5 38 3.67 1 - 5.41 0.0554 0.0008 0.0336 
120 40 1 0.75 38 3.67 1 - 3.44 0.0744 0.00266 0.0830 
120 40 1 1 38 3.67 1 - 2.50 0.0934 0.00632 0.1566 
120 40 1 0.5 19 3.67 1 - 6.25 0.0364 0.00039 0.0252 
120 40 1 0.5 38 3.67 1 - 5.41 0.0554 0.0008 0.0336 
120 40 1 0.5 57 3.67 1 - 5.16 0.0744 0.00118 0.0378 
120 40 1 0.5 76 3.67 1 - 5.00 0.0934 0.00158 0.0404 
120 40 0 0.5 38 3.67 1 - 5.41 0.0554 0.0008 0.0336 
120 40 0.01 0.5 38 3.67 1 - 5.41 0.0554 0.0008 0.0336 
120 40 0.1 0.5 38 3.67 1 - 5.41 0.0554 0.0008 0.0336 
120 40 1 0.5 38 3.67 1 o 5.41 0.0554 0.0008 0.0361 
120 40 1 0.5 38 1.83 1 - 5.41 0.0554 0.0008 0.0336 
120 40 1 0.5 38 5.49 1 - 5.41 0.0554 0.0008 0.0336 
120 40 1 0.5 38 3.67 0.5 - 5.41 0.0554 0.0008 0.0809 
120 40 1 0.5 38 3.67 2.0 - 5.41 0.0554 0.0008 0.0806 

F*** 

40 13 1 0.5 38 3.67 1 - 1.26 0.0554 0.0008 0.7991 
80 27 1 0.5 38 3.67 1 - 2.53 0.0554 0.0008 0.1102 

120 40 1 0.5 38 3.67 1 - 3.79 0.0554 0.0008 0.0502 
160 53 1 0.5 38 3.67 1 - 5.05 0.0554 0.0008 0.0286 
200 67 1 0.5 38 3.67 1 - 6.32 0.0554 0.0008 0.0129 
120 40 1 0.25 38 3.67 1 - 8.74 0.0364 9.8E-05 0.0098 
120 40 1 0.5 38 3.67 1 - 3.79 0.0554 0.0008 0.0502 
120 40 1 0.75 38 3.67 1 - 2.41 0.0744 0.00266 0.1248 
120 40 1 1 38 3.67 1 - 1.75 0.0934 0.00632 0.2151 
120 40 1 0.5 19 3.67 1 - 4.37 0.0364 0.00039 0.0373 
120 40 1 0.5 38 3.67 1 - 3.79 0.0554 0.0008 0.0502 
120 40 1 0.5 57 3.67 1 - 3.61 0.0744 0.00118 0.0565 
120 40 1 0.5 76 3.67 1 - 3.50 0.0934 0.00158 0.0603 
120 40 0 0.5 38 3.67 1 - 3.79 0.0554 0.0008 0.6138 
120 40 0.01 0.5 38 3.67 1 - 3.79 0.0554 0.0008 0.2451 
120 40 0.1 0.5 38 3.67 1 - 3.79 0.0554 0.0008 0.1497 
120 40 1 0.5 38 3.67 1 o 5.41 0.0554 0.0008 0.0502 
120 40 1 0.5 38 1.83 1 - 5.41 0.0554 0.0008 0.0501 
120 40 1 0.5 38 5.49 1 - 5.41 0.0554 0.0008 0.0502 
120 40 1 0.5 38 3.67 0.5 - 5.41 0.0554 0.0008 0.1249 
120 40 1 0.5 38 3.67 2.0 - 5.41 0.0554 0.0008 0.1249 

 

*Indicate boundary condition; ** Indicate released at both ends; *** Indicate fixed at both ends 
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considered, the AISC single column buckling equation 
could be used for estimating the buckling strength of IAB 
steel girder bridges (multi-girders). 

In this study, since it was found that the 1st mode 
buckling shape of the center span of multi-girders are 
similar to those of a single girder regardless of the boundary 
conditions, 1st mode buckling shapes only were considered 
for the post buckling analysis. If a buckling load due to 
thermal expansion occurs suddenly, the 2nd and 3rd mode 
should be considered, however, thermal expansion could be 
considered quasi-static behavior and this is a more realistic 
assumption. Therefore, the 1st mode could be enough for 
this study. 

