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1. Introduction 
 

The mechanical behavior and failure mechanism of fiber 

reinforced plastics are highly influenced by the fibers 

orientation. This particularity becomes critical when we 

bring into question layered composite materials built by 

stacking up unidirectional or bidirectional reinforced layers 

with different orientations and possibly different 

mechanical properties as in the case of hybrid composite 

laminates-i.e., mixing carbon and Kevlar reinforced layers. 

The main cause of this characteristic is the orthotropic 

behavior exhibited by the reinforced layers. 

For different type of applications it is desirable to use a 

composite laminate which have a small weight (a critical 

example is the aeronautics industry) and/or the material cost 

is kept at a low level. This single/multi objective goal is 

usually achieved by an optimization process with the 

purpose to find the configuration with the smallest number 

of layers or the smallest cost able to carry out the loads for 

which it was designed. The layup optimization is very 

complex due to the multidimensional search space which 

cannot be exhaustively explored because of the 

computational limitations. For this reason, heurist ic 
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methods are usually addressed of which the most reliable 

are the genetic algorithms (Topal 2013, Cho et al. 2013,  

Ghiasi et al. 2009, Ghiasi et al. 2010, Bagheri et al. 2011, 

Badallo et al. 2013, Chatzi et al. 2011, Montagnier and 

Hochard 2013). During the optimization process a lot of 

configurations are evaluated with the purpose to converge 

to the global optimum. In order to keep the convergence 

time range to an acceptable level it becomes mandatory that 

the evaluation of a single configuration to be very fast. 

On the other hand, the mechanical behavior analysis of 

the composite laminate requires complex numerical tools 

like finite element analysis (Sliseris and Rocens 2013, Lee 

et al. 2012, Yong et al. 2010, Pohlak et al. 2010, Murugan 

et al. 2012, Yong et al. 2008, Falzon and Faggiani 2012). 

Because FEA is a time consuming method a lot of 

optimization studies are restricted to simple geometries (i.e., 

rectangular) and simple boundary condition for which 

analytical closed form solutions are available (Kayikci and 

Sonmez 2012, Sharma et al. 2014, Papadopoulos and 

Kassapoglou 2007, Park et al. 2008). To overcome this 

issue Serban (2016) proposed a very fast finite element 

model specially developed for layup optimization based on 

the observation that a lot of calculations can be reused for 

all the configurations evaluated during the optimization 

process. However, the lower bound of the execution time of 

a FEA model is determined by the global linear system 

solving which might be unacceptable big in some complex 

applications. Also, there are situations in which it is highly 
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preferred to shorten the optimization time with the cost of a 

small reduction in the analysis accuracy. 

Motivated by the advances in machine learning, we 

propose in this paper a novel method for estimating the 

failure of a composite laminate with a very small 

computational cost while maintaining the precision level 

from FEA. To achieve this purpose we try to model the 

mechanical behavior of the composite laminate using 

various supervised learning algorithms. In this respect we 

experimented with regression and regularization algorithms, 

instance-based algorithms, dimensionality reduction 

algorithms, decision trees, artificial neural networks and 

support vector machines (Hastie et al. 2009, Bishop 2006, 

Murphy 2012, Mohri et al. 2012). At the end of this paper 

we demonstrate with a practical example that our procedure 

performs very well having a misclassification rate smaller 

than 2 % in predicting qualitative failure.  

 

 
2. The procedure 
 

The procedure proposed in this paper has the purpose to 

build and train a statistical model using various supervised 

learning algorithms. The scope of the model is to accurately 

predict the failure factor for the layup configurations having 

the same topology and boundary conditions-as it is the case 

of the layup optimization process. The procedure has three 

main steps: 

1. Randomly generate a population of layup 

configurations (observations) spread across the convoluted 

search space. For any random observation, the number of 

layers is chosen in a plausible range, the orientation of each 

layer is chosen from a set of discrete orientations and the 

material of each layer is chosen from a set of materials 

(defined by their mechanical properties). 

2. Compute the failure factor for each observation in the 

population generated at step 1 using a fast FEA model, for 

instance the model proposed by Serban (2016) which was 

specially developed for the layup optimization problem. 

3. Train the model on the population using the failure 

factor as the response variable. Regarding the predictors, a 

detailed description of their derivation will be given in the 

next section. 

To summarize, in the training process (step 3) it is used 

a random population of layup configurations (step 1) with 

the failure factors accurately computed using FEA (step 2). 

The trained model is subsequently used to predict the 

failure for the new observations coming from the layup 

optimization process. The estimated response can be either 

qualitative (the configuration fails or not) or quantitative 

(the value of the failure factor). We can mention the 

following advantages of our procedure: 

1. The time to predict the failure of a layup 

configuration using the trained model is negligible in 

comparison with the time required by the FEA model. 

