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Abstract.

This work investigates a novel plate formulation and a modified couple stress theory that introduces a variable

length scale parameter is presented to discuss the static and dynamic of functionally graded (FG) micro-plates. A new type of
third-order shear deformation theory of Reddy that use only 4 unknowns by including undetermined integral variables is
proposed in this study. The equations of motion are derived from Hamilton’s principle. Analytical solutions are obtained for a
simply supported micro-plate. Numerical examples are presented to examine the effect of the length scale parameter on the
responses of micro-plates. The obtained results are compared with the previously published results to demonstrate the

correctness of the present formulation.
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1. Introduction

The first FGM was developed in Japan in 1984 as the
result of a space plane project where the FGMS have gained
wide application in variety branches of engineering such as
mechanical, aerospace, chemical, electrical etc (EI-Haina et
al. 2017, Laoufi et al. 2016, Houari et al. 2016, Bousahla et
al. 2016, Abdelbari et al. 2016, Abdelhak et al. 2016,
Bounouara et al. 2016, Bouderba et al. 2016, Barati and
Shahverdi, 2016, Barka et al. 2016, Beldjelili et al. 2016,
Kar and Panda, 2015, Darilmaz, 2015, Belkorissat et al.
2015, Akbas, 2015, Zidi et al. 2014, Tounsi et al. 2013).
Functionally graded materials (FGMSs) are the advanced
materials in the family of engineering composites made
from a mixture of ceramic and metal in which the ceramic
component provides high-temperature resistance because of
its low thermo conductivity, on the other hand, the ductile
metal component prevents fracture due to thermal load.
Compared with classical laminated composites, FGMS
avoid the inter-laminar stress gaps that are induced by
mismatches in the characteristics of two different materials.
Such materials were introduced to gain benefits of the
desired physical characteristics of each constituent material
without interface problems. With the advance of
technology, FGMS are started to be employed in
micro/nano-electromechanical systems (MEMS/NEMS),
such in the form of shape memory alloy thin films with a
global thickness in micro-or nano-scale (LU et al. 2009)
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electrically actuated MEMS devices (Zhang and Fu 2012)
and atomic force microscopes (AFM) (Kahrobaiyan et al.
2010, Kahrobaiyan et al. 2011, Kahrobaiyan et al. 2012,
Asghari et al. 2010).

In this context, the practical studies show as the
thickness of the structures becomes on the magnitude of
microns and sub-microns, the scale effect of material takes
a considerable role in mechanical behaviors of such
structures (Fleck and Hutchinson 1993, Lam et al. 2003,
Mindlin 1963, Mindlin and Tiersten 1962, Toupin 1962).
The classical continuum mechanics theory cannot be
utilized to interpret the size-dependent effect as it does not
constrain any material length scale parameter. Thus, size-
dependent plate models such as the classical couple stress
theory having internal material length scale parameter are
necessary (Mindlin 1963, Mindlin and Tiersten 1962,
Toupin 1962).

Based on the modified couple stress theory, several size-
dependent plate models have been developed.

Park and Gao (2006), Ma et al. (2008) studied Euler-
Bernoulli and Timoshenko beams via a modified couple
stress theory. These models are used to analyze the behavior
characteristics of microtubules (Ma et al. 2008, Kong et al.
2008, Xia et al. 2010, Ke and Wang 2011) and micro tubes
conveying fluid (Ke et al. 2011, Ahangar et al. 2011, Wang
2010, Xia and Wang 2010).

Simsek and Reddy (2013) discussed the bending and
vibration of FG micro-beam using a new higher order beam
theory and the modified couple stress theory. Al-Basyouni
et al. (2015) proposed a novel unified beam formulation
with a modified couple stress theory that consider a variable
length scale parameter to study bending and dynamic
behavior of FG micro-beam.
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In this article, a new analytical formulation based on the
modified couple stress theory is proposed to study the
bending and vibration behaviors of FG micro-plate having a
variable length scale parameter by employing a novel form
of the third-order shear deformation theory of Reddy
(TSDT). The addition of the integral term in the
displacement field leads to a reduction in the number of
variables and governing equations. The governing equations
and related boundary conditions are deduced by employing
the Hamilton’s principle. The influences of the length scale
parameter, the power law indices, shear deformation on the
bending and dynamic behavior of FG micro-scale plates are
examined in this work. The present results are also
compared with previously published results to confirm the
validity of the present approach.