 
 

4. Post-buckling analysis 
 
In this section, the results obtained from the post-

buckling analysis with predefined data from the 1st 
buckling analysis are shown. Both a single girder and a 
multi-girder analysis have been conducted. A parametric 
study of the span length, imperfection level, flange width, 
flange thickness, girder spacing, span length ratio and self-
weight was conducted and compared with the obtained 
results. 

 
4.1 Maximum capacity of a single girder 
 
Table 1 shows the obtained maximum buckling load, 

stress and normalized strength depending on various span 
length. BL and SL indicate bridge length and span length 
respectively. Likewise, GS, SLR and SW indicate girder 
spacing, span length ratio and self-weight respectively. For 
a single girder, the imperfection level (IL), flange width 
(FW), and flange thickness (FT) are fixed values as shown 
in Table 1. Normalized strength was calculated by dividing 
the maximum stress by yield stress of the steel. 

As expected, the largest buckling strength (max. stress 
in Table 1) was obtained from the shortest length and fixed 
condition (13 m span length with fixed boundary 
conditions). In this case, the buckling strength is 415.78 
MPa, while the yield strength of the girder is around 520 
MPa. 

 
4.2 Maximum capacity of multiple girder system 
 
Table 2 shows the obtained maximum buckling load, 

stress and normalized strength depending on various key 
parameters. 

 
4.2.1 Cross-frame effects 
The multi-girder system includes cross-frame effects 

which are the interaction between the girders could be one 
of key factors in controlling buckling failure. 

Cross-frame stresses were therefore investigated. The 
stress of the cross-frame, which is dependent on the 
moment of inertia about the weak axis of the girder section, 
was between 27.6 MPa and 74.7 MPa for a bridge length of 
200 m. For released condition, cross-frames located at both 
ends exhibited the largest stress (74.7 MPa), while for the 
fixed condition cross-frames located at the pier locations 
exhibited the largest stress (27.6 MPa). It is thought that for 

the 200 m bridge, the sinusoidal global buckling shape 
affects the locations of the maximum stress. More 
importantly, most cross-frame exhibited a very low stress 
level (less than 6.2 MPa and 2.3 MPa respectively), 
indicating that cross-frame effects could be negligible 
because most steel plate girders are designed to support the 
vertical loads and thus the moment of inertia about the weak 
axis of the girder section is relatively small compared to the 
moment of inertia about the strong axis. 

 
4.2.2 Comparison of multi-girder system 

with single girder 
The buckling strength of the multi-girder is shown in 

Table. 2. The key parameter for controlling the buckling 
strength is the span length. Therefore, an analysis of results 
for the buckling strength per girder of a single and multi-
girder system, as shown in Table 2, is shown in Fig. 7 
against the span length. For the released condition (Fig. 
7(a)), the multi-girder exhibited a larger maximum load for 
a short length, however, the difference decreases as the span 
length is increased. However, the fixed condition exhibits 
the opposite behavior, as the difference between the single 
and multi-girder was the smallest when the span length is 
the shortest. The buckling strength for the multi-girder 
showed a relatively smaller maximum axial load. 

These differences between the two boundary conditions 
can be explained as for fixed case the single girder has an 
effective length factor (K) of 0.5, while the multi-girder is 
0.7 with the two edge spans and 1.0 for the center span as 
shown in Fig. 8. Therefore, the buckling strength for the 
multi-girder system in a released condition exhibited a 
larger strength, while the axial strength for a multi-girder in 
the fixed condition exhibited a lower value compared to the 
single girder. For a quick and conservative estimation of the 

 
 

 
(a) Released condition 

 

 
(b) Fixed condition 

Fig. 7 Comparison of maximum axial load for a single 
and multi-girder against the girder length 
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Fig. 8 Effective length factors under different conditions 

 
 

 
(a) Maximum axial load vs Iyy 

 

 
(b) Normalized strength vs Iyy 

Fig. 9 Effect of Iyy on the buckling strength 
 
 

girder buckling strength, the single girder equation can be 
used to estimate the buckling strength of a multi-girder 
system with released boundary conditions. However, if both 
ends are fixed in the abutment (most cases for IABs), then 
the single girder equation could not estimate the buckling 
strength conservatively. 

