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Abstract.

In this work, a new higher shear deformation theory (HSDT) is developed for the free vibration and buckling of

functionally graded (FG) sandwich plates. The proposed theory presents a new displacement field by using undetermined
integral terms. Only four unknowns are employed in this theory, which is less than the classical first shear deformation theory
(FSDT) and others HSDTs. Equations of motion are obtained via Hamilton’s principle. The analytical solutions of FG sandwich
plates are determined by employing the Navier method. A good agreement between the computed results and the available
solutions of existing HSDTs is found to prove the accuracy of the developed theory.
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1. Introduction

It is noted long that sandwich structures are widely
employed in areas of aerospace, marine, construction,
transportation, and wind energy systems due to their
outstanding mechanical characteristics (Vinson 2001, 2005,
Tian et al. 2016). Although sandwich structures provides
the benefits over other kinds of structures, the abrupt
variation in material characteristics within the interfaces
between the face sheets and the core can lead in high
interlaminar stresses, often resulting to delamination, which
is a great problem in classical sandwich structures. One way
to overcome this problem is the use of functionally graded
material (FGM). FGM presents non-homogenous composite
material where the material characteristics are gradually
changed from one surface of the structure to the other,
which leads to eliminating the above indicated abrupt
variations of mechanical properties (Koizumi 1997, Shaw
1998, Birman et al. 2013, Bouderba et al. 2013,
Swaminathan et al. 2015, Akbas 2015, Arefi 20153, b, Arefi
and Allam 2015, Zemri et al. 2015, Kar et al. 20153, b,
Bouguenina et al. 2015, Darabi and Vosoughi 2016, Celebi
et al. 2016, Chikh et al. 2016, Trinh et al. 2016, Turan et al.
2016, Ebrahimi and Shafiei 2016, Bounouara et al. 2016,
Barka et al. 2016, Mahapatra et al. 2017, El-Haina et al.
2017, Zidi et al. 2017).

A number of applications of functionally graded (FG)
structures have led the development of various plate/beam
models to examine accurately their bending, stability and
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vibration responses. These theories can be generally
presented by: classical plate theory (CPT) neglecting the
effects of transverse shear deformation (Feldman and
Aboudi 1997, Javaheri and Eslami 2002, Mahdavian 2009,
Chen et al. 2006), first-shear deformation theory (FSDT)
with linear distribution of displacements (Chen et al. 2006,
Praveen and Reddy 1998, Croce and Venini 2004, Efraim
and Eisenberger 2007, Hosseini-Hashemi et al. 2011, Panda
and Katariya 2015, Meksi et al. 2015, Adda Bedia et al.
2015, Bouderba et al. 2016, Bellifa et al. 2016, Ebrahimi
and Jafari 2016, Hadji et al. 2016), higher-order shear
deformation theory (HSDT) with nonlinear variations of
displacements within the structure thickness such as third-
order shear deformation plate theory (TSDT), sinusoidal
shear deformation plate theory (SSDT), hyperbolic shear
deformable plate theory (HDT) (Reddy 2000, Jha et al.
2013, Reddy 2011, Talha and Singh 2010, Matsunaga 2008,
El Meiche et al. 2011, Bourada et al. 2012, Tounsi et al.
2013, Zidi et al. 2014, Ait Atmane et al. 2015, Mahi et al.
2015, Mahapatra and Panda 2015, Merazi et al. 2015,
Belkorissat et al 2015, Bennai et al. 2015, Nguyen et al.
2015, Mahapatra et al. 2015, Bakora and Tounsi 2015,
Bousahla et al. 2016, Barati and Shahverdi 2016, Mouaici
et al. 2016, Beldjelili et al. 2016, Mahapatra et al. 20163, b,
¢, d, Kar et al. 2016, Mahapatra and Panda 2016, Becheri et
al. 2016, Baseri et al. 2016, Laoufi et al. 2016,
Mohammadimehr et al. 2016, Ebrahimi and Habibi 2016,
Houari et al. 2016, Ahouel et al. 2016, Raminnea et al.
2016, Saidi et al. 2016, Ghorbanpour Arani et al. 2016, EI-
Hassar et al. 2016, Benferhat et al. 2016, Javed et al. 20186,
Mouffoki et al. 2017, Taibi et al. 2017, Bellifa et al. 2017,
Kar et al. 2017, Tounsi et al. 2016, Klouche et al. 2017),
quasi-3D theories taking into account the effect of normal
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stretching (Carrera et al. 2008, Wu and Chiu 2011, Chen et
al. 2009, Hebali et al. 2014, Bourada et al. 2015, Akavci
2016). Moreover, owing to smooth distributions of material
characteristics, FG sandwich plates have recently been
proposed to overcome interface problems between faces
and core found in conventional sandwich structures. Many
plate models have been employed to predict behaviors of
FG sandwich plates: static behaviors (Neves et al. 2013,
Hamidi et al. 2015, Carrera et al. 2011), vibration and
buckling behaviors (Neves et al. 2013, Carrera et al. 2011,
Li et al. 2008, EI Meiche et al. 2011, Sobhy 2013,
Natarajan and Manickam 2012, Ait Amar Meziane et al.
2014, Bennoun et al. 2016).

