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1. Introduction 

 
Shells structures have improved structural stiffness 

compared to plates. The interest use of shell structures is 
their capability in supporting forces and moments by a 
coupled membrane and bending action because of their 
curvature. On the other hand, composite materials present 
high performance and reliability because of their well-
known properties. Consequently, shell structures fabricated 
with composite materials will continue being widely 
employed for many years in various engineering areas such 
as aerospace, naval, construction industries, automotive and 
for sporting goods, medical devices and many other fields 
(Swanson 1997, Allen 1969, Jones 1999, Mouritz et al. 
2001, Benachour et al. 2011, Ait Atmane et al. 2015, Larbi 
Chaht et al. 2015, Mahi et al. 2015, Bakora and Tounsi 
2015, El-Hassar et al. 2016, Barati and Shahverdi 2016, 
Bounouara et al. 2016, Laoufi et al. 2016, Bousahla et al. 
2016, Chikh et al. 2016, Bellifa et al. 2017, Meksi et al. 
2017, El-Haina et al. 2017). 

It is important to indicate that the investigation of shell 
models permit the understanding of plates, curved beams, 
and flat beams as special cases. In the past four decades, a 
considerable number of theories for composited laminated 
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shells have been proposed. These models can be classified 
in different theories, such as equivalent single layer, quasi-
layerwise and layerwise theories (Demasi 2009a, b). 
Detailed explanation for the above indicated models may be 
consulted in the articles presented by Carrera (2000, 2001 
and 2002), Demasi (2009a, b, c, d and e) and Mantari et al. 
(2012). According to Carrera’s unified formulation (CUF) 
(Carrera 2003) or the unified generalized formulation 
(GUF) proposed by Demasi (2009a, b, c, d, e, 2008), among 
equivalent single layer theories, there are many available 
class of models which CUF or GUF can be reproduced. 
However, the use of some of these models to layered 
anisotropic composite shells can produce errors up to 30% 
in deflections, stresses and frequencies (Reddy 2004), as it 
will also be demonstrated in this article. Thus, a careful 
selection of the appropriate shear deformation theory is 
crucial. 

Supposing the usual classification of the shell and plate 
deformation theories (other classifications of models may 
be found in paper (Demasi 2009a)), there are mainly three 
important theories: namely the classical lamination theory 
(CLT), the first order shear deformation theory (FSDT) and 
the higher shear deformation theory (HSDT). First order 
shear deformation theory (FSDT) is based on the kinematic 
field supposition defined by Mindlin (1951), in which the 
uniform transverse shear strain distribution within the 
thickness accounted (Reissner 1945, 1975, Reissner and 
Wan 1982, Alieldin et al. 2011, Adda Bedia et al. 2015, 
Meksi et al. 2015, Bellifa et al. 2016, Bouderba et al. 

 
 
 

A novel higher-order shear deformation theory for bending and 
free vibration analysis of isotropic and multilayered plates and shells 

 
Abdallah Zine 1,2, Abdelouahed Tounsi 1,3, Kada Draiche 1,4, Mohamed Sekkal 1,3 and S.R. Mahmoud 5

 
1 Material and Hydrology Laboratory, University of SidiBel Abbes, Faculty of Technology, Civil Engineering Department, Algeria 

2 Centre Universitaire de Relizane, Algérie 
3 Laboratoire de Modélisation et Simulation Multi-échelle, Département de Physique, 

Faculté des Sciences Exactes, Département de Physique, Université de Sidi Bel Abbés, Algeria 
4 Université Ibn Khaldoun, BP 78 Zaaroura, 14000 Tiaret, Algérie 

5 Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia 
 
 

(Received February 28, 2017, Revised September 24, 2017, Accepted October 02, 2017) 
 

Abstract.  In this work, the bending and free vibration analysis of multilayered plates and shells is presented by utilizing a new 
higher order shear deformation theory (HSDT). The proposed involves only four unknowns, which is even less than the first 
shear deformation theory (FSDT) and without requiring the shear correction coefficient. Unlike the conventional HSDTs, the 
present one presents a novel displacement field which incorporates undetermined integral variables. The equations of motion are 
derived by using the Hamilton’s principle. These equations are then solved via Navier-type, closed form solutions. Bending and 
vibration results are found for cylindrical and spherical shells and plates for simply supported boundary conditions. Bending and 
vibration problems are treated as individual cases. Panels are subjected to sinusoidal, distributed and point loads. Results are 
presented for thick to thin as well as shallow and deep shells. The computed results are compared with the exact 3D elasticity 
theory and with several other conventional HSDTs. The proposed HSDT is found to be precise compared to other several 
existing ones for investigating the static and dynamic response of isotropic and multilayered composite shell and plate structures. 
 