 
4.2.3 Effect of moment of inertia (Iyy) 
The strong correlation between the moment of inertia 

(Iyy) and the buckling strength of the steel girder was found 
as shown in Fig. 9. The relationship between the maximum 
axial loads (buckling load) and Iyy shows a linear regression 
graph with a R-squared value of 0.99. If the points are 
divided in to two categories, one for the flange thickness 
and another for the flange width and redrawn for each case, 
logarithmic curves can be better fitted than linear curves. 
However, for larger moment of inertia, more analysis 
should be performed to find a better fitted curves. 

 
(a) Normalized strength vs Iyy varied by flange thickness 

 

 
(b) Normalized strength vs Iyy varied by flange width 

Fig. 10 Effect of Iyy on the buckling strength 
 
 

 
Fig. 11 Effect of span length on the normalized strength 

 
 
Fig. 10 shows the results from each case by flange 

thickness or flange width. In this case, the R-squared value 
increases to greater than 0.99 for both the flange thickness 
and flange width. An increased normalized strength with an 
increased moment of inertia is better fitted with a natural 
logarithmic curve (ln) than a linear curve. 

 
4.2.4 Effect of span length 
The effect of span length on the normalized buckling 

strength of a steel girder without a deck is also compared as 
shown in Fig. 11. 

The R-squared values for both fixed and released 
conditions are greater than 0.99. The strength with a varied 
span length can be described well by an exponential with an 
exponent to the power of -2.465 and -2.14 with coefficients 
of 436.92 and 82.1 respectively. These can be compared 
with the AISC buckling equation for a single girder if the 
span length is changed to a slenderness ratio. 
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Fig. 12 Effect of the imperfection level on the buckling 

strength of a steel girder 
 
 
4.2.5 Effect of imperfection 
The effect of imperfection on the maximum axial load 

which is buckling strength is shown in Fig. 12. 
For the released case, a 1.0% imperfection is the lowest 

value, while for the fixed case, 0.1% and 1.0% exhibited 
approximately the same strength. Other study shows the 0.1 
or 0.033% of girder length for the imperfection of the steel 
girder bridge and sometimes the 10% to 0.2% of plate 
thickness for the imperfection of the steel structures 
(Thiébaud and Lebet 2014, Gardner and Chan 2007). 
However, based on simulation results, difference between 
0.1 and 1.0% imperfection showed negligible changes. 
Therefore, from the behavior observed in both cases, it can 
be concluded that a 1.0% imperfection is an appropriate 
assumption to estimate the buckling strength of a steel 
girder conservatively. 

 
 

 
(a) Released condition 

 

 
(b) Fixed condition 

Fig. 13 Effect of the span ratio on the buckling 
strength of a steel girder 

4.2.6 Effect of the span length ratio and self-weight 
In this study, the effect of the span length ratio on the 

buckling strength was also studied. The span length ratio is 
defined as the ratio of the center span length to the outer 
span length. However, the total bridge length is the same as 
to 120 m no matter what the span ratio is in this study. In 
this study, a three-span continuous girder is investigated. It 
should be noted that most three span continuous IABs have 
center spans which are a little longer than the other two 
spans. Therefore, a 1.5 span ratio would be close to a more 
realistic condition in practice than a span-length ratio of 0.5. 
In this study, span-length ratios of both 0.5 and 1.5 were 
investigated. As previously mentioned, a span-length ratio 
of 0.5 means a 20 m-center span and a span of 50 m for the 
other two spans. Likewise, a span-length ratio of 1.5 means 
a 60 m center span and a 30 m length for the other two 
spans. Based on the results shown in Table 2, for both the 
released or fixed condition, as the span length ratio is 
decreased (0.5) or increased (1.5), increased maximum axial 
load (buckling strengths) were noted. The buckling mode 
shape changes with the span length ratio however as shown 
in Fig. 14. However, it should be noted that some studies 
(Olson et al. 2013, Holloway 2012) revealed that the longer 
center span (intermediate span) tends to increase the pile 
stress. 