2. The trained model can be successfully reused in 

multiple sessions of genetic optimization. As an example 

we can mention the convex multi objective optimization 

based on two conflicting objectives: weight and cost. In 

order to obtain a pareto-optimal set of layup configurations, 

the balance between the contribution of weight and cost to 

the objective function is modified using small increments. 

This means that the optimization procedure runs for a lot of 

times, maybe hundreds. 

3. The trained model need not necessarily be updated 

when some small changes occur (i.e., small adjustment of 

Young modulus or layer thickness for a certain material). 

4. The time spent to evaluate the random population is 

significantly smaller than the time needed by a single 

session of genetic optimization using the FEA model. 

Moreover, this time is not wasted because the random 

population can be used to generate the initial population for 

GA by selecting the individuals with the best fitness results. 

Having a healthy initial population increases the 

convergence speed of the optimization procedure. 

Obviously, as a drawback we have to mention the 

reduction in the analysis accuracy. However, we will prove 

that this accuracy reduction is fairly acceptable. 

 

 
3. Strategy and predictors 
 

We shortly review a finite element mathematical model-

also used by Serban (2016) - in order to explain how we 

chose the basic set of our predictors. Usually, in the case of 

composite laminates the numerical analysis is carried out 

using two-dimensional theories, like first-order shear 

deformation theory (FSDT).   

FSDT assumes that the form of 

(∆𝑥 , ∆𝑦 , ∆𝑧)displacements is 

{

∆𝑥(𝑥, 𝑦, 𝑧, 𝑡) = ∆𝑥
𝑚(𝑥, 𝑦, 𝑡) + 𝑧 ∙ 𝜙𝑦(𝑥, 𝑦, 𝑡)

∆𝑦(𝑥, 𝑦, 𝑧, 𝑡) = ∆𝑦
𝑚(𝑥, 𝑦, 𝑡) + 𝑧 ∙ 𝜙𝑥(𝑥, 𝑦, 𝑡)

∆𝑧(𝑥, 𝑦, 𝑧, 𝑡) = ∆𝑧
𝑚(𝑥, 𝑦, 𝑡)                             

 (1) 

where (∆𝑥
𝑚, ∆𝑦

𝑚, ∆𝑧
𝑚, 𝜙𝑥, 𝜙𝑦)  represents the displacements 

and rotations around 𝑂𝑥  and 𝑂𝑦  axes of the midplane 

points of the laminate.  

The compact form of the FSDT finite element model is 

,𝐾𝑒-*∆𝑒+ − *𝐹𝑒+ = *0+    (2) 

where: 

- (𝐾𝑒) represents the element stiffness matrix; 

- (∆𝑒) represents the displacements and rotations for 

the element nodes at the laminate midplane. ∆𝑒  are the 

unknowns in the system (2); 

- (𝐹𝑒) represents the force vector associated with the 

element and is computed by applying the Neumann 

boundary condition. 

System (2) can be written in expanded form 

∑ ∑ 𝐾𝑖𝑗
𝛼𝛽

Δ𝑗
𝛽

− 𝐹𝑖
𝛼 = 0,    (𝛼 = 1,5 𝑎𝑛𝑑 𝑖 = 1, 𝑛)  

𝑛

𝑗=1

5

𝛽=1

 (3) 

where: 

- (n) is the number of nodes of the element; 

- 𝐾𝑖𝑗
𝛼𝛽

are the blocks of the elemental stiffness matrix: 

𝐾𝑖𝑗
1𝛼 = ∫ (

𝜕𝜓𝑖

𝜕𝑥
𝑁1𝑗

𝛼 +
𝜕𝜓𝑖

𝜕𝑦
𝑁6𝑗

𝛼 ) 𝑑𝑥 𝑑𝑦
Ω

𝑒
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𝐾𝑖𝑗
2𝛼 = ∫ (

𝜕𝜓𝑖

𝜕𝑥
𝑁6𝑗

𝛼 +
𝜕𝜓𝑖

𝜕𝑦
𝑁2𝑗

𝛼 ) 𝑑𝑥 𝑑𝑦
Ω

𝑒
  

 𝐾𝑖𝑗
3𝛼 = ∫ (

𝜕𝜓𝑖

𝜕𝑥
𝑄1𝑗

𝛼 +
𝜕𝜓𝑖

𝜕𝑦
𝑄2𝑗

𝛼 ) 𝑑𝑥 𝑑𝑦
Ω

𝑒
  

𝐾𝑖𝑗
4𝛼 = ∫ (

𝜕𝜓𝑖

𝜕𝑥
𝑀1𝑗

𝛼 +
𝜕𝜓𝑖

𝜕𝑦
𝑀6𝑗

𝛼 + 𝜓𝑖𝑄1𝑗
𝛼 ) 𝑑𝑥 𝑑𝑦

Ω
𝑒

 

