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1. Introduction 

 

In last years, many researchers have studied different 

characteristics of plates. FGM plates are one of the newest 

mechanical structures with excellent mechanical properties. 

Functionally graded materials are intelligent composites 

that their material properties are changed continuously 

through specific directions of the structure (mostly in 

thickness direction) to reach desired properties. 

Functionally graded materials are often made of metal (due 

to unique mechanical properties) and ceramic (due to 

unique thermal properties). FGMs with a mixture of 

ceramic and metal are used as thermal barrier structures in 

aerospace shuttles, combustion chambers and nuclear plants 

and etc. (Park and Kim 2006). In another study, Bernardo et 

al. (2016) are presented various structural models and the 

performance of their developed models are carried out 

through a set of illustrative cases based on the survey of 

static and free vibration behavior of plates. A dynamic 

model of a functionally graded rectangular plate imposed by 

large overall motions is presented by Li and Zhang (2016). 

Ketabdari et al. (2016) studied free vibration of homo-

geneous and functionally graded skew plates resting on 

Winkler-Pasternak elastic foundation. Parametric resonance 

characteristics of FG plates on the elastic foundation which 

is proposed under biaxial in-plane periodic loads are 

presented by Ramu and Mohanty (2015). Prakash et al. 

(2015) studied large amplitude flexural vibration 

characteristics of FGM plates. Isogeometric analysis with 

non-uniform rational B-spline (NURBS) based on the 

classical plate theory (CPT) is developed for free vibration 
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analysis of thin functionally graded material (FGM) plates 

by Yin et al. (2013). 

Nowadays, functionally graded materials are widely 

used in production of turbine blades. The failure in blades 

of compressors and turbines is happened mostly due to 

blade vibrations. Vibration of rotating blades plays an 

important role in designing many machines. One of the 

important purposes of this research is to help researchers 

find proper ways to design thinner blades which can operate 

in higher speeds. Thick blades which have large aspect 

ratios can be modeled as beams, plates or shells. Previous 

researches on rotating blades, dealt with the extraction of 

natural frequencies and mode shapes of blades rotating at a 

constant angular velocity. There are a few researches on the 

influence of external forces or damped vibrations in their 

rotating condition. Wang et al. (1987) are studied free 

vibration of a rectangular plate by considering the rotating 

velocity and the setting angle. Young and Liou (1992) 

studied the impact of Carioles effect on vibration of a 

cantilever plate with a time-varying rotating speed. 

Vibration control of rotating blades using a root-embedded 

piezoelectric material is studied by Malgaca et al. (2015). 

The influence of Coriolis effect on the first bending and the 

first torsional frequencies of flat rotating low aspect ratio 

cantilever plates have been investigated by 

Sreenivasamurthy and Ramamurti (1981b). They have 

determined the natural frequencies of a pre-twisted and 

tapered plate mounted on the periphery of a rotating disc 

(Sreenivasamurthy and Ramamurti 1981a). Subrahmanyam 

and his colleagues (Subrahmanyam and Kaza 1986) 

examined the effects of pre-twist, pre-cone, setting angle 

and Coriolis forces on vibration and buckling behavior of 

rotating torsional rigid cantilevered beams. Modal 

characteristics of a rotating cantilever plate and also a 

dynamic modelling method for rectangular plates 
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undergoing prescribed overall motion are investigated by 

Yoo and Pierre (2003). Houang and Soedel (1987) worked 

on the effects of Coriolis acceleration on free and forced in-

plane vibrations of rotating rings on elastic foundation. 

Wang et al. showed theoretically that when the plate is 

electrically driven into thickness-shear vibration in one of 

the two in-plane directions of plate rotating around the plate 

normal, the Coriolis force due to rotation causes a 

thickness-shear vibration in a perpendicular direction with 

an electrical output (Wang et al. 2015a) and in another 

paper, they showed that, topological order and vibrational 

edge modes can exist in a classical mechanical system 

consisting of a two-dimensional honeycomb lattice of 

masses and springs (Wang et al. 2015b). A dynamic model 

of a functionally graded rectangular rotating plate 

undergoing large overall motions is presented by Li and 

Zhang (2016). 

A layerwise finite element formulation has been 

presented by Pandey and Pradyumna (2015) for dynamic 

analysis of two types of FG sandwich plates with nonlinear 

temperature variation along the thickness; FGMs have 

temperature dependent material properties. Thermal 

vibration study of magnetostrictive FG plate under rapid 

heating is computed by using the generalized differential 

quadrature (GDQM) method presented by Hong (2012). 