2. Theoretical formulation

2.1 modified couple stress theory

Based on the modified couple stress theory (Yang et al.
2002), the strain energy, U, for a linear elastic material

occupying region Q is related to strain and curvature tensors
and can written as

1 .
Where o is the stress tensor, ¢ is the strain tensor, m is

the deviatoric part of the couple stress tensor and y is the
symmetric curvature .these tensors are given by

gij:%( i,j""ui,i) 2

Zij =%(9i,j +5'i,i) (3)

where is the displacement vector, and € is the rotation
vector that can be defined as

1
6’=§eijkuk'j (4)
where ejj is the permutation symbol.
2.2 Kinematic relations and constitutive relations

The displacement field of the conventional TSDT of
Reddy is given as follows (Boukhari et al. 2016)

U2 =Uox ) -2 2L+ @D (xy) (6
VYD) =% (k)20 (@D, () (6b)
W(X, ¥,2) = W (X, Y) (50)

where Uy, Vo, Wo, @y, @y, are five unknown displacements of
the mid-plane of the plate, and f(z) represents shape
function defining the variation of the transverse shear
strains and stresses across the thickness.

In this article, the conventional TSDTs of Reddy is
modified by proposing some simplifying suppositions so
that the number of unknowns is reduced as follows (Hebali
et al. 2016, Merdaci et al. 2016, Besseghier et al. 2017,
Chikh et al. 2017, Khetir et al. 2017, Fahsi et al. 2017)

u(x,y,z) =ugy(x,y)— Z%Jr Kk, f (z)j@(x, y)dx  (6a)

V(X,Y,2)=Vo(X, y)—z % +k, f (Z)J.H(X, y)dy  (6b)

W(X, Y, 2) = Wo (X, ) (6c)

The coefficients k; and k, depend on the geometry. In
this article, the shape function is considered given by Reddy
(1984) as

B 4(zY _df(2)
f(z)_{l_E(ﬁj] and g(z)_—OIZ )

where (Uo,Vo,Wo,8) are four unknown displacements of the
mid-plane of the plate, and h is the plate thickness. The
nonzero linear strains are

e | e ks ks
g, p=1¢, t+21ky t+ F(2)1k;
b
) B V) I L Ky (8)
0
Y Y
}/XZ yXZ
where
auy AL
0 b OX
£ OX k
0 No b 0wy
gy = s ky =4 — > ’
0 ox b oy
Ty) |, No| (ke %W,
o X 2oy 9)
kS k0
sl 0 ,
s 0 0
X klaj‘edx+k2&‘[0dy

0
7xz

{y%}_ kzj'edy

- klje dx

(10)

The integrals used in the above equations shall be
resolved by a Navier type method and can be written as

follows
2
2 foo=n 0.
oy oxoy
.[49 dx = A’%
OX

%Jﬁdy

, J.edy:B’

:B,

0%0
oxoy

11
00 (11)
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Fig. 1 Geometry of a FGM plate

where the coefficients A’ and B’ are expressed according to
the type of solution employed, in this case by using Navier.
Therefore, A’ and B’ are expressed as follows

, 1
o L 3= k=a® k=5 (12

where a and f are defined in expression (31).
In addition, using Egs. (5) and (4), the components of
the rotation vector are obtained as

owg 1 00

0, =—2-=k,B'g(z)= 13a
o 2B (133)
ow, 1, ., 00

Hy = —EO-FEI(]_A g(Z)& (l3b)

C1(vg dup )1 , 0%
b I LO ULV K ey

Substituting Eq. (13) into Eq. (3), the components of the
curvature tensor take the form

*w, 1 %0
0 1y Bg() 2 14a
ey 2 (Z)axay (143)
*w, 1 o260
=— ZkAg(z)—= 14b
5= ey 2 g(z)axay (14b)
4 =1(k25'_k1A')9(2)629 (14c)
L2 oxoy

1(0%w, o%wy | 1 ,0%0 ,0%0
Zz[ o ol ) a0 RB AT | ad)

(2)(k,B' =k A’

60 1
Xxa = 7szg( ) [0 VO
ox?

L
*a

1 , 69 1( 8%, au
Bano@) 2 2 0]4

2 g 8x NESE oy z)(koB'—ky A ) o2 (141)

Xy =

2.3 Constitutive relations

Consider a FG plate made of two constituent
functionally graded materials as shown in Fig. 1. The
material properties of the plate such as Young’s modulus E

Thickness coordinets zh

e T T T T T T
DD Dl Mz p3 p4a DS DS D7 D3 DS 1D
Volume faclon of makernsl 1,,V‘

Fig. 2 Variation of volume fraction V; through the thickness
of a FG plate for various gradient index p

and masse density p are considered to change continuously
across the thickness by power law and the length
scale parameter | are given by the rule of mixtures as
(Hanifi Hachemi Amar et al. 2017, Bellifa et al. 2016,
Bouderba et al. 2013).