The objective of this article is to propose a new
hyperbolic shear deformation theory for vibration and
buckling analyses of FG sandwich plates. The present
theory differs from other HSDTs because, in proposed
theory the displacement field which use undetermined
integral terms and contains only four variables which is not
considered by the other articles. Equations of motion
derived here are solved for sandwich plates with FG faces.
Closed-form solutions are obtained to predict the critical
buckling loads and natural frequencies of simply supported
FG sandwich plates. Comparison studies are performed to
check the validity of the present results.

2. Problem formulation

Consider a rectangular FG sandwich plate with uniform
thickness h, length a and width b . The Cartesian
coordinate system xyz is considered such that the xy
plane ( z=0) coincides with the mid-surface of the
sandwich plate. Layer 1, 2, 3 denote the bottom, middle and
top layer, respectively. The sandwich core is isotropic (fully
ceramic) and face sheets are made of a FGM through the
thickness. The bottom face sheet varies from a metal-rich

surface (z =hy) to a ceramic-rich surface while the top face
sheet changes from a ceramic-rich surface to a metal-rich
surface (z =hy), as presented in Fig. 1.

There are no interfaces between core and face sheets.
The volume fraction of sandwich plate is expressed as

z-hy )’
VO (z)= (—OJ forz e[hy,h |

forze[hy,h,] 1)

b~y
v@(z)=1

V(3)(Z)=[ Z—h3 ]p

f h,,h
o h, orzelh,,hy]

where V™ s the volume fraction of n-th layer and p is

a parameter that denotes the power index and takes values
greater than or equal to zero.
The effective material properties for n-th layer, like the

Young's modulus E™, the Poisson's ratio v and the
mass density p(”) at a point can be obtained by the linear
rule of mixture (Marur 1999, Attia et al. 2015) as

PO (2)=(R-P )V (2)+P, @)

where P™ s the effective material property of FGM
of layer n. P, and P, are the properties of the top an

d bottom faces of layer 1, respectively, and vice versa

for layer 3 depending on the volume fraction V(™
(n=12,3).

2.1 Kinematics and strains

In this study, further simplifying consideration are taken
to the classical HSDTs so that the number of variables is
reduced. The displacement field of the classical HSDTs is
written by

oW,
U(X, y’ Z’t) = UO(X, yvt) - Za_xo + f (Z)QDX (Xv yvt) (38.)

V(X,Y,z,t) =V, (X, y,t)— z% + f (2o, (X, y,1) (3b)

(3¢0)
W(Xv y’ Z’t) = WO (X, yvt)

where Uy ; Vo5 W, , @, p, are five unknown

displacements of the mid-plane of the plate, f(z) denotes
shape function representing the variation of the transverse
shear strains and stresses within the thickness. By
considering that ¢, = IH(X, y)dxand ¢, =I¢9(X, y)dy,

the displacement field of the present theory can be written
in a simpler form as (Bourada et al. 2016, Hebali et al. 2016,
Merdaci et al. 2016, Chikh et al. 2017, Besseghier et al.
2017, Fahsi et al. 2017, Khetir et al. 2017, Meksi et al.
2017)

oW,
U(X, yi th) = UO(X, yit)_ 267)(04_ kl f(Z)jH(X, y,t) dX (43.)

VX, Y, 2,8 = Vo (X, y,t)—z%mz f@[ox y.tdy @)
W(X,Y,z,t) =w,(X,Y,t) (4c)
In this study, the present HSDT is obtained by setting

— 7 2|14 Fseen?( L] 37 z
f(z2)=z2 z{1+25ech [ZH 2htanh(hj (5)

It can be observed that the displacement field in
equation (4) uses only four variables (u,,V,,W, and &).

The nonzero strains associated with the displacement field
in Eq. (4) are
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Fig. 1 FGM face sheets and homogeneous core.

