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1. Introduction 
 

Functionally graded materials (FGMs) are considered as 

a type of advanced composite material which was originally 

proposed in Japan (Bever and Duwez 1972, Koizumi 1993). 

The interesting advantage of this type of composites is the 

continuity over a desired direction through a structural 

component (shell, plate or beam) (Kar and Panda 2015, 

Bennai et al. 2015, Belkorissat et al. 2015, Ait Atmane et al. 

2015, Bakora and Tounsi 2015, Barati and Shahverdi 2016, 

Ahouel et al. 2016, Beldjelili et al. 2016). Some kinds of 

conventional composites suffer in continuity within the 

thickness direction; such discontinuity can be attenuated by 

a gradual and smooth variation of mechanical 

characteristics across the thickness of the structural element 

as in FGMs. Moreover, FGMs allow us to have high 

thermal and toughness mechanical characteristics, via a 

mixing for example ceramic and metal. 

For the structural applications generally, functionally 

graded (FG) plates are employed for which the properties 

change along the thickness. The FG plates find their 

applications in many engineering industries such as 

aerospace, nuclear and biomedical. This increase in 

engineering applications of FGMs has attracted the 

attention of many scientists. Several research works are 

found for the structural investigations of FG plates by 

employing elasticity solution as well as various HSDTs. The 

exact 3D solution by Kashtalyan (2004), Karami et al. 

(2017) give benchmark for the investigation. Proposing 

exact solution is a complex process and moreover it is 

possible only for a few special cases. Hence it is interesting 

to develop HSDTs which facilitates to propose solution in 
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much simpler way and with reasonable accuracy. Most of 

the HSDTs are two dimensional and suppose plane stress 

condition which neglects transverse normal stress. The most 

fundamental deformation theory is classical plate theory 

(CPT) which is valid for thin plates, as it does not consider 

shear deformation. This may lead to inaccurate results for 

thick plates, which is thicker than 1/20 of its larger span 

(Chi and Chung 2006). This model has been implemented 

by several scientists to investigate the mechanical response 

of FG plates (Abrate 2008, Ghannadpour and Alinia 2006, 

Cheng and Batra 2000). The problem encountered in CPT 

was overcome by first order shear deformation theory 

(FSDT) developed by Reissner (1945), Mindlin (1951) 

which takes into consideration the influence of transverse 

shear deformation. According to FSDT, the transverse 

strains are considered to be uniform within the thickness of 

plate which is unrealistic and requires a shear correction 

factor to compensate transverse shear strains on the top and 

bottom of the plate (AddaBedia et al. 2015, Hadji et al. 

2016, Bouderba et al. 2016). Praveen and Reddy (1998), 

Chinosi and Croce (2007), Singha et al. (2011), Alieldin et 

al. (2011), Wen and Aliabadi (2012), Castellazzi et al. 

(2013), Meksi et al. (2015), Bellifa et al. (2016) employed 

FSDT for the bending and vibration analysis of FG plates. 

Abdelbari et al. (2016) presented an efficient and simple 

shear deformation theory for free vibration of FG 

rectangular plates on Winkler-Pasternak elastic foundations. 

Abdelhak et al. (2016) studied thermal buckling response of 

FG sandwich plates with clamped boundary conditions. For 

avoiding the use of shear correction coefficients, several 

HSDT, such as, the third-order shear deformation theory 

(TSDT) (Reddy 2000, Hosseini-Hashemi et al. 2011, Qian 

et al. 2004, Akavci 2006, Tounsi et al. 2013, Zidi et al. 

2014, Bourada et al. 2016, Merdaci et al. 2016, Raminnea 

et al. 2016, Fahsi et al. 2017), the sinusoidal shear 

deformation theory (SSDT) (Neves et al. 2012, Bouderba et 

al. 2013, Fekrar et al. 2014, Ait Amar Meziane et al. 2014,  

 

 
 

An original HSDT for free vibration analysis of functionally graded plates 
 

Imene Ait Sidhoum
1, Djilali Boutchicha1, Samir Benyoucef2 and Abdelouahed Tounsi2,3 

 
1Laboratoire de Mécanique Appliqué, Département de Génie Mécanique, Université des Sciences et Technologie 

d’ORAN Mouhamed Boudiaf, BP 1505 Elmnouar 31000, ORAN, Algeria 
2Material and Hydrology Laboratory, Civil Engineering Department, University of SidiBel Abbes, Faculty of Technology, Algeria 

3Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 
31261 Dhahran, Eastern Province, Saudi Arabia 

 
(Received December 1, 2016, Revised September 17, 2017, Accepted September 21, 2017) 

 
Abstract.  This work presents a free vibration analysis of functionally graded plates by employing an original high order shear 

deformation theory (HSDT). This theory use only four unknowns, which is even less than the classical HSDT. The equations of 

motion for the dynamic analysis are determined via the Hamilton‟s principle. The original kinematic allows obtaining interesting 

equations of motion. These equations are solved analytically via Navier procedure. The accuracy of the proposed solution is 

checked by comparing it with other closed form solutions available in the literature. 
 