𝐾𝑖𝑗
5𝛼 = ∫ (

𝜕𝜓𝑖

𝜕𝑥
𝑀6𝑗

𝛼 +
𝜕𝜓𝑖

𝜕𝑦
𝑀2𝑗

𝛼 + 𝜓𝑖𝑄2𝑗
𝛼 ) 𝑑𝑥 𝑑𝑦

Ω𝑒
 

(4) 

where: 

- (𝜓𝑖)represents the Lagrange shape functions of the 

element; 

- (𝑁𝑖𝑗
𝛼)are defined as 

𝑁1𝑗
1 = 𝐴11

𝜕𝜓𝑗

𝜕𝑥
+ 𝐴16

𝜕𝜓𝑗

𝜕𝑦
,   𝑁1𝑗

2 = 𝐴16

𝜕𝜓𝑗

𝜕𝑥
+ 𝐴12

𝜕𝜓𝑗

𝜕𝑦
     

𝑁1𝑗
4 = 𝐵11

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵16

𝜕𝜓𝑗

𝜕𝑦
,   𝑁1𝑗

5 = 𝐵16

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵12

𝜕𝜓𝑗

𝜕𝑦
       

𝑁2𝑗
1 = 𝐴12

𝜕𝜓𝑗

𝜕𝑥
+ 𝐴26

𝜕𝜓𝑗

𝜕𝑦
,   𝑁2𝑗

2 = 𝐴26

𝜕𝜓𝑗

𝜕𝑥
+ 𝐴22

𝜕𝜓𝑗

𝜕𝑦
      

𝑁2𝑗
4 = 𝐵12

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵26

𝜕𝜓𝑗

𝜕𝑦
,   𝑁2𝑗

5 = 𝐵26

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵22

𝜕𝜓𝑗

𝜕𝑦
     

𝑁6𝑗
1 = 𝐴16

𝜕𝜓𝑗

𝜕𝑥
+ 𝐴66

𝜕𝜓𝑗

𝜕𝑦
,   𝑁6𝑗

2 = 𝐴66

𝜕𝜓𝑗

𝜕𝑥
+ 𝐴26

𝜕𝜓𝑗

𝜕𝑦
    

𝑁6𝑗
4 = 𝐵16

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵66

𝜕𝜓𝑗

𝜕𝑦
,   𝑁6𝑗

5 = 𝐵66

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵26

𝜕𝜓𝑗

𝜕𝑦
    

(5) 

- (𝑀𝑖𝑗
𝛼) are defined as 

𝑀1𝑗
1 = 𝐵11

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵16

𝜕𝜓𝑗

𝜕𝑦
,   𝑀1𝑗

2 = 𝐵16

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵12

𝜕𝜓𝑗

𝜕𝑦
     

𝑀1𝑗
4 = 𝐷11

𝜕𝜓𝑗

𝜕𝑥
+ 𝐷16

𝜕𝜓𝑗

𝜕𝑦
,   𝑀1𝑗

5 = 𝐷16

𝜕𝜓𝑗

𝜕𝑥
+ 𝐷12

𝜕𝜓𝑗

𝜕𝑦
     

𝑀2𝑗
1 = 𝐵12

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵26

𝜕𝜓𝑗

𝜕𝑦
,   𝑀2𝑗

2 = 𝐵26

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵22

𝜕𝜓𝑗

𝜕𝑦
      

𝑀2𝑗
4 = 𝐷12

𝜕𝜓𝑗

𝜕𝑥
+ 𝐷26

𝜕𝜓𝑗

𝜕𝑦
,   𝑀2𝑗

5 = 𝐷26

𝜕𝜓𝑗

𝜕𝑥
+ 𝐷22

𝜕𝜓𝑗

𝜕𝑦
    

𝑀6𝑗
1 = 𝐵16

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵66

𝜕𝜓𝑗

𝜕𝑦
,   𝑀6𝑗

2 = 𝐵66

𝜕𝜓𝑗

𝜕𝑥
+ 𝐵26

𝜕𝜓𝑗

𝜕𝑦
     

𝑀6𝑗
4 = 𝐷16

𝜕𝜓𝑗

𝜕𝑥
+ 𝐷66

𝜕𝜓𝑗

𝜕𝑦
,   𝑀6𝑗

5 = 𝐷66

𝜕𝜓𝑗

𝜕𝑥
+ 𝐷26

𝜕𝜓𝑗

𝜕𝑦
     

(6) 

- (𝑄𝑖𝑗
𝛼 )  are defined as 

𝑄1𝑗
3 = 𝐴55

𝜕𝜓𝑗

𝜕𝑥
+ 𝐴45

𝜕𝜓𝑗

𝜕𝑦
,   𝑄2𝑗

3 = 𝐴45

𝜕𝜓𝑗

𝜕𝑥
+ 𝐴44

𝜕𝜓𝑗

𝜕𝑦
   

𝑄1𝑗
4 = 𝐴55𝜓𝑗 ,    𝑄2𝑗

4 = 𝐴45𝜓𝑗 

𝑄1𝑗
5 = 𝐴45𝜓𝑗 ,    𝑄2𝑗

5 = 𝐴44𝜓𝑗  

(7) 

where (𝐴𝑖𝑗 , 𝐷𝑖𝑗 , 𝐵𝑖𝑗)  denotes the components of the 

extensional stiffness matrix, bending stiffness matrix and 

bending-extensional coupling stiffness matrix, respectively. 