&l | ky L,
g, r=1¢, (+29k) r+ F(2)1 L ¢
0 0 0
7 Xy e Xy kxy ny (68.)
Y Ve
7 xz 7 xz
where
o, o,
&y 2 K® ox’
Olo) Moo |, 5 o'w, |,
v OX Ky (=9 - oy?
0
Y] |9 % Kl | o,
oy 0O oxdy (6b)
L?( kla 7/01 _ kZJ‘gdy
L= k0 re) |kJodx
5) ok, oy
and
df (z
9(z) - L2 (6)
dz

The integrals used in the above equations shall be
resolved by a Navier type procedure and can be expressed
as follows

0%0

oxoy

%Iadx=A'§;;;, %jedy:B' .
.00 .00
Ide:A&, Igdy:BE

where the coefficients A' and B' are expressed
according to the type of solution used, in this case via
Navier method. Therefore, A", B', k; and k, are
expressed as follows

A=-—,
aZ

' 1 2 2
B:—?,klza ko =p ®)
where « and f are defined in expression (24).

For elastic and isotropic FGMs,
relations can be written as

the constitutive

) [c, C, 0 0 071"e )™
o, c, C, 0 0 O &
ryr =0 0 Cu 0 0 Yy 9)
7, o o o0 ¢, O Yy
T, 0 0 0 0 Cg Vi
where (o,, O, T, T, Ty)and (&,, &, Yy,

Yy Vx ) are the stress and strain components,

respectively. Using the material properties defined in Eq.

(2), stiffness coefficients, C;;, can be given as

Ci=Cy = E(Z)2  Co = v E(Zz) )
1-v 1-v
(10)
E(z)
Cu= Css = Cee = —2(1+v)’

2.2 Equations of motion

Hamilton’s principle is herein employed to deduce the
equations of motion (Ait Yahia et al. 2015)

t
ozj(au +8V -5 K)dt (11)
0

where U is the variation of strain energy; oV s the
variation of the external work done by external load applied
to the plate; and & K is the variation of kinetic energy.

The variation of strain energy of the plate is expressed
by
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J.O' de,+ode +rxy57xy+ry267yz+rxz§;/xz]dV

A\
[IN,G &0+ Ny8 20+ Ny& 7%, + MG KD + M S KD+ M, 5K (12)
A

<10 <10 S0 0 -0
+5,5L2+8,0L0+5,51% +R,07% +R,5 2 |dA=0

where A is the top surface and the stress resultants N,
M ,S,and R are defined by
3 M
(N;,M;,S)) Z J. (Lz,f)oydz, (i=xy,xy) and

n=. hn

(13)

3 M
(RvaRyz):z I g(szvaz)dZ

n=1 hos

where h, and h,_, are the top and bottom z-coordinates of
the nth layer
The variation of the external work can be written as

SV = —jN&NOdA (143)
A
with
0% W, 0w, 0w,
N = {NO v ©+2Ng, 8)(6; +NJ ayo} (14b)

where (N, N?, N2 ) are in-plane applied loads.

The variation of kinetic energy of the plate can be
written as

5K =j[u5u+v‘a‘v+wa‘w] p(2)dV
Vv

= [{1oluo8, +Vo6v, + i)

_|1[u0 05y OV o g+ 08V, | OVl rWo]
ox OX
23 (6 A 0y 28+ D0 54, |+ (k, B v, @+%a (15)
ox oX oy oy
., Dty 06 Vity | ity 0Oy ), K, | (k, A 80050 (K, B 20056
oX  OX oy oy X ox oy oy

aw, a8 oVl a8
7J2[(k1A)[T;% % a;NO]Jr(kzs)[pW% % aywoj]}dA

where  dot-superscript ~ convention  indicates  the
differentiation with respect to the time variable t; p(z)

is the mass density given by Eqg. (1); and (I, J;, K,) are
mass inertias expressed by
3 M
o lily)=> I (l,Z,Zz)p(Z)dZ (16a)

n=1 hn -1

3 M
(I 32.K) =D [ (.21, 12) pla)cz (16b)

n=1 bt

By substituting Egs. (12), (14) and (15) into Eq. (11),

the following can be derived:

Al 8N o
Suy: ﬂ+ +kAJﬁ
o ay ax
sy Ny AN,
Sy, —2 =13V, — I1 0 +k, B' J —
ox oy oy f'y
6W:82MX+26‘2MW oM, N OV Noﬁzqur AT
b o ey o N e v axy N g oo (17)
o[ B Do)y ooy g, kA—0+k B#
x oy v
50: kA”s TSk, ) [k A‘“°+k B‘%]
W ?XPY Py oy
%0 N 0°0 0%\, OV,
[l 7 22,07 7] [ a,]