Buckling failure will occur at a critical span. If the 
effective length factor (K) and span length are known, the 
buckling failure point of each span can be found easily 
using a single column buckling equation as suggested by 
AISC. However, in a continuous beam with a multi-span, 
coupling effects between the adjacent spans affects the 
rotational stiffness of each span. Therefore, it is not trivial 
to estimate the effective length factor or the critical length. 
As shown in Fig. 14, the K value and the critical length can 
be estimated based on the results obtained from the post-
buckling analysis. For the released condition, the outside 
span buckled, while for the fixed condition, the center span 

 
 

 
Fig. 14 Buckling mode shapes for different span length 
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buckled no matter what the span length ratio was (0.5 or 
1.5). 

For the released boundary condition, the K value for the 
critical span (outer span) would be between 0.7 for a fixed 
condition and 1.0 for the released condition since one end 
of the span is connected to one end of another span, while 
the other end is free to rotate. For both the 0.5 and 1.5 span 
length ratio, the critical length was 0.75 (75%) compared to 
center span ratio 1.0 based on obtained results from post-
buckling analysis. Therefore, the KL value for both the 0.5 
and 1.5 cases should be between 0.525 and 0.75 
respectively. The average of these two values is 0.64 and 
these are approximately considered as the KL values for 
both unequally spaced cases in a released condition. The 
obtained normalized strength for the released condition was 
0.08. For an equally spaced bridge, with a span length of 27 
m and a KL value of 0.66 exhibited a normalized strength 
of 0.074. It should be noted that the original span length of 
the bridge was 40 m. Therefore, based on this observation, 
the buckling strength for an unequally spaced girder can be 
easily estimated by using the KL value of the critical span. 

For the fixed condition, in contrast to the released 
condition, the center span buckled as shown in Fig. 14. 
From the post-buckling analysis, it can be found that the 
critical length is close to 1.0, which is the original span 
length in the case of the fixed condition. The K value for 
the 0.5 and 1.5 span length ratios are considered to be 0.5 if 
buckling mode shapes are referred to. Therefore, KL can be 
estimated as being 0.5, which is lower than for the equally 
spaced case (0.7~1.0). 

In this study, for released and fixed conditions, with a 
span length ratio of 0.5 and 1.5, KL values of 0.7 and 0.55 
are recommended respectively, with a 10% safety margin. 
The self-weight of the steel girder was found to be a 
negligible factor in controlling the buckling failure. 

 
4.3 Passive Earth pressure of soil 
 
In this section, studies for estimating the passive earth 

pressure of soil from the abutment of IABs were reviewed. 
Lee et al. (2016) compared simulation results from a 
developed model with data from field research conducted 
by Lemnitzer et al. (2012) and found that the passive earth 
pressure generated can cause buckling in the weak axis of 
the steel girder during the summer season. 

Field research data obtained from Lemnitzer et al. 
(2012) showed a passive earth pressure coefficient (KP) 
from 10 to 24 when the backfill material consisted of well 
graded sand and gravel with 5 to 10% of SE 30 fill sand, 
which can be classified as SP and Group A-3 in the 
AASHTO soil classification. 

For the passive earth pressure, there are wide range of 
studies which have a different view from Lemnitzer et al. 
(2012). Therefore, other research results regarding the 
passive earth pressure (KP) generated by the expansion of 
the superstructure (movement of the backwall) due to 
temperature change were investigated. Clough and Duncun 
(NCHRP report 343) suggest the passive earth pressure (KP) 
of 3.0 to 5.8 from loose sand to dense sand placed in 
backfill. 

In experiments conducted by England et al. (2000) and 

Springman et al. (1996), most KP values fall between 3.3 
and 6.5, regardless of consideration of the wall friction. 
From field research, a fully passive pressure (KP) of 6.2 was 
recorded from an integral backwall bridge (Hoppe and 
Gomez 1996). It should be noted that the passive earth 
pressure based on Rankine theory with conventional 
parameters (Coefficient of passive earth pressure (KP): 3.6, 
φ (deg.): 34°, soil density (γ) 20.5 kN/m3) could be much 
smaller than the field data obtained by Lemnitzer et al. 
(2012). 