Keywords:  vibration; functionally graded plate; plate theory 

 



 

Imene Ait Sidhoum, Djilali Boutchicha, Samir Benyoucef and Abdelouahed Tounsi 

 

 

Fig. 1 Geometry of functionally graded plate 

 

 

Attia et al. 2015, AitYahia et al. 2015, Hamidi et al. 2015, 

Houari et al. 2016, Draiche et al. 2016, El-Haina et al. 

2017, Besseghier et al. 2017, Khetir et al. 2017), the 

hyperbolic shear deformation theory (Belabed et al. 2014, 

Hebali et al. 2014, Akavci and Tanrikulu 2015, Mahi et al. 

2015, Saidi et al. 2016; Akavci 2016, El-Hassar et al. 2016, 

Mouaici et al. 2016, Bennoun et al. 2016, Saidiet al. 2016, 

Bousahla et al. 2014, 2016, Chikh et al. 2017, Abualnour et 

al. 2018), the exponential shear deformation theory 

(Klouche et al. 2017) and the zeroth-order shear 

deformation theory (Bounouara et al. 2016, Bellifa et al. 

2017a) have been developed. It should be noted that many 

studies are presented in literature to present HSDTs for 

composite structures as well as graded CNT structures such 

as (Mehar et al. 2017a, b, c, d, Hirwani et al. 2017a, b, c; 

Mehar and Panda 2017, Kar et al. 2016, Sahoo et al. 2016a, 

b, Kar and Panda 2016a, b, Mahapatra and Panda 2016, 

Mehar and Panda 2016, Mehar et al. 2016, Mahapatra et al. 

2016a, b, Katariya and Panda 2016, Sahoo et al. 2017, 

Singh and Panda 2017, Kar and Panda 2015, Singh and 

Panda 2015, Mahapatra and Panda 2015, Panda and 

Katariya 2015, Mahapatra et al. 2015, Panda and Mahapatra 

2014).  

In the present paper, the free vibration analysis of FG 

plates is investigated. The theory contains only four 

variables, which is less than others HSDTs. The mechanical 

properties of the plates are supposed to vary in the thickness 

direction according to a power law distribution in terms of 

the volume fractions of the constituents. The interesting 

plate equations of motion for the free vibration analysis are 

determined through the Hamilton‟s principle. These 

equations are then solved using Navier‟s procedure. The 

accuracy of the results of this theory is verified by 

comparing with other HSDTs available in the literature. 

 

 

2. Analytical modeling 
 

The geometry of a FG plate is as presented in Fig. 1. 

The dimensions of the plates are a×b×h, where „a„ is the 

length, „b„ is width and „h„ is thickness of the plate. The 

gradation of material characteristics is in the thickness 

direction with metal and ceramic being the typical 

constituents. Aluminum/Alumina (Al/Al2O3), Aluminum/ 

Zirconia (Al/ZrO2) and Aluminum/ Silicon nitride 

(AL/Si₃N₄) are the examples of the FG plate. 

 

2.1 Material variation laws 
 

The material properties of FG plate such as the Young‟s  

Table 1 Material properties used in the FG plate 

Properties 

Metal Ceramic 

Aluminum 

(Al) 

Alumina 

(Al.2O3) 

Zirconia 

(ZrO2) 

Silicon nitride 

(Si3N4) 

E (GPa) 70 380 200 322.2 

ρ (kg/m3) 2702 3800 5700 2370 

 

 

modulus E and the mass density ρ are considered to vary 

continuously within the thickness of the plate according to 

the power law variation as follows (Bessaim et al. 2013, 

Meradjah et al. 2015, Benbakhti et al. 2016, Benchohra et 

al. 2017, Benahmed et al. 2017, Bouafia et al. 2017) 
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Where (Ec, ρc) and (Em, ρm) are the corresponding 

properties of the ceramic and metal, respectively, and ρ1, ρ2 

are constants. The Poisson‟s ratio v is considered to be 

constant and equal to 0.3 throughout the analyses (Bourada 

et al. 2012, Taibi et al. 2015, Zemri et al. 2015, Bourada et 

al. 2015, Larbi Chaht et al. 2015, Laoufi et al. 2016, 

Benferhat et al. 2016, Boukhari et al. 2016, Chikh et al. 