In the current research, vibration characteristics of 

functionally graded rotating plates subjected to thermal 

loadings are demonstrated. Thermal properties of materials 

are intended as thermo-elastic and non-classical governing 

equation and related boundary conditions are derived by 

Hamilton’s principle. To solve the governing equation, 

GDQM is used. The cantilever (clamped at x = 0, free at x = 

L, free at y = 0, free at y = b) boundary conditions are 

considered. These boundary conditions make a special case 

in which vibration behavior of the plate in fundamental 

frequency is different from the behavior of the plate 

vibrating with higher mode of frequency. In addition, the 

effect of various parameters such as aspect ratio, twist 

angle, angular velocity, temperature change, mode number 

and FG index on vibration behavior of plates has been 

studied and the results are presented by figures and tables. 

Results show a good agreement, at the same special state, 

with past investigations especially with experimental results 
 

 

by Lessia (1969) and analytical results by Wang et al. 

(1987) that are fundamental researches in the field of plate’s 

vibrations. In above mentioned works, Coriolis and thermal 

effects had not been taken into account. In addition, using 

GDQM method in this present work is different from those 

works. The results of these studies, especially vibration 

behaviors of structures are very important and useful for 

engineers. 
 

 

2. Preliminaries 
 

2.1 FGM plates 
 

In Fig. 1, a FGM plate with the length of a, width of b 

and thickness of h, made of both ceramics and metal is 

shown. The materials at the bottom surface (𝑍 = −𝑕 2)  

and the top surface (𝑍 = 𝑕 2)  of this structure are metal 

and ceramic. The local effective material properties of the 

FGM plate can be calculated by the power law approach. 

Based on the Power-law approach, the effective properties 

of functionally graded plates involving Young’s modulus 

(𝐸), Poisson’s ratio (𝜈), mass density  𝜌  and thermal 

expansion coefficient (𝛼) can be written as follows 
 

𝐸 𝑧 = 𝐸𝑐𝑉𝑐(𝑧) + 𝐸𝑚𝑉𝑚  (1) 
 

𝜈 𝑧 = 𝜈𝑐𝑉𝑐(𝑧) + 𝐸𝜈𝑚𝑉𝑚  (2) 
 

𝜌 𝑧 = 𝜌𝑐𝑉𝑐(𝑧) + 𝜌𝑚𝑉𝑚  (3) 
 

𝛼 𝑧 = 𝛼𝑐𝑉𝑐(𝑧) + 𝛼𝑚𝑉𝑚  (4) 
 

Now, the indexes m and c refer to metal and ceramic 

phases, respectively. The volume fraction of ceramic and 

metal phases can be shown based on the power-law 

function as 

𝑉𝑓 𝑧 =  
1

2
+

𝑧

𝑕
 
𝑘

 (5) 

 

where, k represents the power-law index. Additionally, the 

neutral axis of the FGM plate where the end supports are 

located on, can be determined by the following relation 

(Young and Liou 1992) 
 

 

 

 

Fig. 1 Geometrical position and boundary condition of the rotating FGM plate 
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𝑧0 =
 𝑧𝐸 𝑧 𝑑𝑧

(𝑕 2 )

−(𝑕 2 )

 𝐸 𝑧 𝑑𝑧
(𝑕 2 )

−(𝑕 2 )

 (6) 

 

 

3. Formulation 
 

The displacement field of the classical plate along x, y 

and z-directions can be written as 
 

𝑢𝑥 = −𝑧
𝜕𝑊

𝜕𝑥
,    𝑢𝑦 = −𝑧

𝜕𝑊

𝜕𝑦
,    𝑢𝑧 = 𝑊(𝑥, 𝑦, 𝑡) (7) 

 

where, W stands for transverse deformation of the plate. 