E(2)=E;,+(E,-E M (15a)
P(Z) =py+ (Pl — P2 )‘/1 (15b)
1@)=1,+(0, -1, M (15¢)

Where V;=(0.5+z/h)" is the volume fraction of material
1, the subscripts 1 and 2 indicate the two materials
employed, and p is the gradient index indicating the volume
fraction of material. The variation of the volume fraction V,
across the thickness of the plate is plotted in Fig. 2 for
various values of the power law index. The linear elastic
constitutive relations are

1 v 0
Ox v 1 0 0 0 Ex
o | E@)|0 O (1;V) o 0 ||&
T (T2 ,2 @-v) Vo (162)
oy 00 0 =E 0 |y,
Ox 00 0 0 (1_2V) 7 xz

E(z
mj = 1+()[()] % (16b)

Where v is the poison’s ratio considered to be constant, |
is the material length scale parameter which reflects the
influence of couple stress.

2.4 Equations of motion

Hamilton’s principle is employed in this work to
determine the equations of motion. The principle can be
expressed in analytical from as (Ait Amar Meziane et al.
2014, Attia et al. 2015, Ait Atmane et al. 2015, Mahi et al.
2015, Zemri et al. 2015, Taibi et al. 2015, Saidi et al. 2016,
Ahouel et al. 2016, Klouche et al. 2017, Mouffoki et al.
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2017, Meksi et al. 2017, Bellifa et al. 2017, Zidi et al.
2017).

J'OT(aJ +V —K)dt=0 (17)

Where 6U is the virtual strain energy, 6V is the virtual
work done by external loads, and 6K is the virtual Kinetic
energy. The virtual strain energy is expressed by (see Eqg.

1)
h/2
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there N,M,S,Q,X,Z, and W are the stress resultants defined
by

h/2
(Ni,Mi,Si):J. h/2(1,2, f )oidz,i =X, y, xy (19a)

Q = Jhlz 9(z)oydz,i = xy, yz (19b)

—hi2
(X;,Y:,Z;,W; )= jhr:/zz(l, f,9,9')m;dz,i = x,y,xy,xz,yz (19¢c)

The variation of the work done by the external applied
forces can be expressed as

N :_jandA=—Iq5NodA (20)
A

Where q is the transverse load.
The variation of kinetic energy is expressed as

h/2
K :I I p(2)ug Sty + Vg 8V, + Vi Sty HzdA
A-h/2

= [{1olug 8 + v 6% + iy i
A

i

{0 OX
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Kol k22 20000 25200200 |1 1
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where dot-superscript convention denotes the differentiation
with respect to the time variable t, p(z) is the masse density,
and (lg,1,15,J1,d2,K5) are the masse inertias defined as

+
1
+k,BVy—

kA —2 ol @Jr k, A’

oX  OX

+J,
+k,B'—=

hi/

2
(1,2,22,f,zf,g)p(z)dz (22)
—h/2
Substituting Egs. (18), (20) and (21) into Eqg. (17) and
integrating by parts, and collecting the coefficients of (du,
oVo, 0wy, 06), the following equations of motion are
obtained
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2.5 Equations of motion in terms of displacements

Substituting Eq. (19) into Eqg. (23), the equations of
terms of generalized

motion can be expressed in
displacements (dug, 6vo, OWq, 60) as
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Where A, By, Dj;, etc., are the plate stiffness, defined by
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Where
E(z)v(2) E(z)
M) =" 7)=——"7
D= oh-2)] “O =] @)

2.6 Analytical solutions

In this section, analytical solutions for bending and free
vibration are presented for a simply supported rectangular
plate under transverse load ¢. Based on the Navier
approach, the solutions are assumed as

Uo(x, y,t) U o cos(ax)sin( gy 't
Vo(%, Y1) | <& | Vinn sin(ex) cos(py Je'*
wo(x,yt)| ; = W, sin(ex)sin(gy e’ (28)
Q(X, y,t) @mnsin(ax)sin(ﬂy)e“"‘

where Unn, Vs Wane Omn— are Fourier coefficients to be
determined for each pair of mand nand i=+-1
with

a=mz/a, B=nzx/b (29)

The transverse load gis expanded in the double-Fourier
sine series as

q(x,y)= iian sin axsin Sy

(30)
m=1 n=1
Where

— 1" [4(x, y)sin axsin pydxd
Qun _%L qu(x, y)sin axsin gydxdy

g, forsinusoiddly distributed load, (31)
- &q"z foruniformalydistributed load

mnz

Substituting Egs. (28) and (30) into Eqg. (24), the
analytical solutions can be obtained from the following
equations
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Table 1 Comparison of non-dimensional W of a homogeneous square plate (I,=l,, h=88.h"°m)