2016, Hebali et al. 2016, Meksi et al. 2017, Mouffoki et al. 

2017, Zidi et al. 2017, Menasria et al. 2017). The value of p 

(p1 or p2) equal to zero represents a fully ceramic plate and 

infinite p, a fully metallic plate. The distribution of the 

composition of ceramics and metal is linear for p=1. Typical 

values for metal and ceramics used in the FG plate are listed 

in Table 1. 

 

2.2 Displacement base field 
 
In this work, further simplifying considerations are 

madeto the classical HSDT so that the number of variables 

is reduced. The displacement field of the classical HSDT is 

given by (Barka et al. 2016, Bellifa et al. 2017). 
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Where u0; v0; w0, θx, θy are five unknown displacements 

of the mid-plane of the plate, f(z) denotes shape function 

representing the variation of the transverse shear strains and 

stresses within the thickness. By considering that

 dxyxx ),(
 

and  dyyxy ),( , the displacement 

field of the present theory can be written in a simpler form 

as 
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In this work, the present original HSDT is obtained by 

setting 
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It can be seen that the displacement field in Eq. (3) 

Introduces only four unknowns (u0, v0, w0 and θ).The 

constants k1 and k2 depends on the geometry. 

In this work, the displacement field considers terms with 

integrals instead of derivatives, as often employed for 

example in the CPT or many HSDTs. Such strategy can be 

important since HSDTs with reduced number of variables 

can be proposed by utilizing the present foundation. 

 

2.3 Kinematic relations and constitutive relations 
 

In the derivation of the necessary equations, small 

strains are considered (i.e., displacements and rotations are 

small, and obey Hooke‟s law). The linear strain relations 

derived from the displacement model of Eq. (3) are as 

follows 
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The analytical solution of this theory can be solved by a   

Navier type solution. The following relations can be       

obtained 
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Where the coefficients A′ and B′ (defined according to 

the type of solution adopted), k1 and k2 are expressed as 

follows 
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Note that α and β are terms related to the Navier type 

solution defined in Eq. (23). 

For the FG plates, the stress-strain relation- ships can be 

written as 













































































xz

yz

xy

y

x

xz

yz

xy

y

x

C

C

C

CC

CC





















55

44

66

2212

1211

0000

0000

0000

000

000

 (9) 

where (ζx, ζy, ηxy, ηyz, ηxz) and (εx, εy, γxy, γyz, γxz) are the stress 

and strain components, respectively. Using the material 

properties defined in Eq. (1), stiffness coefficients, Cij, can 

be given as 
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2.3 Equations of motion 
 
Hamilton‟s principle is employed for the free vibration 

problem and defined as follows (Hanifi Hachemi Amar et 

al. 2017) 
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Where δU is the variation of strain energy; and δK is the 

variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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Where A is the top surface and the stress resultants N, 

M, and S are defined by 
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The variation of kinetic energy of the plate can be 

written as 
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Where dot superscript convention indicates the 

differentiation with respect to the time variable t; and (Ii, Ji, 

Ki) are mass inertias expressed by 
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Employing the displacement strain relations (Eqs. (5) 

and (6)) and stress strain relations (Eq. (9)); applying 

integrating by parts and the fundamental lemma of 

variational calculus; and collecting the coefficients of δu0, 

δv0, δw0, δθ in Eq. (11), the equations of motion are 

obtained 
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Substituting Eq. (5) into Eq. (9) and the subsequent 

results into Eqs. (13), the stress resultants are obtained in 

terms of strains as following compact form 


















































s

b

sss

s

s

s

b

k

k

HDB

DDB

BBA

M

M

N 
,  sAS  , 

(17) 

In which 

 txyyx NNNN ,, ,  tb
xy

b
y

b
x

b MMMM ,, ,  ts
xy

s
y

s
x

s MMMM ,, ,
 

(18a) 

 t

xyyx
000 ,,   ,  tb

xy
b
y

b
x

b kkkk ,, , 

 ts
xy

s
y

s
x

s kkkk ,, ,

 

(18b) 



















66

2212

1211

00

0

0

A

AA

AA

A , 



















66

2212

1211

00

0

0

B

BB

BB

B ,  



















66

2212

1211

00

0

0

D

DD

DD

D
,

 