Substituting Eqg. (5) into Eg. (9) and the subsequent
results into Egs. (13), the stress resultants are obtained in
terms of strains as following compact form

N A B B|fe
Mi=| B D D°[Kk°:,
S BS D° H®||L

R=Ay (19

in which

N={NLN, N K, M={M, MM

(19a)
t
$={5,5,.5,/
gz{go gy,}/xy}t, koz{kf,k;),kfy}t,
. (19b)
=0,
A A, 0 Bii B 0
= A12 A22 0| B= BlZ Bzz 0 |
0 0 0 0 B
Asg 66 (190)
Di; Dy, 0
D=|D;, Dy 0
0 0 Dgg
B, B, 0
B*=|B, B3 0|
0 0 Bge
D;, D 0
D° = sz D252 0 |, (19d)
0 0 D§6
HY HS 0
H® = Hlsz H282 0
0 0 HGS6
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t t
R={Ro.R. [ 7=hhril.
0 A
and stiffness components are defined as

1
h,

:ijc;"’uz f@.21@, 12@) v 1dz (20a)
=,

"= 1-v®

Ail Bll Dll Blsl Dlsl H 151
AiZ BIZ DlZ BLSZ DlSZ HlSZ
AGG BBB DBB BGSS DGSG H ;6

(A22: Bzzr Dzz: 52521 D;z, H252): (Auv an D11v Bfr Df1v Hlsl)’
o _ E(2) (20b)
C11 :1_ 21

[0@)] dz, (20¢)

E(2)
A = A —Z j T

By substituting Eq. (18) into Eq. (17), the equations of

motion can be expressed in terms of displacements (U,
Vo, W,, @)and the appropriate equations take the form

Audnuo + AﬁG d22u0 + (Alz + ASS)dIZVD - Blld111W0 - (Blz + ZBGE)dIZZWO

+ (BGSG(klA'-FkZ B')+ BISZkZ B') d122€+ BlslklA' dlllg = IOUO - Il d1wo + ‘]1 A kldlé’ (Zla)

A22 dZZVO + &6 dllvl) + (AiZ + Ahﬁ) d12u0 - BZZ d222W0 7<812 + 2866) d112WO
+ (BGSG (k1A‘+k2 BI)+ BlsZk1 A‘) d1129 + BZSZkZ BIdZZZH = IOVO - Il dZWO + ‘]l BI k2 d29’

(21b)

Byy Ay ly + (By, + 2By5)dyp tly + (B + 2B )iV + By, Vo — Dyt Wy — 2(Dy, +2Dy5)
=Dy, dyp iy + Dk Ay, 0+ ((D]SZ + 2D§a)(k1Av+szv)) Ay, )+ D5k;B'd 0+ NJ dywy (21C)
+2 N3, dy Wy + N AW = oW + 1, (dytiy +d, Vo )= 1, (dy W, + 0 )+ J, (k]A' d, 0 +k, B' dué)

— KA B 0y — (Bik, B+ B, (k Ak, BY)dytly — (Bik A+ BS, (- A+, BY) dy¥ — B2k, B'doV
+ D5 Ay Wy + (D, +2D3) (k, Ak BY))dy W, + Dk, B — Hy (kA 0
—H;z(kZB‘)zdmﬂ—(ZHfzk]kZA’B’+(k1A'+kZB')’H;E)dmﬂ+ A, (AY dyy0+ AL (k, BY dpyf = (Zld)
— 3, (k, A'dytiy +k, B'd,V,) + 3, (k, A'd, W, +k, B'd,, V) — KZ((k]A') d,. 6+ (k, B dzz(i)

where d;;, dy and dy, are the following differential
operators
2 3
dij 26—’ dij| 28—’
OX; OX OX; OX ; OX,
o* 0 (22)
Qim =07 di=—,
OX; OX | OX| OXpy OX;
@, j,I,m=12).

3. Close-form solutions

The Navier solution procedure is employed to determine
the analytical solutions for which the displacement

variables are expressed as product of arbitrary parameters
and known trigonometric functions to respect the equations
of motion and boundary conditions.