Keywords:  layered structures; bending; vibration; higher order shear deformation theory 

 

125



 
Abdallah Zine, Abdelouahed Tounsi, Kada Draiche, Mohamed Sekkal and S.R. Mahmoud 

2016). Higher order shear deformation theories (HSDTs) 
were proposed to improve the investigation of shell and 
behaviors and extensively employed by many scientists (Lo 
et al. 1977, Murthy 1981, Reddy 1984a, b, 1986, Reddy and 
Liu 1985, Librescu and Khdeir 1988, Librescu et al. 1987, 
Bert 1984, Murakami 1986, Kant 1993, Kant and 
Swaminathan 2002, Swaminathan and Ragounadin 2004, 
Khare et al. 2003, Batra and Vidoli 2002, Ferreira et al. 
2005, Kim and Cho 2007, Bhaskar and Sivaram 2008, 
Oktem and Chaudhuri 2007, 2009a, b, Oktem and Soares 
2011, Shimpi and Ghugal 1999 and 2001, Arya et al. 2002, 
Shimpi and Aynapure 2001, Roque et al. 2005, Levinson 
1980, Touratier 1991, Ambartsumian 1958, Xiang et al. 
2009, Soldatos 1992, Idibi et al. 1997, Matsunaga 2000, 
Karama et al. 2003, 2009). Interesting higher order models 
were developed by Kant and Swaminathan (2002), Reddy 
and Liu (1985), Touratier (1991), Soldatos (1992), Karama 
et al. (2003, 2009), Mantari et al. (2012, 2011), 
Swaminathan and Naveenkumar (2014), Ahmed (2014); 
Duc and Cong (2013), Kar and Panda (2015), Kar et al. 
(2015), Bourada et al. (2015) and very recently Tounsi et al. 
(2016), Eltaher et al. (2016) and Akavci (2016). Normally, 
these models verify the free surface boundary conditions 
and consider approximately parabolic variation of shear 
stresses within the thickness of the shell. More advanced 
higher shear deformation theories consider the continuity of 
the transverse shear stresses, and give improved results 
(Demasi 2009c, d and e). It should be noted that FGM, 
FGCNT and laminated structures are investigated recently 
using HSDT kinematics (Sahoo et al. 2017a, b, c, d, Mehar 
et al. 2017a, b, Mehar and Panda 2017a, b, c, d, Benahmed 
et al. 2017, Benbakhti et al. 2016, Benchohra et al. 2018, 
Chikh et al. 2017, Hirwani et al. 2016a, b, 2017, Besseghier 
et al. 2017, Klouche et al. 2017, Bouafia et al. 2017, Fahsi 
et al. 2017, Zidi et al. 2017, Mouffoki et al. 2017, Draiche 
et al. 2016, Menasria et al. 2017, Dutta et al. 2017, Kar et 
al. 2016, Singh et al. 2016, Kar and Panda 2016a, Ahouel et 
al. 2016, Boukhari et al. 2016, Abdelbari et al. 2016, Barka 
et al. 2016, Abdelhak et al. 2016, Benferhat et al. 2016, 
Bennoun et al. 2016, Sahoo et al. 2016, Mehar and Panda 
2016, Katariya and Panda 2016, Hebali et al. 2016, Houari 
et al. 2016, Beldjelili et al. 2016, Kar and Panda 2015, Attia 
et al. 2015, Taibi et al. 2015, Ait Yahia et al. 2015, 
Meradjah et al. 2015, Hamidi et al. 2015, Panda and 
Mahapatra 2014, Fekrar et al. 2014, Bousahla et al. 2014, 
Belabed et al. 2014, Zidi et al. 2014, Hebali et al. 2014, Ait 
Amar Meziane et al. 2014, Tounsi et al. 2013, Bessaim et 
al. 2013, Bouderba et al. 2013). Recently, Kar et al. (2017) 
discussed effect of different temperature load on thermal 
postbuckling behavior of FG shallow curved shell panels. 
Kar and Panda (2017) studied the postbuckling response of 
shear deformable FG shallow spherical shell panel under 
nonuniform thermal environment. Kar and Panda (2016b) 
investigated the post-buckling behavior of shear deformable 
FG curved shell panel under edge compression. Also, Kar 
and Panda (2016c) examined nonlinear thermomechanical 
behavior of FGM cylindrical/ hyperbolic/elliptical shell 
panel with temperature-dependent and temperature-
independent properties 