(18c) 


















s

ss

ss

s

B

BB

BB

B

66

2212

1211

00

0

0
,  


















s

ss

ss

s

D

DD

DD

D

66

2212

1211

00

0

0
, 


















s

ss

ss

s

H

HH

HH

H

66

2212

1211

00

0

0
,
 

(18d) 

 ts
yz

s
xz SSS , ,   t

yzxz
00 ,  ,  










s

s
s

A

A
A

55

44

0

0 ,
 (18e) 

And stiffness components are expressed as 
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By substituting Eq. (17) into Eq. (16), the equations of 

motion can be expressed in terms of displacements (u0, v0, 

w0, θ) and the appropriate equations take the form 
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Where dij, dijl and dijlm are the following differential 

operators 
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3. Solution procedure 
 

For the analytical solution of the partial differential 

equations (Eq. (20)), the Navier‟s procedure is used. Using 

this method, the solution of the displacement variables 

satisfying the boundary conditions can be written in the 

following Fourier series 
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Where ω is the frequency of free vibration of the plate, 

1i  the imaginary unit. 

Where 

 

 

am /   and bn /   (23) 

Substituting Eq. (22) in Eq. (20), the following 

equations are obtained 
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4. Numerical results and discussions 

 
In this section, various numerical examples are 

presented and discussed for checking the accuracy of the 

present HSDT in predicting the dynamic behaviors of 

simply supported FG plates. For the verification purpose,  

Table 2 Comparison of fundamental frequency parameter cc Eh /
 

simply supported Al/Al2O3 square plates 

a/h Theories 
Power indices (p) 

0 0.5 1 4 10 ∞ 

20 

Benachour et al. (2011) 0.01480 0.01254 0.01130 0.00980 0.00940 - 

Hosseini-Hashemi et al. (2010) 0.01480 0.01281 0.01150 0.01013 0.00963 - 

Zhao et al. (2009) 0.01464 0.01241 0.01118 0.00970 0.00931 - 

Present 0.01480 0.01254 0.01130 0.00980 0.00940 - 

10 

Benachour et al. (2011) 0.05769 0.04900 0.04417 0.03804 0.03635 0.02936 

Matsunaga (2008) 0.05777 0.04917 0.04427 0.03811 0.03642 0.02933 

Hosseini-Hashemi et al. (2010) 0.05769 0.04920 0.04454 0.03825 0.03627 0.02936 

Zhao et al. (2009) 0.05673 0.04818 0.04346 0.03757 0.03591 - 

Matsunaga (2008) 0.06382 0.05429 0.04889 0.04230 0.04047 - 

Present 0.05769 0.04900 0.04417 0.03804 0.03635 0.02936 

5 

Benachour et al. (2011) 0.2112 0.1806 0.1628 0.1375 0.1300 0.1075 

Matsunaga (2008) 0.2121 0.1819 0.1640 0.1383 0.1306 0.1077 

Hosseini-Hashemi et al. (2010) 0.2112 0.1806 0.1650 0.1371 0.1304 0.1075 

Zhao et al. (2009) 0.2055 0.1757 0.1587 0.1356 0.1284 - 

Matsunaga (2008) 0.2334 0.1997 0.1802 0.1543 0.1462 - 

Present 0.2112 0.1806 0.1628 0.1375 0.1300 0.1075 
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the results obtained by the proposed HSDT are compared 

with the existing data in the literatureand discussed for 

checking the accuracy of the present HSDT in predicting 

the dynamic behaviors of simply supported FG plates. For 

the verification purpose, the results obtained by the 

proposed HSDT are compared with the existing data in the 

literature. 

Table 2 presented the non-dimensional fundamental 

frequencies of the simply supported square Al/Al2O3 plates 

for different values of the thickness to length ratios (h/a=20; 

10 and 5) with p1=p2=p=0, 0.5, 1, 4, 10, and ∞. The 

obtained results are compared with those of Matsunaga 

(2008), Zhao et al. (2009), Hosseini-Hashemi et al. (2010), 

Benachour et al. (2011). It should be noted that the results 

given by Matsunaga (2008) are based on the both FSDT and 

2D HSDT; whereas Zhao et al. (2009) used the FSDT and 

employed different values of shear correction factors in 

their study work. However, the results reported by 

Hosseini-Hashemi et al. (2010) are based on FSDT with a 

new formula for the shear correction factors. The 

resultsgiven by Benachour et al. (2011) are based on refined 

plate theory (RPT). For convenience in comparison, a novel 

frequency parameter is defined as cc Eh / . From 

Table 2, it can be seen that the present results are in 

excellent agreement with those given by the 2D HSDT 

(Matsunaga 2008), the RPT (Benachour et al. 2011) and the 

FSDT (Hosseini-Hashemi et al. 2010) which use a novel 

shear correction factors. It is worth noting that all results 

given on the basis of the FSDT (Matsunaga 2008) are 

inappropriate since the value of shear correction factor is 

 