95

a/h=5 a/h=20 a/h=100
I/ CPT®  Ref®  Presenttheory CPT®  Ref®  Presentth CPT® Ref®  Present th
Yy e resen eory € resen eory
0 0.2803  0.3433 0.3433 0.2803  0.2842 0.2842 0.2803  0.2804 0.2804
0.2 0.2399  0.2875 0.2875 0.2399  0.2430 0.2430 0.2399  0.2401 0.2401
0.4 0.1676  0.1934 0.1934 0.1676  0.1693 0.1693 0.1676  0.1677 0.1677
0.6 0.1116  0.1251 0.1251 0.1116  0.1124 0.1124 01116  0.1116 0.1116
0.8 0.0760  0.0838 0.0838 0.0760  0.0765 0.0765 0.0760  0.0760 0.0760
1 0.0539  0.0588 0.0588 0.0539  0.0542 0.0542 0.0539  0.0539 0.0539
(a) Tsiatas (2009)

(b) Thai and Thai et al. (2013)

Table 2 Comparison of non-dimensional fundamental frequency @ of a homogeneous square plate (1=l

h=88.h"m)
I/ a/h=5 a/h=20 a/h=100
CPT(a) Ref(b) Presenttheory CPT(a) Ref(b) Presenttheory CPT(a) Ref(b)  Present theory
0 5.9734 5.2813 5.2813 5.9734  5.9199 5.9199 5.9734 5.9712 5.9712
0.2 6.4556  5.7699 5.7699 6.4556  6.4027 6.4027 6.4556 6.4535 6.4535
0.4 7.7239  7.0330 7.0330 7.7239  7.6708 7.6708 7.7239  7.7217 7.7217
0.6 9.4673 8.7389 8.7389 9.4673  9.4116 9.4116 9.4673  9.4651 9.4651
0.8 11.4713 10.6766 10.6766 114713 11.4108 11.4108 114713  11.4689 11.4689
1 13.6213 12.7408 12.7408 13.6213 13.5545 13.5545 13.6213 13.6186 13.6186

(a) Yin et al. (2010)
(b) Thai and Thai et al. (2013)

3. Numerical results and discussion
3.1 Verification studies

In this section, several numerical examples of bending
and dynamic behaviour of FG micro-plate are presented
based on modified couple stress theory. The present results
are computed using the present theory type TSDT with only
4 unknowns. The results are compared with those reported
by Thai et al. (2013), Yin et al. (2010) and Tsiatas et al.
(2009). The constituents of the FG micro-plate used in this
study include aluminum as material 2 and alumina as
material 1 with the following properties:

E,=380 GPa, E,=70 GPa , p,=3800 kg/m*
and p,=2702 kg/m®.

In this study, we take the length scale parameter of the
aluminum component I, as 15um, and in the other cases the
ratio I,/l; is varied so as to demonstrate the influence of the
variation of the length scale parameter. The following
dimensionless quantities can be defined for the convenience
10WE, oh a’

q0a4' @' 0_):@? ,1/El

W= o=

3.1 Parameter studies

The numerical results of simply supported square FG
micro plate are presented. Examination of Tables 1-4
reveals that the present theory with only four variables
provides similar results to those computed by the third-
order shear deformation theory of Reddy (TSDT) used by

Thai et al. (2013) and this for all examined values of the
material length scale parameter (I/h) and with considering
|2:|1:|.

Table 1 is performed for the dimensionless deflection
w of a homogeneous micro plate subjected to a sinusoidal
load qo. Consider a simply supported micro plate made of
epoxy with the following material properties (Reddy 2011):

E=1.44 GPa, v=0.3, p=1220 Kg/m® h=88x10°m

The calculated deflections are compared with those
predicted by Tai et al. (2013) based on the TSDT and by
Tsiatas (2009) based on CPT. the analytical solutions of the

Go
(D+A a2 +5%)

It can be seen that the computed results are found to be
in excellent agreement with those of Thai et al. (2013). It
can be seen clearly that the vertical deflection predicted by
the CPT (Tsiatas 2009) are independent of the different
values for the aspect ratio a/h because in CPT theory the
shear effect is not introduced.

Table 2 presents the non-dimensional fundamental
frequency @ of a simply supported square plate. The
obtained results are compared with those predicted by Tai et
al. (2013) based on the TSDT of Reddy and Yin et al.
(2010) based on CPT. The analytical solution of the CPT is
given as a):(az +p2)J(O+A)1, . Again, the computed
results are found to be excellent agreements with those Thai
et al. (2013).