In the U.S., an integral bridge in West Lafayette, 
investigated by Frosch et al. (2009), confirmed that the 
earth pressure behind an abutment appeared to increase due 
to the densification of the soil by the ratcheting movement 
of backfill corresponding to bridge thermal movement. This 
indicates that the possibility of a buckling failure during 
deck replacement increases up to a certain age of the bridge. 
Although 318 m-long steel girder IAB has been built in 
U.S., the FHWA simply recommends using a limited span 
length of 91.4 m for the steel girder integral bridge. The UK 
recommends a maximum length of 60 m as a rule of thumb. 
New Zealand which is located in strong seismic zone only 
recommends that the distance between rear faces of 
abutment should be less than or equal to 70 m for concrete 
superstructures and 55m for steel superstructures (Wood et 
al. 2015). NY DOT recommends of using 140m limited 
span length for steel girder IABs which is the longest in US 
(Kunin and Alampalli 2000). However, these values are 
considered to be conservative and reasonable extension of 
these limitations could be achieved with detailed informa-
tion and research work with consideration of buckling 
failure due to deck replacement in design. 

BA 42/96 (Design manual for roads and bridges 2003) 
recommends using the equations shown below for the 
estimation of earth pressure when the abutment is of the 
shallow height bank pad and end screen type. 

 

𝐾𝐾∗ = 𝐾𝐾0 + (
𝑑𝑑

0.025𝐻𝐻
)0.4𝐾𝐾𝑝𝑝  (1) 

 
where, KP is the passive earth pressure coefficient and K0 is 
at the rest condition. ‘d’ is a thermal displacement on top of 
the abutment (multiplication factor 2) and H is a retained 
height. The live load surcharge and active earth pressure 
can be considered to be small and are ignored in BA 42/96 
(2003). The results obtained with a fully passive pressure of 
between 3.3 and 6.2 are shown with consideration of K* 
value. According to Barker and Puckett (2013), the passive 
earth pressure can be obtained using the equation shown 
below. 

 

𝐾𝐾𝑝𝑝 = 0.5 + 125 �∆𝑚𝑚𝑚𝑚𝑚𝑚
𝐻𝐻
� ≤ 3.0 (For Loose sand) (2) 

 
The total earth pressure force on the abutment in the 

longitudinal axis of the bridge using KP can easily be 
calculated. PennDOT DM4 (2015) uses the equation shown 
below. 

𝐹𝐹 = 0.5𝛾𝛾𝐾𝐾𝑝𝑝𝐻𝐻2𝐿𝐿 (3) 
 

where, KP is the passive earth pressure coefficient and γ is 
the unit weight of soil. H is the retained height and B is the 
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(a) Full height frame (BA 42/96) 

 

 
(b) Full height embedded wall abutment (BA 42/96) 

Fig. 15 Earth pressure distribution along the depth 
of the abutment 

 
 

 
Fig. 16 Total earth pressure force and buckling strength 
 
 

width of the abutment. It is assumed that there is no skew. 
According to BA 42/96 (2003), K* is considered as 

shown in Fig. 15. 
For loose sand, the maximum passive earth pressure is 

limited to 3.0 as shown in Eq. (2). From Barker and Pucket 
(2013) for dense and medium dense sand, the maximum 
passive earth pressure is 5.8 and 4.0 respectively. These 
values are also selected in design manuals such as 
PennDOT DM4 and a study by Clough and Duncan (1991). 
These are also within a similar range with those KP values 
(3.3-6.5) previously referred to from England et al. (2000) 
and Springman et al. (1996). Accordingly, in this study, to 
sum up, passive earth pressures from 3.0 up to 6.5 were 
considered and the results from Lemnitzer et al. (2012) 
were also compared. 

Based on the proposed earth pressure distribution in BA 
42/96 and Eqs. (1) and (3), with the assumed passive earth 
pressure (KP = 3.0 – 6.5) and Lemnitzer’s field research, the 
total earth pressure force (dotted line) and buckling strength 
(solid line) depending on the displacement of the top of the 
abutment can be drawn in one graph as shown in Fig. 16. 

From the comparison seen in Fig. 16, when the 
BA42/96 equation is used with KP values from PennDOT, it 
can be seen that for dense and medium dense sand, there 
was a possibility of buckling failure. However for loose 
sand (KP = 3), buckling failure does not occur over the 
entire displacement. Similar results were obtained if the 
PennDOT equation (Eq. (3)) was used instead. 