 

 

considered to be constant (k
2
=1) for any values of thickness 

to length ratios and power indices. In addition, the influence 

of truncated power series to approximate displacement, 

strain components, and in-plane stress (Matsunaga 2008) on 

these apparent discrepancies cannot be neglected. The 

results given by the FSDT (Hosseini-Hashemi et al. 2010) 

are also different from those reported by the proposed 

theory and by the 2D HSDT (Matsunaga 2008), the RPT 

(Benachour et al. 2011) and the FSDT (Hosseini-Hashemi 

et al. 2010). Another reason of this difference is due to the 

fact that Zhao et al. (2009) utilized a numerical solution 

(element-free kp-Ritz method) to determine the natural 

frequencies of the FG plates. 
Table 3 shows the comparison of present non-

dimensional fundamental frequencies with those obtained 
with  FSDT by Zhao et al. (2009) and with higher order 
theories by Hosseini-Hashemi et al. (2010) and Benachour 
et al. (2011) for Al/Al2O3 and Al/ZrO2 squareplates square 
plate with span to thickness ratio10. 

From Table 3, it can be seen that the results of FSDT 

(Hosseini-Hashemi et al. 2010) are in good agreement with 

both the present theory and the theory presented by 

Benachour et al. (2011) comparatively to those obtained by 

FSDT Zhao et al. (2009). This is due to the factthat the 

shear correction factor is considered to be constant in the 

FSDT Zhao et al. (2009) (k
2
=5/6) for any values of power 

indices, whereas in the FSDT (Hosseini-Hashemi et al. 

2010) a novel formula for the shear correction factors is 

supposed taking into account the power indices and the 

thickness to length ratios. Also, it can be observed that the 

fundamental frequencies computed by the proposed theory  

Table 3 Comparison of fundamental frequency parameter ( 2 / /c ca E h   ) for simply supported square FG 

plates when h/a=0.1 

FGMs Theories 
Power indices (p) 

0 0.5 1 2 5 8 10 

Al/Al₂O₃ 

Benachour et al. (2011) 5.7694 4.9000 4.4166 4.0057 3.7660 3.6831 3.6357 

Hosseini-Hashemi et al. (2010) 5.7693 4.9207 4.4545 4.0063 3.7837 3.6830 3.6277 

Zhao et al. (2009) 5.6763 4.8209 4.3474 3.9474 3.7218 3.6410 3.5923 

Present 5.7694 4.9000 4.4166 4.0057 3.7660 3.6831 3.6357 

Al/ZrO₂ 

Benachour et al. (2011) 5.7694 5.4380 5.3113 5.2923 5.3904 5.3950 5.3783 

Matsunaga (2008) 5.7769 - 5.3216 - - - - 

Hosseini-Hashemi et al. (2010) 5.7693 5.3176 5.2532 5.3084 5.2940 5.2312 5.1893 

Zhao et al. (2009) 5.6763 5.1105 4.8713 4.6977 4.5549 4.4741 4.4323 

Present 5.7694 5.4380 5.3113 5.2923 5.3904 5.3950 5.3783 

Table 4 Comparison of fundamental frequency parameter mm Eh /2 
 

for simply supported square FG 

plates 

Theories 
p=1 h/a=0.2 

h/a=0.05 h/a=0.1 h/a=0.2 p=2 p=3 p=5 

Benachour et al. (2011) 0.0158 0.0618 0.2270 0.2249 0.2255 0.2266 

Matsunaga (2008) 0.0158 0.0618 0.2285 0.2264 0.2270 0.2281 

Pradyumna and Bandyopadhyay (2008) 0.0157 0.0613 0.2257 0.2237 0.2243 0.2253 

Hosseini-Hashemi et al. (2010) 0.0158 0.0611 0.2270 0.2249 0.2254 0.2265 

Pradyumna and Bandyopadhyay (2008) 0.0162 0.0633 0.2323 0.2325 0.2334 0.2334 

Present 0.0158 0.0618 0.2270 0.2249 0.2255 0.2267 
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Fig. 2 Variation of frequency parameter with a/h ratio and 

p1 index (a/b=0.5 and p2=1) 
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Fig. 3 Variation of frequency parameter with a/h ratio and 

p2 index. (a/b=0.5 and p1=1) 

 

 

demonstrate also a satisfied agreement with 2D HSDT 

(Matsunaga 2008) for the Al/ZrO2 square plate.  