In Table 3 the non-dimensional deflections of the FG
micro plate for the sinusoidal load based on the present
formulation for values of the volume fraction exponent p,

CPTisgivenas W
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Table 3 Non-dimensional deflection W of a simply supported square plate (I,=I,, h=88.h"m)

Gradient index (p)

a/h I,/h Plate theory 0 05 1 2 5 10

0 Present theory 0. 3433 0.5177 0.6688 0.8671 1.0885 1.2276

Thai et al. (2013) 0. 3433 0.5177 0.6688 0.8671 1.0885 1.2276

0.2 Present theory 0.2875 0.4275 0.5468 0.7067 0.8981 1.0247

' Thai et al. (2013) 0.2875 0.4275 0.5468 0.7067 0.8981 1.0247

04 Present theory 0.1934 0.2807 0.3535 0.4548 0.5925 0.6908

5 ' Thai et al. (2013) 0.1934 0.2807 0.3535 0.4548 0.5925 0.6908

06 Present theory 0.1251 0.1786 0.2224 0.2855 0.3802 0.4514

Thai et al. (2013) 0.1251 0.1786 0.2224 0.2855 0.3802 0.4514

0.8 Present theory 0.0838 0.1183 0.1464 0.1878 0.2539 0.3052

' Thai et al. (2013) 0.0838 0.1183 0.1464 0.1878 0.2539 0.3052

1 Present theory 0.0588 0.0825 0.1017 0.1304 0.1782 0.2158

Thai et al. (2013) 0.0588 0.0825 0.1017 0.1304 0.1782 0.2158

0 Present theory 0.2961 0.4537 0.5890 0.7573 0.9114 1.0087

Thai et al. (2013) 0.2961 0.4537 0.5890 0.7573 0.9114 1.0087

0.2 Present theory 0.2520 0.3798 0.4885 0.6284 0.7743 0.8697

Thai et al. (2013) 0.2520 0.3798 0.4885 0.6284 0.7743 0.8697

04 Present theory 0.1742 0.2551 0.3231 0.4161 0.5349 0.6175

10 Thai et al. (2013) 0.1742 0.2551 0.3231 0.4161 0.5349 0.6175

0.6 Present theory 0.1150 0.1649 0.2065 0.2664 0.3538 0.4177

' Thai et al. (2013) 0.1150 0.1649 0.2065 0.2664 0.3538 0.4177

0.8 Present theory 0.0780 0.1103 0.1372 0.1772 0.2403 0.2879

Thai et al. (2013) 0.0780 0.1103 0.1372 0.1772 0.2403 0.2879

1 Present theory 0.0552 0.0774 0.0959 0.1238 0.1702 0.2058

Thai et al. (2013) 0.0552 0.0774 0.0959 0.1238 0.1702 0.2058

0 Present theory 0.2842 0.4377 0.5689 0.7298 0.8669 0.9538

Thai et al. (2013) 0.2842 0.4377 0.5689 0.7298 0.8669 0.9538

0.2 Present theory 0.2430 0.3677 0.4737 0.6086 0.7429 0.8303

Thai et al. (2013) 0.2430 0.3677 0.4737 0.6086 0.7429 0.8303

04 Present theory 0.1693 0.2486 0.3153 0.4063 0.5201 0.5986

20 Thai et al. (2013) 0.1693 0.2486 0.3153 0.4063 0.5201 0.5986

0.6 Present theory 0.1124 0.1614 0.2025 0.2615 0.3470 0.4090

Thai et al. (2013) 0.1124 0.1614 0.2025 0.2615 0.3470 0.4090

0.8 Present theory 0.0765 0.1083 0.1349 0.1744 0.2368 0.2834

Thai et al. (2013) 0.0765 0.1083 0.1349 0.1744 0.2368 0.2834

1 Present theory 0.0542 0.0761 0.0944 0.1222 0.1681 0.2033

Thai et al. (2013) 0.0542 0.0761 0.0944 0.1222 0.1681 0.2033

0 Present theory 0.2804 0.4326 0.5625 0.7209 0.8527 0.9362

Thai et al. (2013) 0.2804 0.4326 0.5625 0.7209 0.8527 0.9362

0.2 Present theory 0.2401 0.3639 0.4689 0.6022 0.7327 0.8176

Thai et al. (2013) 0.2401 0.3639 0.4689 0.6022 0.7327 0.8176

04 Present theory 0.1677 0.2465 0.3128 0.4031 0.5153 0.5925

100 Thai et al. (2013) 0.1677 0.2465 0.3128 0.4031 0.5153 0.5925

0.6 Present theory 0.1116 0.1603 0.2011 0.2599 0.3448 0.4061

Thai et al. (2013) 0.1116 0.1603 0.2011 0.2599 0.3448 0.4061

0.8 Present theory 0.0760 0.1076 0.1341 0.1736 0.2357 0.2820

' Thai et al. (2013) 0.0760 0.1076 0.1341 0.1736 0.2357 0.2820

1 Present theory 0.0539 0.0756 0.0939 0.1216 0.1675 0.2024

Thai et al. (2013) 0.0539 0.0756 0.0939 0.1216 0.1675 0.2024
the different wvalues of thickness ratio a/h, and It is also observed from Table 4 that the numerical
dimensionless material length scale parameter I,/h. The results of the free vibration analysis of FG micro-plate are

obtained results are found to be excellent agreement with in good agreement with those of Tai et al. (2013).