The blocks of the elemental force vector are computed 

using 

𝐹𝑖
1 = ∫ 𝜓𝑖

Γ𝑒
𝑁𝑛𝑑𝑠,    𝐹𝑖

2 = ∫ 𝜓𝑖
Γ𝑒

𝑁𝑛𝑠𝑑𝑠   

𝐹𝑖
3 = ∫ 𝜓𝑖

Γ𝑒
𝑄𝑛𝑑𝑠 + ∫ 𝜓𝑖

Ω𝑒
𝑞 𝑑𝑥 𝑑𝑦  

𝐹𝑖
4 = ∫ 𝜓𝑖

Γ𝑒
𝑀𝑛𝑑𝑠,    𝐹𝑖

5 = ∫ 𝜓𝑖
Γ𝑒

𝑀𝑛𝑠𝑑𝑠 (8) 

where (Nn, Nns, Mn, Mns, Qn, q) represent the corresponding 

edge normal and tangential forces and moments, transverse 

force and transverse distributed load, respectively. 

The global linear system is assembled using all the 

elements from the topology and provides the solutions for 

(∆𝑥
𝑚, ∆𝑦

𝑚, ∆𝑧
𝑚, 𝜙𝑥 , 𝜙𝑦)  at each node at the laminate 

midplane. Using the interpolation functions, Eq. (1), von 

Karman strain-displacements and Hooke’s law it can be 

computed the displacements, strains and stresses at each 

point in the entire laminate. In other words the solutions 

from the laminate midplane are extrapolated to the entire 

laminate using FSDT assumptions. 

Now we define (𝜆) to be the failure factor which is 

calculated using various failure criteria such as maximum 

strain, maximum stress, Tsai-Hill or Tsai-Wu. For example 

in the case of maximum strain criterion the laminate failure 

occurs when the value of 𝜆 is bigger than 1. 

In the case of maximum strain criterion, λ is computed 

as 

𝜆 = max
𝑖

𝜆𝑖
𝑙          (9) 

where (𝜆𝑖
𝑙) indicate the maximum failure factor at layer (i) 

and is computed as follow 

𝜆𝑖
𝑙 = max

𝑗
𝜆𝑗

𝑙𝑖,𝑛      (10) 

where (𝜆𝑗
𝑙𝑖,𝑛) indicate the value of the failure factor at 

layer (i) and node (j). 

From the finite element mathematical model we can 

easily observe that for different layup configurations: 

1. Lagrange shape functions remain the same because 

the topology doesn’t change; 

2. Global force vector remains the same because the 

Neumann boundary conditions doesn’t change and due to 

observation 1. 

3. The coefficients of the global stiffness matrix can be 

obtained by linear combination of (Aij, Dij, Bij) coefficients 

and some integrals over the elements. But the values of 

these integrals remain constant due to observation 1. 

The layup configuration implies that we can select as a 

basic set of predictors the (Aij, Dij, Bij) coefficients because 

they strongly depend to the layup configuration and we 

expect that they explains a great proportion of the response 

variability. This expectation is actually confirmed with the 

example considered in this paper. We refer to this set of 

predictors as a basic set because it is not necessary to 

include all the coefficients in the statistical model - instead 

we include some polynomial and interaction terms. The 

procedure to select the actual set of predictors based on (Aij, 

Dij, Bij) coefficients is described in the next section. 

 

 

4. Predictors selection 
 

As we already mention the actual set of predictors 

which are actually used to train the statistical models is 

derived from the basic set which contains the (Aij, Dij, Bij) 
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coefficients. Some of these coefficients are highly 

correlated and can cause severe problems for few statistical 

methods like linear regression by the induced collinearity. 

Also, having correlated predictors doesn’t help the model to 

better explain the response variability instead can lead to 

overfitting the training observations. On the other hand we 

observe that the models perform better when polynomial 

coefficients and interaction terms are considered. 

Given the above observations we developed an intuitive 

and relatively simple procedure for predictors selection 

which is described in the follow steps: 

1. An extended set of predictors is built as a union of the 

basic set, the set of quadratic coefficients and the set of all 

interaction terms. 

2. Backward stepwise selection is applied to a random 

subset of 90 % of the training observations using regression 

on the extended set of predictors. 

3. Step 2 is repeated few times (5 or 10) with different 

random subsets. At each repetition a minimal set o 

predictors is selected applying cross validation.  

4. Best subset selection is applied to the union of all the 

minimal sets of predictors found in step 3. If this union 

contains too many elements then forward stepwise selection 

can be applied.  