However, if the field data from Lemnitzer et al. (2012), 
is used (KP = 10 or 24), then the selected steel girder 
becomes vulnerable to a buckling failure due to the high 
earth pressures. This indicates that between design guide-
lines such as BA42/96 and PennDOT DM4 and actual field 
measurement, there is significant gap. Further research 
work is therefore required. For estimation of end movement 
of the girder due to the temperature changes, Oesterle and 
Tabatabai (2014) recommended statistical factor for end 
movement of IABs. In order to design under the uncertainty 
of 98% confidence, end movement should be multiplied by 
factor of 1.6. In this study, the factor of movement was not 
considered. 

 
4.4 Estimated maximum axial force 

for one girder (Fg) 
 
The axial force in one steel girder of an IAB (Fg) due to 

thermal load can be practically estimated using the LTI 
equations (Eq. (4)) proposed by Laman and Kim (2009). 
Firstly the bridge compression force can be approximated 
using selected key parameters such as the thermal 
expansion coefficient (𝛼𝛼), total bridge length (L), backfill 
height (H), backfill stiffness (B) and the pile-soil interaction 
(P). Laman and Kim (2009) recommend using a simple 
integer number for these parameters. For example, the 
backfill stiffness can be categorized into three grades; high 
(3.0), intermediate (2.0) and low (l.0). The equations were 
obtained based on long term field monitoring of IABs using 
several wireless measuring devices. A detailed explanation 
of this research works can be found in Laman and Kim 
(2009). The axial force acting on one steel girder (Fg) can 
be obtained simply as a value of the total bridge 
compression force (Fc) divided by the number of girders 
(Eq. (5)). 

 
𝐹𝐹𝑐𝑐 = 4.45[−17.78𝛼𝛼 − 6.56𝐿𝐿 − 59𝐻𝐻 

−101𝐵𝐵 + 16𝑃𝑃 + 374] 
(4) 

 
𝐹𝐹𝑔𝑔 = 𝐹𝐹𝑐𝑐/𝑁𝑁𝑔𝑔  (5) 

 
where: 

Fc: bridge compression force (kN) 
Fg single girder axial force (kN) 
Ng: number of girders 
 α: thermal expansion coefficient (m/m/C°) × 1E-6 
L: total bridge length (m) 
H: backfill height (m) 
B: backfill stiffness (normalized value (1 or 2 or 3)) 
P: pile-soil interaction (normalized value (1 or 2 or 3)) 
Aone: total area of one steel girder 
 
The results obtained using the proposed equations are 

shown in Fig. 17. Both the single girder axial force due to 
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(a) Flange width: 0.5 m 

 

 
(b) Flange width: 1.0 m 

Fig. 17 Girder axial force and capacities against the 
bridge length 

 
 

thermal loading (Fg) and the single girder capacity 
depending on the bridge length are shown in one graph. The 
axial force is indicated by the solid line and the girder 
capacity is indicated by the dotted line. 

The proposed equations (Eqs. (1)-(5)) were used to 
check the possible buckling failure that could occur during 
deck removal. In this study, the imperfection level was 
assumed to be 1%. Both the section shown in Fig. 2 and a 
section with a 1.0 meter flange width were considered in 
order to see the differences in the girder capacity under 
axial load. The girder axial force estimated by the LTI 
equation under an intermediate condition (B = 2.0, P = 2.0) 
and both extreme cases (B = 1.0, P = 3.0 and B = 3.0, P = 
1.0) were considered and are shown in one graph. 

It can be found from Fig. 17 that the critical point for a 
0.5 m flange width is located at a length of 120 m and axial 
force of 1,138 kN when a temperature variation of 17.8 
degree Celsius (32 degree Fahrenheit) is present. For a 1.0 
m flange width, the critical point is located at a length of 
250 m and axial force of 2150 kN. In this study, the critical 
points were assumed to occur when both the B and P 
parameters are at an intermediate level and in a semi-fixed 
condition, which is an averaged value between fixed and 
released. Therefore, practically, if a 0.5 m flange width is 
used, the maximum bridge length can be considered as 
being 120 m. Similarly, if a 1.0 m flange width is used, the 
maximum bridge length can be considered as being 250 m. 
Cases for flange widths of between 0.5 m and 1.0 m can be 
estimated by using interpolation. Practically, it can be 
concluded that the flange width should be checked for deck 
replacement depending on the planned total length of the 
integral abutment bridge. However, under the local buckling 

criteria, 1.0 meter flange could be categorized non-compact 
section. For compact section with constant thickness (38.1 
mm) as shown in Fig. 2, 0.655 m of flange width is the 
limit. Therefore, for plastic hinge behavior of the section 
(compact section), thickness of 1.0 meter flange should be 
increased. 