The required components of the strain tensor can be 

obtained as 
 

𝜀𝑥𝑥 = −𝑧
𝜕2𝑊

𝜕𝑥2
,   𝜀𝑦𝑦 = −𝑧

𝜕2𝑊

𝜕𝑦2
,   𝜀𝑥𝑦 = −2𝑧

𝜕2𝑊

𝜕𝑥𝜕𝑦
 (8) 

 

Based on elasticity theory, the related components of 

stress tensor for the bulk plate can be calculated by the 

Hook’s law as follows 
 

𝜍𝑥𝑥 =
𝐸

1 − 𝜈2
 𝜀𝑥𝑥 + 𝜐𝜀𝑦𝑦   

= −
𝐸𝑧

1 − 𝜈2
 
𝜕2𝑊

𝜕𝑥2
+ 𝜐

𝜕2𝑊

𝜕𝑦2
  

(9) 

 

𝜍𝑦𝑦 =
𝐸

1 − 𝜈2
 𝜀𝑦𝑦 + 𝜐𝜀𝑥𝑥   

= −
𝐸𝑧

1 − 𝜈2
 
𝜕2𝑊

𝜕𝑦2
+ 𝜐

𝜕2𝑊

𝜕𝑥2
  

(10) 

 

𝜍𝑥𝑦 =
𝐸

2(1 + 𝜈)
𝜀𝑥𝑦 = −

𝐸𝑧

(1 + 𝜈)

𝜕2𝑊

𝜕𝑥𝜕𝑦
 (11) 

 

According to the continuum surface elasticity theory, the 

related strain energy of this plate imposed by surface stress 

can be formulated as 
 

𝑈 =
1

2
  𝜍𝑖𝑗 𝜀𝑖𝑗𝑑𝑧𝑑𝐴

(𝑕 2 )

−(𝑕 2 )𝐴

 (12) 

 

Plate rotates with the constant angular velocity,  Ω . 

Considering an arbitrary point, P, in the middle of the 

plane, the absolute position of P can be represented as 

follows 

𝑟𝑝 = 𝑟0 + 𝑟 + 𝑑 (13) 
 

In which 𝑑 = 𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘 , 𝑟0 + 𝑟 = 𝑅1𝑖 + 𝑅2𝑗 + 𝑅3𝑘 ; 

the definition of angular velocity is Ω = Ω1𝑖 + Ω2𝑗 + Ω3𝑘 . 

To escape from a difficult computational problem-

solving procedure, we assume that 𝑅𝑖  and Ω𝑖  are constant. 

The absolute velocity of the point P includes three 

following terms 
 

𝑣𝑝 =
𝜕𝑑

𝜕𝑡
+ Ω × 𝑑 + Ω ×  𝑟0 + 𝑟  (14) 

 

The first term is due to displacement, the second term is 

caused by angular rotation and the last one shows relative 

axis rotation. Neglecting the rotary inertia, this velocity 

provides the kinetic energy. The kinetic energy can be 

written in four statements as follows 
 

𝑃1 =
1

2
 𝜌   

𝜕𝑤

𝜕𝑡
 

2

+ 𝑧  
𝜕2𝑤

𝜕𝑥𝜕𝑡
 

2

+ 𝑧  
𝜕2𝑤

𝜕𝑦𝜕𝑡
 

2

 𝑑𝑉
𝑉

 (15) 

 

𝑃2 =
1

2
 𝜌  Ω × 𝑑 .  Ω × 𝑑  𝑑𝑉
𝑉

 

=  𝜌   Ω1 + Ω2 𝑤
2 +  Ω1 + Ω3 𝑧

2  
𝜕𝑤

𝜕𝑦
 

2

 
𝑉

 

 Ω2 + Ω3 𝑧
2  

𝜕𝑤

𝜕𝑥
 

2

− 2Ω2Ω3𝑧𝑤  
𝜕𝑤

𝜕𝑦
  

 −2Ω1Ω3𝑧𝑤  
𝜕𝑤

𝜕𝑥
 − 2Ω1Ω2  

𝜕𝑤

𝜕𝑥
  

𝜕𝑤

𝜕𝑦
  𝑑𝑉 

(16) 

 

𝑃3 =   𝜌 Ω × 𝑑 .  
𝜕𝑑

𝜕𝑡
  

𝐴

𝑑𝑉 

=    𝐼1  Ω1  
𝜕𝑤

𝜕𝑦
.
𝜕𝑤

𝜕𝑡
 + Ω2  

𝜕𝑤

𝜕𝑥
.
𝜕𝑤

𝜕𝑡
    

𝐴

 

  +Ω2  𝑤.
𝜕2𝑤

𝜕𝑥𝜕𝑡
 + Ω1  𝑤.