U, U,.e"“" cos(a x)sin(S y)

Rt e'“! sin(a x) cos(B )

- ;; W, e""t sin(a x)sin(By) @3)
7 ane Usin(a x)sin(A y)

where @ is the frequency of free vibration of the plate,
Ji=-1 the imaginary unit.
with
a=mz/aand f=nzx/b (24)
Considering that the plate is subjected to in-plane
—No., NS =-7 N,
Ngy =0, y= NS/NS (here y are non-dimensional

load parameter). Substituting Eq. (23) into Eq. (21), the
following problem is obtained

. 0
compressive forces of form: N, =

Sll Slz 513 S mll 0 m13 m14 Umn 0

SlZ SZZ 823 SZA _wz 0 mZZ m23 m24 an — O (25)

Sl3 523 833+k S 4 m13 m23 m33 m34 Wmn 0

Sis Sz Si S My My My My, )X, 0
where
S, = Anaz + Aeeﬂz 1S, =af (Aiz + Aas)’
Si3 :*a(Bnaz +(Blz+2866)ﬂ2) '
Su= a((szl By, + (klAl"'szl)Bgs)ﬂZ +k A Bflaz )’
Sy = Aesaz + Azzﬂz J
Sy = _ﬂ(Bzzﬂz +(B, + ZBGG)aZ) )

= ﬂ((klAl By, + (klA'+sz')Béﬁ)a2 +k,B' stzﬂz )v
Sy = Dy’ +2(D,, + 2Dse)a2ﬂ2 +D,,p° '
=-kA'D;a’-((D; +2D;,)(k,A+k,B' )’ B —k,B'D;, B

Sys=(k A ) HRa* +(2kik, ABHS, + (26)

(KA +k,B")?Heg )ar® B% +(KoB' ) H3, 8% +
(sz,)2A555ﬂ2+(k1A')2AZ4a2
k=-N, (& +78)

m11=|0’ mlsz—all, rnlA:‘]1k1Ala'

m,, = Io' m,==p41,

m,, =k,B' #J,, My = I+ Iz(a2 +ﬂ2)’
m, =—J, (k, Aa® +k,B' ),

m, = Kz ((ki A-)Zaz + (kz B')2 ﬂz)
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Table 1 Displacement models

Model Theory Unknown

function
CPT Classical plate theory 3
FSDT First shear deformation plate theory (Mindlin 1951) 5
PSDT Parabolic shear deformation plate theory (Reddy 2011) 5
SSDT Sinusoidal shear deformation plate theory (Touratier 1991) 5
HySDT Hyperbolic shear deformation plate theory (EI Meiche et al. 2011) 4
Present New HSDT 4

Eq. (25) is a general form for stability and free vibration
analysis of FG sandwich plates under in-plane loads. The

critical buckling loads (N ) can be determined from the

stability problem |S-J—|:O while the free vibration

problem is achieved by omitting in-plane loads.

4. Numerical results and discussion

In this section, natural frequencies and critical buckling
loads of simply supported FG sandwich plates are presented
and compared with existing solutions to check the accuracy
of the proposed new HSDT. The FG plate is considered to
be made of aluminum and alumina with the following
material characteristics:

e Ceramic (R : Alumina, Al,03): E; =380 GPa,
v=0.3, p, =3800kg/m’.

e Metal (P, : Aluminum, Al):
v=0.3, p, =2707kg/m®.

For convenience, the following
parameters are employed:

- wb® —  Na?
o= Loy Ll , N= PPowT— 27)
h \E 100h2E,

Where p, =1kg/m*and E, =1GPa.

non-dimensional

4.1 Results of free vibration analysis

The natural frequencies of the structure are computed
using Eq. (25) as eigenvalue problem by omitting in-plane
loads. The non-dimensional fundamental frequencies of FG
sandwich plates are presented here to estimate the accuracy
of the presented new HSDT.

First, for the verification purpose, the results determined
by the present HSDT are compared with other theories
existing in the literature such as CPT, FSDT, PSDT, SSDT,
HySDT and three-dimensional linear theory of elasticity by
Li et al. (2008). The description of various displacement
models is presented in Table 1. We also take the shear
correction factor K =5/6 in FSDT.

The results of the FG sandwich plates with five material
distributions are compared in Table 2 with the results based
on CPT, FSDT, PSDT, SSDT, HySDT and 3D elasticity.
Young’s modulus E and mass density o are based on

the power-law distribution (Eq. (2)). Table 2 demonstrates a

good agreement by comparisons of FG plates of five
different gradient index with other HSDTs. Hence, the
proposed theory (with only four unknown functions) gives
comparable results to those determined with higher order
theories with five variables. Compared to the 3D linear
theory of elasticity (Li et al. 2008), the proposed theory
gives more accurate results than the other theories such as
PSDT and SSDT and especially for the case of non-
symmetric (2-1-1) and (2-2-1).

The second comparison is presented in Table 3 for both
the symmetric (1-2-1) and non-symmetric (2-2-1) types of
square FG sandwich plates. It can be seen that increasing
the mode number lead to an increase of frequencies. Again,
we found that the natural frequencies obtained by the
present HSDT are in a good agreement with other shear
deformation theories.