The equation proposed based upon the LTI equation is 
solely based on an integral abutment bridge. However, 
during deck replacement in the summer season, the 
maximum temperature of the exposed steel girder could be 
much higher than the conditions considered in the equations 
in this study. Therefore, the equations for the temperature 
term should be modified for consideration of exposed 
girders in the sun. However, the effect of temperature 
changes on the LTI maximum axial force can be considered 
to be negligible. For example, the maximum temperature 
change that can occur in MI, USA is 117.4°F (65.2°C). For 
practical consideration, if half of that temperature change 
(59°F) is considered, for a 1.0 m and 0.5 m flange width, 
the critical point is located at a length of 245 m and 112 m 
respectively, which is similar value to the original equations 
(250 m and 120 m). 

 
4.5 Proposed equation for the girder capacity 
 
Lee et al. (2016) proposed an equation using regression 

analysis with the AISC buckling curve to estimate the 
buckling strength of IABs during deck replacement. Based 
on the findings of Lee et al. (2016), σ𝑐𝑐𝑐𝑐  can be obtained 
from coefficients regarding σ𝑐𝑐𝑐𝑐  such as C, ex and I. Based 
on equations from Lee et al. (2016), the further additional 
effect of the span length ratio is considered and the 
following equations for critical stress calculations (Eq. (6)) 
under passive earth pressure (Eqs. (7)-(9)) are developed. 

 
𝜎𝜎𝑐𝑐𝑐𝑐 = 𝐶𝐶 × 𝜎𝜎y × 𝜆𝜆𝑐𝑐

𝑒𝑒𝑚𝑚 × 𝐼𝐼 × 𝑅𝑅 (6) 
 

𝜎𝜎𝑐𝑐𝑐𝑐𝐴𝐴𝑜𝑜𝑜𝑜𝑒𝑒 (𝑜𝑜𝑐𝑐 𝐹𝐹𝑔𝑔) ≥ 0.5𝛾𝛾𝐾𝐾∗𝐻𝐻2 × 𝑊𝑊𝑏𝑏𝑏𝑏  / 𝑁𝑁 (7) 
 

𝜎𝜎𝑐𝑐𝑐𝑐𝐴𝐴𝑜𝑜𝑜𝑜𝑒𝑒 �𝑜𝑜𝑐𝑐 𝐹𝐹𝑔𝑔� ≥ 

��
𝛾𝛾𝐻𝐻2𝐾𝐾∗

8
� + �𝛾𝛾𝐻𝐻2𝐾𝐾∗ �

𝐾𝐾∗

𝐾𝐾0
− 1� 2� �� 

�+ �𝛾𝛾𝐻𝐻2 �
𝐾𝐾∗

2
+ 𝐾𝐾0� �1 −

𝐾𝐾∗

2𝐾𝐾0
� 2� ��𝑊𝑊𝑏𝑏𝑏𝑏  / 𝑁𝑁 

(8) 

 
𝜎𝜎𝑐𝑐𝑐𝑐𝐴𝐴𝑜𝑜𝑜𝑜𝑒𝑒 �𝑜𝑜𝑐𝑐 𝐹𝐹𝑔𝑔� ≥ 

�(5𝛾𝛾𝐻𝐻2𝐾𝐾∗/9) + �
𝛾𝛾𝐻𝐻𝐾𝐾∗

3
+
𝛾𝛾(𝐻𝐻 + 𝐻𝐻𝑒𝑒)𝐾𝐾∗

2
�𝐻𝐻𝑒𝑒)�𝑊𝑊𝑏𝑏𝑏𝑏  / 𝑁𝑁 

(9) 

 
σcrAone>Fg, then use σcrAone 

σcrAone≤Fg, then use Fg 
for comparison of the total earth pressure force. 
where: 