The predictors selected at step 4 along with the response 

variable (𝜆-failure factor) will be used in the statistical 

models. However, a log transformation is considered for 𝜆 

in order to obtain a normal distribution as illustrated in the 

numerical example considered in this paper. 

 

 

5. Statistical models 
 

As artificial intelligence has seen tremendous progress it 

was naturally integrated in engineering (Ozcan et al. 2017, 

Kocak et al. 2015, Samui 2011a, b). In this section we 

present a very short review of the machine learning 

techniques that we have experimented to model the failure 

response of a certain layup configuration. More details 

about these techniques can be found in (Hastie et al. 2009, 

Bishop 2006, Murphy 2012, Mohri et al. 2012). Also, we 

remember that the response of a certain model can be either 

qualitative (the configuration fails or not) or quantitative (an 

estimation of the failure factor). 

We review some common notations used in this section: 

- N-number of observations-configurations in our case; 

- p-number of predictors; 

- 𝜆𝑖-failure factor of the i-th observation; 

- �̂�𝑖-predicted failure factor of the i-th observation; 

- 𝑥𝑖-vector of predictors with p components for the i
th

 

observation. 

 

5.1 Regression algorithms 
 

Linear regression model is based on the assumption that 

the relationship between the response variable and the 

predictors is linear 

𝜆 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗 + 𝜖

𝑝

𝑗=1

 (11) 

where 𝛽𝑗  are the regression coefficients ( 𝛽0  is the 

intercept) and 𝜖 is the error term which is assumed to have 

a normal distribution and to be unrelated to the predictors x.  

According to the linear model the predicted response is 

�̂� = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗

𝑝

𝑗=1

  (12) 

The regression coefficients are computed by minimizing 

the residual sum of squares (RSS) 

𝑅𝑆𝑆(𝛽) = ∑(𝜆𝑖 − 𝛽0 − ∑ 𝛽𝑗

𝑝

𝑗=1

𝑥𝑖𝑗)2

𝑁

𝑖=1

  (13) 

Ridge regression is a regularization model which shrinks 

the regression coefficients by adding a penalty on their size 

and minimizes the penalized sum of squares 

�̂�𝑟 = argmin
𝛽

{∑ (𝜆𝑖 − 𝛽0 − ∑ 𝛽𝑗

𝑝

𝑗=1

𝑥𝑖𝑗)

2
𝑁

𝑖=1

+ 𝛼 ∑ 𝛽𝑗
2

𝑝

𝑗=1

} (14) 

where 𝛼 ≥ 0 is a factor which controls the amount of 

shrinkage and is usually selected by cross validation. 

The lasso regression is also a regularization model very 

similar to ridge regression which shrinks the regression 

coefficients by minimizing the penalized sum of squares 

�̂�𝑙 = argmin
𝛽

{∑ (𝜆𝑖 − 𝛽0 − ∑ 𝛽𝑗

𝑝

𝑗=1

𝑥𝑖𝑗)

2
𝑁

𝑖=1

+ 𝛼 ∑|𝛽𝑗|

𝑝

𝑗=1

} (15) 

where 𝛼 ≥ 0 is a factor which controls the amount of 

shrinkage. The main difference between lasso and ridge 

regression is the penalty - ridge penalty is the 𝐿2: ∑ 𝛽𝑗
2𝑝

𝑗=1  

while lasso penalty is the 𝐿1: ∑ |𝛽𝑗|
𝑝
𝑗=1 . 

Logistic regression is a classification model which 

estimates the probability that a response belongs to a certain 

class given the predictors vector. The model is based on the 

logistic function 

𝑃(𝜆 > 𝜆𝑐𝑟𝑖𝑡|𝑥) =
𝑒𝛽0+∑ 𝛽𝑗𝑥𝑗

𝑝
𝑗=1

1 + 𝑒
𝛽0+∑ 𝛽𝑗𝑥𝑗

𝑝
𝑗=1

  (16) 

where 𝜆𝑐𝑟𝑖𝑡  is the critical value for the failure factor. In 

order to fit the model (16) it is used the maximum 

likelihood method. 

 

5.2 Instance based algorithms 
 

K nearest neighbors is a method which uses those 

observations from the training set closest to the predictors 

vector. The response is predicted as 

�̂�(𝑥) =
1

𝑘
∑ 𝜆𝑖

𝑥𝑖∈𝑁𝑘(𝑥)

 (17) 

where 𝑁𝑘(𝑥) represents the neighborhood of x containing 

the closest k observation. Euclidean distance is used as a 

distance measure for the observations. The value of k is 

usually selected using cross validation. 