In this paper, the present HSDT, first developed for 

plates by Hebali et al. (2016) and Bourada et al. (2016), 
extended to doubly curved shells for the first time, is simple 
in the sense that it contains the same dependent variables as 
in the FSDT. It is based on a kinematic in which the integral 
term is included leading to a reduction of the number of 
unknowns and equations of motion. This theory considers 
an approximate parabolic variation of the transverse shear 
strains within the shell thickness and the tangential stress-
free boundary conditions on the shell surface, hence a shear 
correction factor is not needed. The governing equations are 
obtained by employing the principle of virtual work. These 
equations are then solved via a Navier-type, closed form 
solution. Bending and dynamic results are given for 
cylindrical and spherical shells for simply supported 
boundary conditions. Shells and plates are subjected to 
sinusoidal, distributed and point loads. Numerical results 
are provided for thick to thin as well as shallow and deep 
shells. The accuracy of the present method is ascertained by 
comparing it with various available results in the literature. 
It is confirmed that the present theory gives accurate results 
compared to those of other higher order theories in 
literature. 

 
 

2. Statement of the problem 
 
The aim of this paper is to extend the HSDT developed 

by Hebali et al. (2016) and Bourada et al. (2016) for plates 
to the bending and dynamic analysis of shells. The 
displacement field of the conventional HSDTs for shells is 
defined by 
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where        1 1 1 1 1 1 1 1 1, , , , , , , , , , ,u t v t w t t         and φ2(ξ1, 

ξ1, t) are the five unknown displacement functions of the 
middle surface of the panel, h the thickness of the 
multilayered shell and f(z) represents shape function 
defining the variation of the transverse shear strains and 
stresses across the thickness. In this article a novel 
displacement field with four unknowns is proposed 
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Where 000 ,, wvu and θ are the four unknown 
displacement functions of middle surface of the panel. 

In this work, the present HSDT is obtained by setting 
(Mantari et al. 2012) 
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In the derivation of the necessary equations, a set of 

additional suppositions is considered: 
 Small elastic deformations are supposed (i.e., 

displacements and rotations are small, and obey 
Hooke’s law). 

 The structure is composed of a number of layers which 
are supposed to be perfectly bonded. 

 
The starting point of the current thick shell theory is the 

three dimensional elasticity theory, expressed in general 
curvilinear (reference) surface-parallel coordinates; while 
the thickness coordinate is normal to the reference (middle) 
surface as shown in Fig. 1. 

The strain–displacement relations, based on this 
formulation, are expressed as follows (Reddy 2004) 
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Fig. 1 Laminate geometry with positive set of 
lamina/laminate reference axes, displacement 
components and fiber orientation 
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And  6,....,1ii  represent strain components ,u  v
and w  are the displacements on the surface  321 ,,   
and 1a  and 2a  the vectors tangent to the 1  and 2  
coordinate lines. Introduction of Eqs. (2) into the relations 
given in Eqs. (4) of a moderately shallow and deep shell 
supplies the following strain–displacement relations, valid 
for a doubly-curved panel under consideration 
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The integrals used in the above relations shall be 
resolved by a Navier solution and can be expressed by 
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where the parameters 'A  and 'B  are defined according to 
the type of solution employed, in this case via Navier. 
Hence, 'A  and 'B  are expressed by 
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Where α and β are defined in expression (19), and ix

denote the Cartesian coordinates  .2 ,1  ,1  idadx ii   The 
stress–strain relations for the kth lamina are given by Reddy 
(2004) 
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In which  54621 ,,,,  are the stress and ,,( 21   

),, 546  are the strain components, and ijQ are the 
material constants of the kth lamina in the laminate 
coordinate system. Hamilton’s principle is applied to the 
present case, and the following expressions are obtained 
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Where q is the distributed transverse load, Ni, Mi, Pi and 
Ri are the resultants of the following integrations 
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And the inertia terms Ii (i = 1, 2, 3, 4, 5, 6) are defined 

by the following equations 
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The governing equations of motion can be derived from 