those of Thai et al. (2013). Table 5 presents the nom-dimensionless deflections of



A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis... 97

Table 4 Non-dimensional frequency @ of a simply supported square plate (I,=I,, h=88.h"°m)

Gradient index (p)

a/h I,/h Plate theory

0 0.5 1 2 5 10
0 Present theory 5.2813 45180 4.0781 3.6805 3.3938 3.2514
Thai et al. (2013) 5.2813 4.5180 4.0781 3.6805 3.3938 3.2514
02 Present theory 5.7699 4.9715 4.5094 4.0755 3.7327 3.5548
Thai et al. (2013) 5.7699 4.9715 4.5094 4.0755 3.7327 3.5548
04 Present theory 7.0330 6.1339 5.6071 5.0763 4.5862 4.3200
5 Thai et al. (2013) 7.0330 6.1339 5.6071 5.0763 4.5862 4.3200
06 Present theory 8.7389 7.6895 7.0662 6.4011 5.7137 5.3335
Thai et al. (2013) 8.7389 7.6895 7.0662 6.4011 5.7137 5.3335
0.8 Present theory 10.6766 9.4456 8.7058 7.8861 6.9796 6.4759
' Thai et al. (2013) 10.6766 9.4456 8.7058 7.8861 6.9796 6.4759
1 Present theory 12.7408 11.3086 10.4397 9.4536 8.3193 7.6895
Thai et al. (2013) 12.7408 11.3086 10.4397 9.4536 8.3193 7.6895
0 Present theory 5.7694 4.9014 4.4192 4.0090 3.7682 3.6368
Thai et al. (2013) 5.7694 4.9014 4 .4192 4.0090 3.7682 3.6368
0.2 Present theory 6.2537 5.3571 4.8526 4.4006 4.0876 3.9162
' Thai et al. (2013) 6.2537 5.3571 4.8526 4.4006 4.0876 3.9162
04 Present theory 7.5210 6.5361 5.9664 5.4071 4.9169 4.6464
10 Thai et al. (2013) 7.5210 6.5361 5.9664 5.4071 4.9169 4.6464
06 Present theory 9.2543 8.1295 7.4619 6.7580 6.0447 5.6487
Thai et al. (2013) 9.2543 8.1295 7.4619 6.7580 6.0447 5.6487
0.8 Present theory 11.2396 9.9398 9.1537 8.2863 7.3338 6.8030
Thai et al. (2013) 11.2396 9.9398 9.1537 8.2863 7.3338 6.8030
1 Present theory 13.3651 11.8682 10.9511 9.9101 8.7135 8.0448
Thai et al. (2013) 13.3651 11.8682 10.9511 9.9101 8.7135 8.0448
0 Present theory 5.9199 5.0180 4.5228 4.1100 3.8884 3.7622
Thai et al. (2013) 5.9199 5.0180 4.5228 4.1100 3.8884 3.7622
0.2 Present theory 6.4027 5.4744 4.9568 4.5006 4.2005 4.0323
Thai et al. (2013) 6.4027 5.4744 4.9568 4.5006 4.2005 4.0323
04 Prgsent theory 7.6708 6.6585 6.0756 5.5082 5.0199 4.7488
20 Thai et al. (2013) 7.6708 6.6585 6.0756 5.5082 5.0199 4.7488
06 Present theory 9.4116 8.2630 7.5817 6.8661 6.1457 5.7453
Thai et al. (2013) 9.4116 8.2630 7.5817 6.8661 6.1457 5.7453
0.8 Present theory 11.4108 10.0895 9.2887 8.4062 7.4397 6.9013
Thai et al. (2013) 11.4108 10.0895 9.2887 8.4062 7.4397 6.9013
1 Present theory 13.5545 12.0372 11.1042 10.0450 8.8286 8.1494
Thai et al. (2013) 13.5545 12.0372 11.1042 10.0450 8.8286 8.1494
0 Present theory 5.9712 5.0575 4.5579 4.1445 3.9299 3.8058
Thai et al. (2013) 5.9712 5.0575 4.5579 4.1445 3.9299 3.8058
0.2 Present theory 6.4535 5.5142 4.9922 4.5346 4.2394 4.0725
' Thai et al. (2013) 6.4535 5.5142 4.9922 4.5346 4.2394 4.0725
04 Present theory 7.7217 6.7000 6.1126 5.5425 5.0552 4.7840
100 Thai et al. (2013) 7.7217 6.7000 6.1126 5.5425 5.0552 4.7840
06 Present theory 9.4651 8.3084 7.6224 6.9027 6.1800 5.7782
Thai et al. (2013) 9.4651 8.3084 7.6224 6.9027 6.1800 5.7782
0.8 Present theory 11.4689 10.1402 9.3344 8.4467 7.4755 6.9345
Thai et al. (2013) 11.4689 10.1402 9.3344 8.4467 7.4755 6.9345
1 Present theory 13.6186 12.0944 11.1560 10.0904 8.8673 8.1846
Thai et al. (2013) 13.6186 12.0944 11.1560 10.0904 8.8673 8.1846