In case of classification, k nearest neighbors method 
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uses Bayes rule and assigns an observation to the most 

common class from the neighborhood 

𝑃(𝜆 > 𝜆𝑐𝑟𝑖𝑡|𝑥) =
1

𝑘
∑ 1𝜆𝑖>𝜆𝑐𝑟𝑖𝑡

𝑥𝑖∈𝑁𝑘(𝑥)

 (18) 

where 1𝜆𝑖>𝜆𝑐𝑟𝑖𝑡
 is and indicator which returns 1 if 

𝜆𝑖 > 𝜆𝑐𝑟𝑖𝑡 and 0 otherwise. 

 

5.3 Dimensionality reduction algorithms 
 

Principal component regression uses first M<p principal 

components in a linear regression setup such as (12). The 

idea is based on the observation that often a small number 

of principal components suffices to explain the relationship 

between the response and the predictors. Also, it is assumed 

that the directions in which the predictors show the most 

variation are the directions associated with the response.  

The regression model can be summarized as 

�̂� = 𝜃0 + ∑ 𝜃𝑚𝑍𝑚

𝑀

𝑚=1

 (19) 

where 𝑍𝑚 are the principal components defined as a linear 

combination of the initial set of predictors 

𝑍𝑚 = ∑ ∅𝑗
𝑚𝑥𝑗

𝑝

𝑗=1

 (20) 

Partial least squares is very similar to principal 

component regression having the same form as in (19) with 

the main difference that the reduced set of features 𝑍𝑚 is 

obtained in a supervised way making use of the response 

variable 𝜆. Also, this is the reason that the assumption of 

direction variability from principal components regression 

setup can be eliminated. 

 

5.4 Discriminant analysis 
 

Linear discriminant analysis is a classification model 

which uses the Bayes rule to assign an observation to the 

most likely class with the assumptions that the predictors 

vector is drawn from a multivariate normal distribution and 

all the k classes have the same covariance matrix. The 

posterior probability that an observation belongs to a certain 

k class is modeled as follow 

𝛿𝑘(𝑥) = 𝑥𝑇Σ−1𝜇𝑘 −
1

2
𝜇𝑘

𝑇Σ−1𝜇𝑘 + log 𝜋𝑘  (21) 

where 𝜇𝑘  is the class specific mean vector, Σ  is the 

common covariance matrix and 𝜋𝑘 is the prior probability 

that an observation belongs to the k class. 

Quadratic discriminant analysis is similar to the linear 

discriminant analysis except that the assumption of all k 

classes having the same covariance matrix is eliminated. 

That being said, the posterior probability that an 

observation belongs to a certain k class is modeled as follow 

𝛿𝑘(𝑥) = −
1

2
𝑥𝑇Σ𝑘

−1𝑥 + 𝑥𝑇Σ𝑘
−1𝜇𝑘 −

1

2
𝜇𝑘

𝑇Σ𝑘
−1𝜇𝑘 + log 𝜋𝑘 (22) 

For our problem we define two classes: 𝜆 ≤ 𝜆𝑐𝑟𝑖𝑡 and 

𝜆 > 𝜆𝑐𝑟𝑖𝑡 . 

5.5 Decision tree ensemble algorithms 
 

Random forest is a method used for both classification 

and regression which involves the construction of B 

decision/regression trees grown deep and not pruned. The 

trees are generated based on B bootstrapped training sets 

obtained from the original training set. Also, at each split in 

the tree construction algorithm it is considered only a 

random subset of m<p predictors (typically 𝑚 = √𝑝) with 

the purpose to obtain high diversity. The estimated value for 

a given observation is then computed by averaging the 

estimations of all B trained trees (23-for regression) or by 

the majority vote (for classification) 

�̂�(𝑥) =
1

𝐵
∑ 𝜆𝑖

𝐵

𝑖=1

(𝑥) (23) 

where 𝜆𝑖(x) is the estimated value with the i
th

 tree for the 

predictors vector x. 

Boosting with decision/regression trees involves the 

cascaded construction of B small trees each one fitted to the 

current updated residuals. With this method the quality of 

the fit is slowly improving from the previous to next tree 

and the risk of overfitting is eliminated. The method is 

controlled by three parameters: B-the number of trees, 𝛼- 

shrinkage parameter which controls the rate at which 

boosting learns and d-the number of splits in each tree 

(usually a small positive integer). 

 

5.6 Support vector machines  
 

They were invented by Vladimir N. Vapnik and Alexey 

Ya. Chervonenkis. They are an extension of the support 

vector classifier which are using kernels to enlarge the 

feature space and to obtain a non-linear decision boundary. 

For our problem the radial kernel (24) proves to have the 

best results 

𝐾(𝑥, 𝑥 ′) = 𝑒
−𝛾 ∑ (𝑥𝑗−𝑥′

𝑗)2𝑝
𝑗=1  (24) 

where 𝛾  is a positive constant. Even support vector 

machines are naturally binary classifiers it can be extended 

for problems involving more than two classes or 

quantitative estimation. 