Eq. (11) by integrating the displacement gradients by parts 
and setting the coefficients of , , ,u v w    to zero 
separately, and the following equation can be obtained 
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By substituting the stress–strain relations into the 

definitions of force and moment resultants of the present 
theory given in Eq. (12) the following constitutive 
equations are obtained 
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Here the stiffness coefficients are defined as 
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In what follows, the following simply supported 
boundary conditions are considered here prescribed at all 
four edges 
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3. Solution procedure 
 
For the analytical solution of the partial differential 

equations given in Eq. (14), the Navier method, based on 
double Fourier series, is used under the specified boundary 
conditions. For anti-symmetric cross-ply laminated plates, 
the following stiffness components are identically zero 
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Using Navier’s procedure, the solution of the 

displacement variables satisfying the simple supported 
boundary conditions can be expressed in the following 
Fourier series 
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Where , , ,rs rs rs rsU V W   are coefficients, and α and β 

are expressed as 
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Substituting Eqs. (15)-(20) into Eq. (14), the following 

equations are obtained 
 







































































































0

0

0

 

 

44342414

34332313

24232212

14131211

44342414

34332313

24232212

14131211

rs

rs

rs

rs

rs

rs

rs

rs

rs

QW

V

U

KKKK

KKKK

KKKK

KKKK

W

V

U

MMMM

MMMM

MMMM

MMMM









 (21)

 
Where Qrs are the coefficients in the double Fourier 

expansion of the transverse load 
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And the elements of [Mij] and [Kij] in Eq. (21) are given 
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4. Numerical results and discussion 
 
4.1 Bending analysis 
 
For this section, the mechanical properties of each layer 

are given as follows (Reddy and Liu 1985) 
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The following normalized quantity is defined for 
deflection 
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For the uniform and point loads, the values of “r” and 

“s” in the series are taken equal to 101 as in Reddy and Liu 
(1985) and Giunta et al. (2011). 

Tables 1 to 3 provide the non-dimensional center 
deflection of cross-ply (0°/90°) laminated spherical shells 
under sinusoidal, uniform, and point loads, respectively. 
The computed results are compared with the FSDT and 
HSDT reported from Reddy and Liu (1985) and the HSDT 
developed by Mantari et al. (2012), for variousv values 
given in Tables 1, 2 and 4. The values are also compared 
with the trigonometric shear deformation theory and 
multiquadricsby Ferreira et al. (2011), the HSDT developed 

 
 

Table 1 Normalized central deflections of cross-ply two layer 
(0/90) square laminated spherical shells under sinusoidal 
load 

R/a Theory a/h = 10 a/h = 100

5

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

11.0078 
11.0221 
11.1080 
11.1532 
11.1660 
11.4290 

1.1938 
1.1940 
1.1940 
1.1940 
1.1937 
1.1948 

10

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

11.7280 
11.7321 
11.8296 
11.8810 
11.8960 
12.1230 

3.5745 
3.5750 
3.5751 
3.5751 
3.5733 
3.5760 

20

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

11.9231 
11.9241 
12.0249 
12.0780 
12.0940 
12.3090 

7.1287 
7.1291 
7.1295 
7.1298 
7.1236 
7.1270 

50

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

11.9789 
11.9790 
12.0807 
12.1343 
12.1500 
12.3620 

9.8790 
9.8791 
9.8800 
9.8804 
9.8692 
9.8717 

100

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

11.9869 
11.9869 
12.0887 
12.1424 
12.1580 
12.3700 

10.4552 
10.4553 
10.4562 
10.4567 
10.4440 
10.4460 

Plate

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

11.9895 
11.9895 
12.0914 
12.1451 
12.1610 
12.3730 

10.6625 
10.6625 
10.6635 
10.6641 
10.6510 
10.6530 
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Table 2 Normalized central deflections of cross-ply two layer (0/ 
90) square laminated spherical shells under uniform load