20 @)

e
7 %V*:MM»—MH'—'—'H*H—'H'
/ —

Frequency parameter
0
L

= —o— ceramic
’/7 —o—p=05
——p=t
——p=2
0.6 ——p=5
—— metal

Frequency parameter
S
L

094/ ‘/(/4/"‘4’_"?4‘ S —
084 " —o—p=05
e —o—p=1
074 ——p=2
0.6 ——p=5

—>— metal

T T T T T T T T T T T T T T T
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
b/h

Fig. 2 Fundamental frequency (a_)) versus the side-to-
thickness ratio (b/h) of symmetric and non-symmetric
square FG sandwich plates for various values of p: (a)
The (2-1-2) FG sandwich plate and (b) the (2-1-1) FG
sandwich plate
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Table 2 Comparisons of natural fundamental frequency parameters w simply supported square FG plates with other
theories (h/b=0.1)

Theory i

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
0 CPT 1.87359 1.87359 1.87359 1.87359 1.87359 1.87359
FSDT 1.82442 1.82442 1.82442 1.82442 1.82442 1.82442
PSDT 1.82445 1.82445 1.82445 1.82445 1.82445 1.82445
SSDT 1.82452 1.82452 1.82452 1.82452 1.82452 1.82452

Elasticity - - - - - -
HySDT 1.82449 1.82449 1.82449 1.82449 1.82449 1.82449
Present 1.82449 1.82449 1.82449 1.82449 1.82449 1.82449
0.5 CPT 1.47157 1.51242 1.54264 1.54903 1.58374 1.60722
FSDT 1.44168 1.48159 1.51035 1.51695 1.55001 157274
PSDT 1.44424 1.48408 1.51253 1.51922 1.55199 1.57451
SSDT 1.44436 1.48418 1.51258 1.51927 1.55202 1.57450
Elasticity 1.44614 1.48608 1.50841 152131 1.54926 1.57668
HySDT 1.44419 1.48405 1.50636 1.51922 1.54714 1.57458
Present 1.44432 1.48415 1.50644 1.51925 1.54717 1.5745
1 CPT 1.26238 1.32023 1.37150 1.37521 1.43245 1.46497
FSDT 1.24031 1.29729 1.34637 1.35072 1.40555 1.43722
PSDT 1.24320 1.30011 1.34888 1.35333 1.40789 1.43934
SSDT 1.24335 1.30023 1.34894 1.35339 1.40792 1.43931
Elasticity 1.24470 1.30181 1.33511 1.35523 1.39763 1.44137
HySDT 1.24310 1.30004 1.33328 1.35331 1.39559 1.43940
Present 1.2433 1.30019 1.33344 1.35337 1.39567 1.43931
5 CPT 0.95844 0.99190 1.08797 1.05565 1.16195 1.18867
FSDT 0.94259 0.97870 1.07156 1.04183 1.14467 1.17159
PSDT 0.94598 0.98184 1.07432 1.04466 1.14731 1.17397
SSDT 0.94630 0.98207 1.07445 1.04481 1.14741 1.17399
Elasticity 0.94476 0.98130 1.02942 1.04532 1.10983 1.17567
HySDT 0.94574 0.98166 1.03033 1.04455 1.10875 1.17397
Present 0.94621 0.98201 1.03069 1.04477 1.10904 1.17398
10 CPT 0.94321 0.95244 1.05185 1.00524 1.11883 1.13614
FSDT 0.92508 0.93962 1.03580 0.99256 1.10261 1.12067
PSDT 0.92839 0.94297 1.03862 0.99551 1.10533 1.12314
SSDT 0.92875 0.94232 1.04558 0.99519 1.04154 1.13460
Elasticity 0.92727 0.94078 0.98929 0.99523 1.06104 1.12466
HySDT 0.92811 0.94275 0.99184 0.99536 1.06081 1.12311
Present 0.92864 0.94453 0.99222 0.99564 1.06115 1.12317