Fcr: Critical strength of the steel girder (MPa) 
C: Boundary Coefficient 
Fy: Yield strength of the steel girder (MPa) 
𝜆𝜆cs : Slenderness factor 
ex : Exponent 
I : Imperfection coefficient 
 For released at both ends: 
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I = -0.0030××imperfection level (%) + 0.929 
For fixed at both ends: 
I = -0.0034×Imperfection level (%) + 1.034 
R: Span length ratio effects (valid when span length 

ratio is between 0.5 and 1.5) 
For released conditions at both ends: 
Use the effective length factor (K) = 0.7 for 0.5 and 1.5 

span length ratio 
For fixed conditions at both ends: 
Use the effective length factor (K) = 0.55 for 0.5 and 1.5 

span length ratio 
For values between 0.5 and 1.5 span length ratio, use 

interpolation. 
Aone: Cross sectional area of one steel girder (m2) 
𝐾𝐾0: At rest condition 
𝐾𝐾𝑝𝑝 : Passive earth pressure coefficient 
 

𝐾𝐾∗ = 𝐾𝐾0 + �
𝑑𝑑

0.025𝐻𝐻
�

0.4

𝐾𝐾𝑝𝑝  
 
for shallow height of abutment (less than 3 m) 
 

𝐾𝐾∗ = 𝐾𝐾0 + �
𝑑𝑑

0.05𝐻𝐻
�

0.4

𝐾𝐾𝑝𝑝  
 
for full height portal frame abutment (less than 3 m) 
 

𝐾𝐾∗ = 𝐾𝐾0 + �
𝑑𝑑

0.03𝐻𝐻
�

0.6

𝐾𝐾𝑝𝑝  
 
for full height portal frame abutment with hinge at the base 
(less than 3 m) 

𝛾𝛾: Soil unit weight (kN/m3) 
H: Abutment height (m) 
He: Embedded depth (m) 
𝑊𝑊𝑏𝑏𝑏𝑏 : Width of backwall (meters) 
N : Number of girders in one IAB 
Fg: Estimated maximum axial force proposed by LTI 

(kN) 
The passive earth pressure and the corresponding 

reaction force from the backfill can be estimated from Eq. 
(7) to Eq. (9). Eq. (7) comes from PennDOT DM4 and Eq. 
(8) and Eq. (9) from BA42/96, in the distribution of the 
passive earth pressure coefficients. This load is also 
compared with the maximum axial force proposed by LTI 
and larger backfill force (total earth pressure force) can be 
used for the safety purposes. And finally, under plate local 
buckling criteria such as AISC specification (Table B4.1), 
width-thickness ratio should be checked. 

 
 

5. Conclusions 
 
1. Boundary effects from an adjacent span and the 

number of cycles in a critical span can be varied in 
continuous girder with multi-spans. 

2. Most cross-frame exhibited a very low stress level 
(less than 6.22 MPa and 2.3 MPa for single and 
multi-girder respectively), indicating that cross-
frame effects could be negligible and there was no 
torsional buckling due to the coupling effects 
between the multi-girders. 

3. For a quick and conservative estimation of the girder 
buckling strength, a single girder equation can be 
used to estimate the buckling strength of a multi-
girder system with released boundary conditions. 
However, if both ends are fixed in the abutment 
(most IAB cases), then the single girder equation 
could not estimate the buckling strength 
conservatively. 

4. In this study, for released and fixed end conditions of 
IABs with span length ratios of 0.5 and 1.5, KL 
(effective length) values of 0.7 and 0.55 are 
recommended with a 10% safety margin in weak 
axis. Among design guidelines such as BA42/96, 
PennDOT DM4 and field measurement for passive 
earth pressures for IABs, there are significant gaps. 
Further research is required. 

5. The LTI equation is solely based on an integral 
abutment bridge. However, during deck replace-
ment in the summer season, the maximum 
temperature of the exposed steel girder could reach 
much higher than the conditions considered in the 
equations in this study. Further research on this issue 
such as thermal-mechanical coupled analysis should 
be conducted and incorporated with obtained results 
with this study. 

6. It was found that if the width of the girder is 0.5 m, 
the maximum length of the bridge should be less 
than 120 m. This value could be used for practical 
applications as well as for design procedure of three 
span steel girder continuous IABs. 

7. Proposed equation can be used for a bridge designer 
in order to determine an appropriate girder section 
size during deck replacement. 
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