 

5.7 Artificial neural networks 
 
They are algorithms inspired from the neural structure 

of the cortex. Here we use back-propagation neural 

networks. The name comes from the backwards propagation 

of errors which is a strategy that performs gradient descent 

over the vector space of solutions with the purpose to find 

the global optimum along the steepest vector of the error 

surface. 

 

 

6. Numerical example 
 

In this section we present the results obtained with our 

proposed method using various machine learning 

algorithms. For our numerical example, the geometry and  
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(a) Geometry and boundary condition 

 
(b) mesh 

Fig. 1 Numerical example 

 

Table 1 Mechanical properties of a carbon fiber lamina 

E1 

(GPa) 

E2 

(GPa) 

G12 

(GPa) 

G23 

(GPa) 

G13 

(GPa) 
𝜗12 

(-) 

𝜗21 

(-) 

147 10.3 7 3.7 7 0.27 0.0189 

h 

(mm) 
𝜌 

(kg/m3) 
𝑈𝑇𝑆𝑡

1
 

(%) 
𝑈𝑇𝑆𝑐

1
 

(%) 
𝑈𝑇𝑆𝑡

2
 

(%) 

𝑈𝑇𝑆𝑐
2

 

(%) 

𝑈𝑇𝑆12 

(%) 

0.5 1600 1.05e-03 0.85e-03 0.5e-03 2.5e-03 1.4e-03 

 

 

boundary condition are illustrated in Fig. 1 along with FEA 

mesh.  

We simulate a square plate with the edge length equal to 

1 m, simply supported with one edge clamped and a 

compression load applied on the opposite edge. The layup 

consist of 10 carbon fiber plies symmetrically distributed 

around the laminate midplane having random discrete 

orientations from −90° to +90° with increments of 15°. In 

Table 1 are presented the mechanical properties of the 

carbon fiber lamina. 

Where (E, G, 𝜗 ) represents Young modulus, shear 

modulus and Poisson ratio, respectively and (h, 𝜌, UTS) 

represents layer thickness, material density and ultimate 

tensile strain at traction and compression, respectively. 

We generate a population of 86953 observations with 

random plies orientations and evaluate the failure factors 

using FEA model from Serban (2016) and maximum strain 

criterion. This population is split into a training dataset and 

a test dataset. The training dataset is used to train the 

machine learning algorithms while the test dataset is used to 

evaluate the performance of the trained algorithms. We 

apply a log transformation to the failure factors in order to 

normalize its distribution. This transformation is illustrated 

in Fig. 2. 

  
(a) (b) 

Fig. 2 (a) λ distribution, (b) log λ distribution 

 

Table 2 Classification results on the test dataset 

Algorithm 

False Not 

Fail count 

[-] 

False 

 Fail 

count [-] 

Classification 

error rate [%] 

Algorithm 

parameters 

K nearest neighbor 563 462 1.33 K=1 

Random forest 543 710 1.62 m=3, B=500 

Support vector 

machines 
716 616 1.73 

γ=1.9, 

cost=300 

Artificial neural 

networks 
2113 2171 5.56 

2 hidden layers 

with 5 and 3 

neurons 

Logistic regression 2419 2581 6.49 - 

Linear 

discriminant 

analysis 

3501 2481 7.77 - 

Quadratic 

discriminant 

analysis 

3725 3268 9.08 - 

 

 

Based on the fact that the laminates are symmetrical 

around the midplane all the 𝐵𝑖𝑗  will be equal to 0 and 

consequently can be eliminated from the basic set of 

predictors. Using the method described in the section 

dedicated to the predictors selection the following features 

have been selected for this example 

: 𝐴26, 𝐴44, 𝐷12, 𝐴26
2 , 𝐴44

2 , 𝐴45
2 , 𝐴11: 𝐴44, 𝐴26: 𝐴45 , where “:” 

denotes interactions between terms. 

We randomly selected 10000 observations for the 

training dataset and the remaining 76953 will represent the 

test data set. All the results presented in Tables 2 and 3 

represent the performance of the trained algorithms 

evaluated with the test dataset. We have used R language to 

run the described machine learning techniques. 

In the classification case we have defined 2 classes: 

𝜆 ≤ 𝜆𝑐𝑟𝑖𝑡   which we’ll refer as Not Fail class and𝜆 > 𝜆𝑐𝑟𝑖𝑡  

which we’ll refer as Fail class. As we use the maximum 

strain criterion the value of 𝜆𝑐𝑟𝑖𝑡  is 1. For the algorithms 

where probabilities are estimated we have used the 0.5 

probability to separate the 2 classes. The results are shown 

in Table 2. 

From Table 2 it can be observed that the classification 

error rate is very small-under 2 % - for k nearest neighbor, 

random forest and support vector machines while for the 

rest of algorithms the error rate is still acceptable. 