R/a Theory a/h = 10 a/h = 100

5 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

17.3545 
17.3697 
17.4886 
17.5504 
17.5660 
19.9440 

1.7521 
1.7524 
1.7523 
1.7523 
1.7519 
1.7535 

10 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

18.5181 
18.5170 
18.6543 
18.7260 
18.7440 
19.0650 

5.5408 
5.5414 
5.5414 
5.5415 
5.5388 
5.5428 

20 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

18.8336 
18.8274 
18.9699 
19.0444 
19.0640 
19.3650 

11.2765 
11.2770 
11.2775 
11.2778 
11.2680 
11.2730 

50 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

18.9234 
18.9161 
19.0601 
19.1354 
19.1550 
19.4520 

15.7269 
15.7269 
15.7281 
15.7287 
15.7110 
15.7140 

100 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

18.9368 
18.9289 
19.0731 
19.1485 
19.1680 
19.4640 

16.6595 
16.6597 
16.6611 
16.6618 
16.6420 
16.6450 

Plate 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

18.9409 
18.9331 
19.0774 
19.1528 
19.1720 
19.4690 

16.9954 
16.9954 
16.9968 
16.9975 
16.9770 
16.9800 

 

 
 
by Mantari et al. (2011), LM3/4 (referential solution) and 
ED4D (both from CUF, see Giunta et al. (2011)), and the 
well-known trigonometric HSDT (Touratier 1991). 

It can be seen from Tables 1 and 2 that results 
demonstrate a good agreement with other theories proposed 
for comparison. The difference between the solutions 
predicted by FSDT (Reddy and Liu 1985) and the rest of 
HSDTs diminishes with the increasing value of R/a ratio for 
thick shells. However, opposite occurs for thin shells. In 
fact, in the case of thin shells the FSDT appears to be 
enough. 

Table 3 shows the results of cross-ply spherical shells 
under point load. The computed results are compared with 
the FSDT and HSDT obtained from Reddy and Liu (1985) 
for different values of R/a. The results are also compared 
with the HSDT developed by Mantari et al. (2011 and 
2012) and the well-known trigonometric HSDT (Touratier 
1991). 

Again, it can be observed that the obtained results are in 

Table 3 Normalized central deflections of cross-ply two layer 
(0/90) square laminated spherical shells under point load

R/a Theory a/h = 10 a/h = 100

5

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

5.5391 
5.5548 
5.7174 
5.8309 
5.8953 
7.1015 

0.8191 
0.8195 
0.8212 
0.8222 

– 
– 

10

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

5.8307 
5.8422 
6.0098 
6.1260 
6.1913 
7.3836 

1.8335 
1.8340 
1.8358 
1.8369 

– 
– 

20

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

5.9096 
5.9198 
6.0888 
6.2058 
6.2714 
7.4692 

3.2771 
3.2776 
3.2796 
3.2808 

– 
– 

50

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

5.9322 
5.9420 
6.1115 
6.2286 
6.2943 
7.4909 

4.3841 
4.3845 
4.3866 
4.3879 

– 
– 

100

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

5.9355 
5.9452 
6.1147 
6.2319 
6.2976 
7.4940 

4.6156 
4.6159 
4.6182 
4.6195 

– 
– 

Plate

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985) 
FSDT (Reddy and Liu 1985) 

5.9366 
5.9463 
6.1158 
6.2330 
6.2987 
7.4853 

4.6988 
4.6992 
4.7014 
4.7028 

– 
– 

 
 

good agreement with those predicted by Mantari (Mantari et 
al. 2012). As is well-known, for this type of load at the 
center, the difference between the results provided by the 
FSDT and the HSDTs is more significant as pointed out by 
Reddy and Liu (1985). 
Figs. 2-4 present the variation of non-dimensional center 
deflections under sinusoidal, uniform, and point loads for 
thick (a/h = -5) anti-symmetric cross-ply cylindrical shells 
with R/a. Comparisons between the proposed HSDT and 
both Mantari’s HSDT (Mantari et al. 2012) and Touratier’s 
HSDT (Touratier 1991) are demonstrated. 

It can be noticed, from these figures that the proposed 
theory agree well with the theory developed by Mantari 
(Mantari et al. 2012). However, a visible difference in the 
prediction of the non-dimensional transverse center 
deflection is found when results are compared to Touratier’s 
HSDT (Touratier 1991), which is the clear influence of the 
different HSDTs employed, i.e., the type of shear strain 
functions employed in the modeling of the kinematic of the 
theory. 
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Fig. 2 Variation of normalized transverse center 
deflection with R/a ratio for different HSDTs of 
cross-ply laminated spherical shells [0/90] under 
sinusoidal load 

 
 

Fig. 3 Variation of normalized transverse center 
deflection with R/a ratio for different HSDTs of 
cross-ply laminated spherical shells [0/90] under 
uniform load 

 
 