Table 3 Comparisons of natural frequency parameters w simply supported square FG sandwich plates with ot
her theories (p=2,h/b=0.1)

m n 1-2-1

CPT FSDT PSDT SSDT HySDT Present
1 1 1.32200 1.30020 1.30246 1.30244 1.30250 1.30244
1 2 3.26976 3.14452 3.15698 3.15686 3.15726 3.15692
2 2 5.17700 4.88021 4.90879 4.90849 4.90978 4.90895
1 3 6.42690 5.98487 6.02667 6.02622 6.02866 6.02741
2 3 8.27066 7.57215 7.63674 7.63601 7.64151 7.63953
1 4 10.67355 9.57284 9.67233 9.67121 9.68465 9.68143
3 3 11.26475 10.05424 10.16314 10.16193 10.17821 10.17467
2 4 12.43611 10.99612 11.12461 11.12321 11.14644 11.1422
3 4 15.30248 13.23801 13.41936 13.41755 13.46652 13.46038
4 4 19.17579 16.13722 16.40035 16.39820 16.50693 16.49783
m n 2-2-1

CPT FSDT PSDT SSDT HySDT Present
1 1 1.28650 1.26524 1.26775 1.26780 1.24375 1.24392
1 2 3.18172 3.05968 3.07353 3.07382 3.01698 3.01796
2 2 5.03724 4.74815 4.77998 4.78065 4.69456 4.69689
1 3 6.25311 5.82264 5.86924 5.87022 5.76658 5.76981
2 3 8.04649 7.36640 7.43850 7.44002 7.31319 7.31812
1 4 10.38339 9.31198 9.42315 9.42552 9.27437 9.28178
3 3 10.95830 9.78007 9.90179 9.90439 9.74847 9.75652
2 4 12.09731 10.69588 10.83951 10.84261 10.67885 10.68823
3 4 14.88418 12.87543 13.07809 13.08260 12.91005 12.92283
4 4 18.64932 15.69346 15.98701 15.99393 15.83764 15.85526
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In general, the frequencies given by the CPT are much
higher than those calculated from the shear deformation
theories. This implies the well-known fact that the results
computed by the CPT are grossly in error for a thick plate
and/or for higher mode numbers. From these results (Tables
2 and 3), the frequencies decrease as the gradient index p

increases and as the core thickness, with respect to the total
thickness of the plate, decreases.

The variations in non-dimensional fundamental
frequencies of FG sandwich plates for different gradient
index P as a function of the side-to-thickness ratio is

presented in Fig. 2 by employing the proposed theory. It can
be deduced from this figure that the fundamental frequency
is reduced with increasing the gradient index p. The

maximum values are found for the ceramic plates while the
minimum ones are for the metal plates.

4.2 Results of buckling analysis

The critical stability loads of the structure are computed
using Eq. (25) as an eigenvalue problem by omitting mass
matrix. The critical buckling forces of FG sandwich plates
are illustrated here to demonstrate the accuracy of the
proposed HSDT.
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Fig. 3 Non-dimensional critical buckling load (N) Versus
the side-to-thickness ratio (b/h) of (2-1-2) FG
sandwich plates for various values of p: (a) Plate
subjected to uniaxial compressive load (y =0) and (b)
Plate subjected to biaxial compressive load (y =1)

Tables 4 and 5 give critical buckling forces of various
types of FG sandwich plates by employing different plate
models and different values of the gradient index p. It can

be deduced from these two tables that the results of the
proposed model are in an excellent agreement with those
reported by other shear deformation theories. Hence, the
proposed model (with only four unknown functions)
provides comparable results to those determined with
higher order theories with five unknown functions. From
these results, it can be seen that the critical buckling loads
reduce with increasing the gradient parameter decrease p.

In general, the fully ceramic plates produce the higher
critical buckling loads. The uniaxial buckling load may be
twice the biaxial one and this irrespective of the used value
of p and the type of the FG sandwich plate.

Fig. 3 and 4 present the variation of the critical buckling
loads of the symmetric (1-2-1) and non-symmetric (2—2-1)
types of square FG sandwich plates versus side-to-thickness
ratio by employing the proposed new theory. It can be seen
from these figures that the critical buckling load decreases
with increasing the gradient index p . Indeed, the

maximum values are found for the ceramic plates while the
minimum ones are for the metal plates.
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the side-to-thickness ratio (b/h ) of (2-1-1) FG
sandwich plates for various values of p: (a) Plate
subjected to uniaxial compressive load (y=0) and (b)
Plate subjected to biaxial compressive load (y =1)
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Table 4 Comparisons of non-dimensional critical buckling load N of square FG plates subjected to uniaxial
compressive load (=0, h/b=0.1)