Motivated by the very good results we run the top 3 

algorithms with a training dataset reduced to only 2000 

observations. As a consequence the classification error rate 

increase to 7.13% for k nearest neighbor, to 5.39% for 

random forest and to 6.16% for support vector machines, 

remaining still acceptable.  
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Table 3 Quantitative estimation results on the test dataset 

Algorithm MSE [-] 
Mean of 

errors [-] 

Standard 

deviation of 

errors  [-] 

Algorithm 

parameters 

Support vector 

machines 
0.0034 0.0032 0.0588 

γ=0.18, 

cost=300 

Random forest 0.0057 0.0081 0.075 m=3, B=500 

Artificial neural 

networks 
0.0058 0.0008 0.076 

2 hidden layers 

with 5 and 3 

neurons 

Boosting 0.0079 0.0022 0.089 
α=1.0, d=3, 

B=500 

K nearest neighbor 0.008 0.0041 0.0895 K=1 

Linear regression 0.0145 0.0041 0.1206 - 

The lasso 0.0145 0.0044 0.1205 α=5.41e-05 

Principal 

components 

regression 

0.0145 0.0041 0.1206 M=8 

Partial least 

squares 
0.0145 0.0041 0.1206 M=8 

Ridge regression 0.0593 0.0377 0.24 α=0.03733 

 

 

The computational effort necessary to generate and 

evaluate a training dataset using the FEA model from 

Serban (2016) is around 3 minutes for a population of 2000 

observations and around 15 minutes for a population of 

10000 observations using an i3 processor while the time 

spent to train the machine learning algorithm and the time 

spent for genetic optimization became insignificant. 

In Table 3 are shown the results for the quantitative 

estimation of the failure factor. As performance measures 

we use the mean square error (MSE), mean of the errors and 

standard deviation of the errors.  

From Table 3 it can be observed that the best 

performance can be obtained with support vector machines 

while random forest and artificial neural networks provides 

very good estimates. The mean value of estimation errors is 

very close to 0 and the smallest standard deviation of 

estimation errors is 0.058. This means that aproximatively 

95.5% from the estimation errors are in the range of [−0.116 

0.116] having a normal distribution with mean 0. Motivated 

by the very good results we run the support vector machines 

with a training dataset reduced to only 2000 observations. 

As a consequence the test MSE increase to 0.0079 and the 

standard deviation of the errors to 0.089, ramaining still 

acceptable. 

Even if the results obtained with linear regression are 

inferior we take the opportunity to extend our analysis 

based on the interpretability of the linear regression model. 

All the p-values associeted with the regression coefficients 

are virtually 0 (<2e-16) which means that the probability to 

observe a true linear relationship between the response and 

the predictors by chance is 0. Also, it means that all the 

predictors are strongly related to the response. This is also 

confirmed by the value of the adjusted R squared which is 

very high - 0.946-which means that the selected predictors 

explain a great proportion of the response variability, 

confirming our assumption about (𝐴𝑖𝑗 , 𝐷𝑖𝑗 , 𝐵𝑖𝑗) 

coefficients. 

Another interesting but not surprising fact is that the 

value of the shrinkage parameter 𝛼 is almost 0 for the 

lasso regression. The value of 𝛼  is obtained by cross 

validation and it means that all the selected predictors are 

strongly related to the response. Also, the lasso model 

becomes in this case just a linear regression model because 

the penalty factor from (15) vanishes. This is confirmed by 

the almost identical values obtained with linear regression 

and the lasso. This observation remains true also for 

principal component regression and partial least squares by 

replacing the value of 𝛼 with the value of m which is 

maximal meaning that all the components are important to 

estimate the response. 

 

 

7. Conclusions 
 

In this paper we presented a procedure for qualitative 

and quantitative prediction of a composite laminate failure. 

We explored the performance of some machine learning 

techniques which were trained using a random population 

of configurations evaluated with a FEA model. We proved 

with a numerical example that our procedure is accurate. 

The misclassification rate obtained with three algorithms is 

under 2% and the smallest is 1.33%. Also, the failure factor 

estimation is very good, 95% of the deviations being 

smaller than 0.116 in absolute value-in case of support 

vector machines. We proposed a simple procedure for 

feature selection given that some predictors can be 

correlated and we statistically proved that the relationship 

between the response and the predictors is very strong and 

that a lot of response variability is explained by the selected 

predictors. Our procedure is very useful for the layup 

optimization problem where the FEA model can be replaced 

by a trained machine learning model which drastically 

reduces the optimization time to a negligible value. The 

time reduction is even more important when the 

optimization procedure should run a lot of times like in the 

case of obtaining the pareto-optimal set of designs. Also, 

the time needed to generate and evaluate the population of 

configurations used to train the machine learning model is 

not wasted. The reason is that from this population it can be 

selected the best individuals to create the initial population 

for the optimization algorithm. As further work we intend to 

explore with more machine learning techniques to increase 

the estimation accuracy. Also, we take into account to 

develop o controlled procedure to generate the training 

population in order to better cover the region in the search 

space we are most interested with the expectation to 

increase the prediction accuracy for that specific region. 
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