In Table 4, we present the non-dimensional fundamental 

frequencies of the Al/ZrO2 square plate with simply-

supported boundary conditions at four edges for h/a=0.1, 

0.2, and 10/1  when p1=p2=p=0, 1, 2, 3 and 5. For 

convenience in comparison, the non-dimensional 

fundamental frequency is defined as 
mm Eh /2  . 

Comparing the obtained results with those reported by the 

2D HSDT (Matsunaga 2008), FSDT (Hosseini-Hashemi et 

al. 2010) and HSDT of Pradyumna and Bandyopadhyay 

(2008) and of Benachour et al. (2011) demonstrates that all 

results are in excellent agreement with each other. It is also 

observed that the proposed analytical method provides the 

results lower than those reported by the2D HSDT 

(Matsunaga 2008) and greater than those given on the basis 

of the HSDT (Pradyumna and Bandyopadhyay 2008). 

However, the results computed by the present theory are 

almost identical to those reported by the FSDT (Hosseini-

Hashemi et al. 2010) which employ a new shear correction 

factors. In addition, it should be indicated that the 

discrepancy between the FSDT (Pradyumna and 

Bandyopadhyay 2008) and five other theories (i.e., the 

proposed theory, 2D HSDT (Matsunaga 2008), FSDT 

(Hosseini-Hashemi et al. 2010), and HSDTs of Pradyumna 

and Bandyopadhyay (2008) and of Benachour et al. (2011)) 

is also considerable. 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

1

2

3

4

5

6

7

 

 

F
re

q
u
e
n
c
y
 p

a
ra

m
e
te

r

a/b

 p1=1, (FGM1)

 p1=5, (FGM1)

 p1=1, (FGM2)

 p1=5, (FGM2)

 p1=1, (FGM3)

 p1=5, (FGM3)

 

Fig. 4 Variation of frequency parameter with a/b ratio and 
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Fig. 5 Variation of frequency parameter with a/h ratio and 

p1 index. (a/h=2 and p1=1) 

 

 

To make the effects of ha /  ratio and power indices 

more apparent, Figs. 2 and 3 are shown for 

Aluminum/Alumina (FGM1), Aluminum/Zirconia (FGM2) 

and Aluminum/ Silicon nitride (FGM3) plates, to show the 

variation of the non-dimensional fundamental frequency 

with a/h ratio and pi (i=1,2) power indices, respectively. 

According to these results the non-dimensional fundamental 

frequency increases with increasing a/h ratio when a/h<20. 

The non-dimensional frequency is found to be independent 

of the length-thickness ratio a/h for a/h>20. It is shown 

from Fig. 2 that the effect of p1 is to make the plate stiffer 

when this gradient index is reduced. However, decreasing 

the second power index p2, makes the plate soften as is 

presented in Fig. 3. In addition, it is observed that the non-

dimensional fundamental frequency is approximately 

insensitive to p2 for Aluminum/ Silicon nitride (FGM3) 

plate. 

The dynamic behavior of plate in Ω−a/b plane is 

presented in Figs. 4 and 5 for FGM 1, FGM 2 and FGM 3. 

It can be seen that the non-dimensional fundamental 

frequency increases with increasing the aspect ratio a/b. It is 

observed from the results that non-dimensional frequency 

decreases with increasing p1 however, it increases with 

increasing p2. Again, it can be observed that the non-

dimensional frequency is approximately insensitive to p2 for 

Aluminum/ Silicon nitride (FGM3) plate. 
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5. Conclusions 
 

This work presents a free vibration analysis for FG 

plates by employing an original HSDT with only 4 

unknown variables. The nonlinear shear strain function of 

the theory ensures the accuracy to model the FG plate 

which depicts non-linear distribution of material 

characteristics within the thickness. The equations of 

motion are obtained through the Hamilton‟s principle. 

These equations are solved via Navier‟s procedure. The 

results were compared with the solutions of several 

theories. It is concluded that the results of the proposed 

original HSDT has an excellent agreement with the other 

theories used for comparison for free vibration problems. 
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