p Theory N
1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
0 CPT 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791
FSDT 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449
PSDT 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495
SSDT 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606
HySDT 13.00552 13.00552 13.00552 13.00552 13.00552 13.00552
Present 13.00552 13.00552 13.00552 13.00552 13.00552 13.00552
0.5 CPT 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525
FSDT 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517
PSDT 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681
SSDT 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670
HySDT 7.36380 7.94046 8.22471 8.43647 8.81029 9.21757
Present 7.36523 7.94155 8.2251 8.43684 8.81016 9.21663
1 CPT 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406
FSDT 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365
PSDT 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656
SSDT 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629
HySDT 5.16629 5.83941 6.19371 6.46450 6.94952 7.50719
Present 5.16804 5.84083 6.19437 6.46515 6.94964 7.5063
5 CPT 2.73080 3.10704 3.48418 3.65732 4.21238 485717
FSDT 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475
PSDT 2.65821 3.04257 3.40351 3.57956 4.11209 4.73467
SSDT 2.66006 3.04406 3.40449 3.58063 4,11288 4.73488
HySDT 2.65679 3.04141 3.40280 3.57874 411157 4.73463
Present 2.65951 3.04362 3.40419 3.58031 4,11263 4.7348
10 CPT 2.56985 2.80340 3.16427 3.27924 3.79238 4.38221
FSDT 2.46904 2.72626 3.07428 3.27521 3.68890 4.26040
PSDT 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991
SSDT 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175
HySDT 2.48574 2.74498 3.09111 3.19373 3.70686 4.27964
Present 2.48966 2.74256 3.09263 3.19556 3.70812 4.28014

Table 5 Comparisons of non-dimensional critical buckling load N of square FG plates subjected to biaxial
compressive load (y =1, h/b=0.1)

p Theory N

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CPT 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896
FSDT 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224

PSDT 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248

SSDT 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303

HySDT 6.50276 6.50276 6.50276 6.50276 6.50276 6.50276

Present 6.50276 6.50276 6.50276 6.50276 6.50276 6.50276

0.5 CPT 3.82699 4.12798 4.28112 4.39032 459127 4.80762
FSDT 3.66866 3.95660 410117 4.20517 4.39336 4.59758

PSDT 3.68219 3.95660 4,11235 4.21823 4.40519 4.60878

SSDT 3.68248 3.97097 4.112269 4.21856 4.40519 4.60835

HySDT 3.68190 3.97023 4.11236 4.21823 4.40514 4.60878

Present 3.68261 3.97078 4.11255 4.21842 4.40508 4.60832

1 CPT 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203
FSDT 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182

PSDT 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328

SSDT 2.58423 2.92060 3.090731 3.23270 3.47490 3.75314

HySDT 2.58315 2.91970 3.09686 3.23225 3.47476 3.75359

Present 2.58402 2.92041 3.09719 3.23258 3.47482 3.75315

5 CPT 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859
FSDT 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737

PSDT 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734

SSDT 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744

HySDT 1.32839 1.52071 1.70140 1.78937 2.05578 2.36731

Present 1.32976 152181 1.7021 1.79015 2.05632 2.3674

10 CPT 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111
FSDT 1.23452 1.36313 153714 1.58760 1.84445 2.13020

PSDT 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995

SSDT 1.24475 1.37422 1.56721 1.59728 1.57287 2.19089

HySDT 1.24287 1.37249 1.54556 1.59687 1.85343 2.13982

Present 1.24435 1.37374 1.54631 1.59779 1.85406 2.14007
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5. Conclusions

A new HSDT has been proposed for the buckling and
free vibration analyses of FG sandwich plates. By assuming
further simplifying considerations to the conventional
HSDTs, with introducing undetermined integral term, the
number of variables and equations of motion of the
proposed theory are reduced by one, and thus, make this
formulation simple and efficient to use. Analytical solutions
are found for simply-supported sandwich plates to examine
the critical buckling load and natural frequencies for various
gradient index and side-to-thickness and skin-core-skin
thickness ratios. A good agreement between the computed
results and those reported by existing shear deformation
theories is demonstrated within several numerical examples
which shows the accuracy of the proposed theory in
predicting the stability and vibration responses of FG
sandwich plates. An improvement of present formulation
will be considered in the future work to consider the
thickness stretching effect by using quasi-3D shear
deformation models (Bessaim et al. 2013, Bousahla et al.
2014, Belabed et al. 2014, Fekrar et al. 2014, Hebali et al.
2014, Meradjah et al. 2015, Larbi Chaht et al. 2015, Hamidi
et al. 2015, Bourada et al. 2015, Bennoun et al. 2016,
Draiche et al. 2016, Benbakhti et al. 2016, Benahmed et al.
2017, Ait Atmane et al. 2017, Benchohra et al. 2017,
Bouafia et al. 2017) and the wave propagation problem
(Mahmoud et al. 2015, Ait Yahia et al. 2015, Boukhari et
al. 2016).
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