Fig. 4 Variation of normalized transverse center 
deflection with R/a ratio for different HSDTs of 
cross-ply laminated spherical shells [0/90] under 
point load 

 

Fig. 5 Variation of normalized transverse center 
deflection with a/h ratio for different HSDTs of 
cross-ply laminated spherical shells [0/90] under 
sinusoidal load 

 
 

Fig. 6 Variation of normalized transverse center 
deflection with a/h ratio for different HSDTs of 
cross-ply laminated spherical shells [0/90] under 
uniform load 

 
 

Fig. 7 Variation of normalized transverse center 
deflection with a/h ratio for different HSDTs of 
cross-ply laminated spherical shells [0/90] under 
point load 
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Table 4 Normalized fundamental frequencies of cross-ply 
two layer (0/90) square laminated cylindrical shells 
Ω = ω(a2/h) 2/ E  

R/a Theory a/h = 10 a/h = 100

5 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

9.1637 
9.1624 
9.1254 

– 
9.0230 
8.9082 

16.7042 
16.7033 
16.7030 

– 
16.6900 
16.6680 

10 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

9.0828 
9.0825 
9.0453 

– 
8.9790 
8.8879 

11.8447 
11.8444 
11.8440 

– 
11.8400 
11.8310 

20 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

9.0580 
9.0579 
9.0207 

– 
8.9720 
8.8900 

10.2712 
10.2712 
10.2707 

– 
10.2700 
10.2650 

50 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

9.0481 
9.0481 
9.0109 

– 
8.9730 
8.8951 

9.7848 
9.7848 
9.7843 

– 
9.7830 
9.7816 

100 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

9.0457 
9.0457 
9.0085 

– 
8.9750 
8.8974 

9.7132 
9.7132 
9.7127 

– 
9.7120 
9.7108 

Plate 

Present 
HSDT (Mantari et al. 2012) 
HSDT (Mantari et al. 2011) 

HSDT (Touratier 1991) 
HSDT (Reddy and Liu 1985)
FSDT (Reddy and Liu 1985)

9.0437 
9.0437 
9.0065 

– 
8.9760 
8.8998 

9.6890 
9.6890 
9.6886 

– 
9.6880 
9.6873 

 

 
 
Figs. 5-7 present the variation of non-dimensional center 

deflections for cross-ply cylindrical shells under sinusoidal, 
uniform, and point loads for deep (R/a = 5) anti-symmetric 
cross-ply laminates with thickness a/h ratio. Again, 
comparisons between the well-known trigonometric HSDT 
(Touratier 1991), Mantari’s HSDT (Mantari et al. 2012) and 
the proposed HSDT are demonstrated. 

It can be seen from these results that there is no 
significant difference between the results produced by the 
three HSDTs. 

 
4.2 Vibration analysis 
 
The same mechanical characteristics of the laminate in 

the previous example problem are employed in this section. 
Table 4 presents the non-dimensional fundamental 
frequencies of cross-ply cylindrical shells. For thin anti-
symmetric cross-ply shells, the FSDT (Reddy and Liu 
1985) underpredicts the fundamental natural frequencies 

when compared with the rest HSDTs (Reddy and Liu 1985, 
Mantari et al. 2011, 2012). 

From Table 4, it can be noticed that the proposed theory 
agree well with Mantari’s HSDT (Mantari et al. 2012). 

 
 

5. Conclusions 
 
A new simplified HSDT is proposed for bending and 

dynamics analysis of composite plates and shells. By 
making further simplifying assumptions to the existing 
HSDTs, with the introduction of an undetermined integral 
term, the number of unknowns and equations of motion of 
the proposed HSDT are reduced by one, and hence, make 
the this theory simple and efficient to use. The model 
considers adequate variation of the transverse shear strains 
within the plate thickness and tangential stress-free 
boundary conditions on the shell boundary surface; 
therefore a shear correction factor is not needed. The 
equations of motion are obtained by using the Hamilton’s 
principle. These equations are then solved via a Navier-
type, closed form solution. Bending and dynamic results are 
provided for cylindrical and spherical shells. Shells and 
plates are subjected to sinusoidal, distributed and point 
loads. The accuracy of the proposed formulation is 
ascertained by comparing the obtained results with those of 
other HSDTs available in the literature. The results 
demonstrate that the proposed model performs better than 
all the HSDTs compared here for investigating the bending 
and vibration behavior of multilayered composite plates and 
shells. 
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