the FG micro plate based on the present theory for various considerable for the thick micro plate (i.e., a/h=5). When

values of the volume fraction exponent p, the different 1./1,=1, the length scale parameter of the FG micro plate is a
values of thickness ratio a/h, and variable length scale constant according to Eq. (15c).
parameter I,/l,. Results are provided for the sinusoidal load. The same equation also implies that, for the other

It is seen that the effect of the shear deformation becomes remaining cases for which I,/I,#1, the length scale
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Table 5 Non-dimensional deflection W of a simply supported square plate (1,=15 xm, h/1,=2)

I/1, Plate theory a/h=5 a/h=100
p=0.3 p=1 p=3 p=10 p=0.3 p=1 p=3 p=10
13 CPT 0.29610 0.38165 0.47966  0.55014  0.29610 0.38165 0.47966  0.55014
Present 0.34711  0.44033 0.55941  0.65065 0.29623  0.38180 0.47986  0.55040
1 CPT 0.17466 0.25019 0.36800 0.49092 0.17466 0.25019 0.36800 0.49092
Present 0.19732  0.27940  0.41002  0.55714  0.17472  0.25027  0.36811  0.49109
3/ CPT 0.11525 0.17827 0.29175 0.43895 0.11525 0.17827 0.29175 0.43895
Present 0.12783 0.19502 0.31586 0.48362 0.11528 0.17832 0.29181 0.43907
9 CPT 0.07906  0.12955  0.23041 0.38684  0.07906  0.12955 0.23041  0.38684
Present 0.08671 0.13968 0.24447 0.41610 0.07908 0.12958 0.23045 0.38692
Classical CPT 0.37256  0.56227  0.79168  0.93546  0.37256  0.56227  0.79168  0.93546
theory Present 0.44910 0.66876  0.97432  1.22755 0.37275 0.56254  0.79214  0.93619
Table 6 Non-dimensional frequency @ of a simply supported square plate (1,=15 um, h/lI,=2)
a/h=5 a/h=100
W, Plate theory p=0.3 p=1 p=3 p=10 p=0.3 p=1 p=3 p=10
13 CPT 5.82675 5.34605 4.95904 4.78176 6.01484 5.563362 5.15855 4.96468
Present 5.43179 5.02603 4.65008 4.45554 6.01352 5.563253 5.15745 4.96351
1 CPT 7.58646 6.60186  5.66038 5.06159  7.83156  6.83441 5.88936  5.25562
Present 7.20308 6.30583  5.42015  4.80523  7.83026  6.83339 5.88849  5.25470
3 CPT 9.33883 7.81959  6.35557 5.35235  9.64093  8.09646 6.61437  5.55801
Present 8.94753 7.54243  6.16451 5.14885  9.63957  8.09548 6.61366  5.55727
5 CPT 11.27448  9.17047 7.14902 5.70080 11.63994  9.49764 7.44277 5.92053
Present 10.86201 8.90560  8.90560  5.54215 11.63850  9.49668 7.44219  5.91995
Classical CPT 5.19465  4.40481  3.86101 3.66791  5.36228  4.55900 4.01530  3.80729
theory Present 477631 4.07809 3.52566 3.25135 5.36090 4.55792 4.01414 3.80580
parameter varies within the thickness. Thus, the ratio 1,/l, -
presents the degree of the length scale parameter variation =
within the plate. It is observed that increasing the length ="
scale parameter ratio l,/l, reduces the deflection and the %“- —=—ia
results are significantly different to the case where the LS _":::;-:n
length scale parameter is considered to be constant (I,/1,=1). T v ip2
This observation is also validation of the premise of this 2., —4— Chuskal meay
work that the validation of the length scale parameter needs =
to be taken into consideration in the investigation of FG
micro-plate. In addition, it is noted as the gradient index p :+

increases, the increase of the deflection will be occur at the
same conditions (length scale parameter ratio |1/l,
slenderness ratio a/h).

Table 6 presents the non-dimensional fundamental
frequency @ of FG micro plate for values of the gradient
index p, for different values of the length scale parameter
ratio (I4/ly) and for two different values of the aspect ratio
(a/h=5,100). It can be observed that for each values of the
gradient index, the non-dimensional frequency decreases
with the reduction of the ration (li/l;). However, the
reduction of the gradient index leads to increase of the non-
dimensional frequency. Again, from this Table it can be
confirmed the need to consider the variation of the length
scale parameter | within the micro-plate in dynamic analysis
of FG micro-plate.

In Fig. 3, the variation of non-dimensional transverse
deflections is presented versus the ratio (h/ly) for different
length scale parameter ratio (l;/I,) for square plate. It can be

Thkckueswiiaeral param eter, &7,
Fig. 3 Variation of the dimensionless transverse deflection
of the FG micro-plate for different values of the length
parameter ratio I,/I, (a/h=5, 1,=15 um, a=b, p=2)

T MM 1I213AISHEIZFIENNND

seen from Fig. 3 that the deflections given by the classical
plate model are independent of the material length scale
parameter (h/l;) and they are always larger than those
computed via the nom-classical plate model with the couple
stress. This demonstrates that the incorporation of couple
stress effect makes a plate stiffer, and hence, leads to a
diminution of deflection. However, this influence can be
ignored when the material length scale parameter (h/l,) take
high values as is shown in Fig. 3.

Fig. 4 presents the variation of the non-dimensional
deflection with the gradient index p and the length scale
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Fig. 6 Variation of the transverse stress across the thickness

of the FG micro-plate for different values of the length

parameter ratio with (a/h=5, 1,=15 um, a=b, p=2) (a) h/l,=1,

(b) h/1,=8

parameter ratio (l3/l,) for two different values of the non-
dimensional material parameter (h/l,) and for (a/h=5).

It can be observed that the increase of the gradient index
leads to an increase in the deflection. However, the
influence of the length scale parameter ratio (I1/I,) on the
deflections is not obvious for h/l,=8 comparatively to the
case where h/l,=1. Thus, the sensitivity of the non-
dimensional deflection to the variations in (h/l,) becomes
rather remarked as this ratio takes small values.

In Fig. 5, the variation of the non-dimensional axial
normal stress & (a/2,b/2,z) of the FG micro plate with

(a/h=5) within the thickness is presented for different values
of the length scale parameter ratio (I/1,).

Non-dimensional axial normal stress decreases when the
ratio (h/l,) is increased from 1/3 to 2. The reduction is much
more significant when h/l,=1, i.e., the ratio is relatively
smaller.

Fig. 6 shows the variation of the dimensionless
transverse shear stress 7,,(0,b/2,z) of the FG micro plate

for different values of the length scale parameter ration
(I/1y). 1t can be observed that the transverse stress increases
as the length scale parameter ration (li/l,) decreases. This
result demonstrates also the need to consider the variation
of the length scale parameter | within the micro plate in the
investigation of small-scale FG micro-plates.

In Fig. 7, the first and the third non-dimensional
frequency are presented as a function of the ratio (h/l,) for
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Fig. 7 Variation of the dimensionless frequencies of the FG
micro-plate for different values of the length parameter ratio
with (a/h=5, 1,=15 um, a=h, p=1): (a) the first frequency,
(b) the third frequency

different length scale parameter ratio (I,/1,) with considering
a/h=5 and p=1. It can be seen that the frequency computed
by the classical plate model are independent of the material
length scale parameter (h/l,) and they are always lower than
those calculated by employing the non-classical plate model
with the couple stress.

5. Conclusions

This work presents a novel size-dependent plate
formulation based on the modified couple stress with only 4
unknowns. The theory considers a variable length scale
parameter. A size-dependent model is developed for
bending and vibration analysis of FG micro plates. The
equations of motion are obtained using Hamilton’s
principle. Analytical solutions for bending and free
vibration problems are obtained for a simply supported
plate. This work justifies also the development of a general
approach for the analysis of FG micro plate having a
variable length scale parameter. It was confirmed that the
parameter showing the degree of length scale parameter
variation. An improvement of present formulation will be
considered in the future work to consider the thickness
stretching effect by using quasi-3D shear deformation
models (Bessaim et al. 2013, Bousahla et al. 2014, Belabed
et al. 2014, Fekrar et al. 2014, Hebali et al. 2014, Bennai et
al. 2015, Meradjah et al. 2015, Larbi Chaht et al. 2015,

Hamidi et al. 2015, Bourada et al. 2015, Bennoun et al.
2016, Draiche et al. 2016, Benbakhti et al. 2016, Benahmed
et al. 2017, Ait Atmane et al. 2017, Benchohra et al. 2017,
Bouafia et al. 2017) and the wave propagation problem
(Mahmoud et al. 2015, Ait Yahia et al. 2015, Boukhari et al.
2016).
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