𝜕2𝑤

𝜕𝑦𝜕𝑡
    

 +  𝐼2  Ω3  
𝜕2𝑤

𝜕𝑥𝜕𝑡
.
𝜕𝑤

𝜕𝑦
 + Ω3  

𝜕2𝑤

𝜕𝑦𝜕𝑡
.
𝜕𝑤

𝜕𝑥
    𝑑𝐴 

(17) 

 

𝑈𝑔 =
1

2
 𝑁𝑥

0  
𝜕𝑤

𝜕𝑥
 

2

+ 2𝑁𝑥𝑦
0  

𝜕𝑤

𝜕𝑥
.
𝜕𝑤

𝜕𝑦
 + 𝑁𝑦

0  
𝜕𝑤

𝜕𝑦
 

2

  (18) 

 

In which,  𝐼0, 𝐼1, 𝐼2 are defined in the following 

equation 

 𝐼0, 𝐼1, 𝐼2 =  𝜌 1, 𝑧, 𝑧2 𝑑𝑧
(𝑕 2 )

−(𝑕 2 )

 (19) 

 

The first statement shows the kinetic energy of 

vibrational motion. The second statement shows the work 

done by displacements related to centrifugal forces and the 

third statement exhibits the work done by displacements 

related to Coriolis forces which plays an important role in 

this research. Last statement shows the work done by 

independent-displacement centrifugal forces. 

Also, the work done by the external forces can be 

calculated as 
 

𝑊𝑒𝑥𝑡 =   𝑁𝑇𝑥  
𝜕𝑊

𝜕𝑥
 

2

+ 𝑁𝑇𝑦  
𝜕𝑊

𝜕𝑦
 

2

 
𝐴

𝑑𝐴 (20) 

 

in which 
 

𝑁𝑇𝑥 =  𝜍𝑥𝑥
𝑇 𝑑𝑧

(𝑕 2 )

−(𝑕 2 )

 , 𝑁𝑇𝑦 =  𝜍𝑦𝑦
𝑇 𝑑𝑧

(𝑕 2 )

−(𝑕 2 )

 (21) 

 

Thermal loading is applied along the neutral axis. These 

forces cause the axial stress as follows 
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𝜍𝑥𝑥
𝑇 = −

𝐸𝛼(𝑇 − 𝑇0)

1 − 𝜈
 (22) 

 

𝑇0 is the initial uniform temperature of a stress free 

state that it is assumed as 300 K. 
 

  𝛿𝐾 − 𝛿𝑈 + 𝛿𝑊𝑒𝑥𝑡  𝑑𝑡 = 0
𝑡2

𝑡1

 (23) 

 

Taking the variation of w and integrating by part, the 

equations of motion and the boundary conditions will be 

obtained by setting the coefficient of δw equal to zero based 

on the fundamental lemma as follows 
 

𝛿𝑈 =   𝑀𝑥𝑥𝛿  
𝜕2𝑊

𝜕𝑥2
 + 𝑀𝑦𝑦 𝛿  

𝜕2𝑊

𝜕𝑦2
  

𝐴

 

 +𝑀𝑥𝑦𝛿  
𝜕2𝑊

𝜕𝑥𝜕𝑦
 + 𝑀𝑥𝑦𝛿  

𝜕2𝑊

𝜕𝑦𝜕𝑥
  𝑑𝐴 

= −𝑀𝑥𝑥𝛿  
𝜕𝑤

𝜕𝑥
 

0

𝑎

+
𝜕𝑀𝑥𝑥

𝜕𝑥
 𝛿𝑤 0

𝑎 −  
𝜕2𝑀𝑥𝑥

𝜕𝑥2
𝛿𝑤𝑑𝐴

𝐴

 

−𝑀𝑦𝑦 𝛿  
𝜕𝑤

𝜕𝑦
 

0

𝑏

+
𝜕𝑀𝑦𝑦

𝜕𝑦
 𝛿𝑤 0

𝑏 −  
𝜕2𝑀𝑦𝑦

𝜕𝑦2
𝛿𝑤𝑑𝐴

𝐴

 

−𝑀𝑥𝑦 𝛿  
𝜕𝑤

𝜕𝑦
 

0

𝑎

+
𝜕𝑀𝑥𝑦

𝜕𝑥
𝛿 𝑤 0

𝑏 −  
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
𝛿𝑤𝑑𝐴

𝐴

 

−𝑀𝑥𝑦 𝛿  
𝜕𝑤

𝜕𝑥
 

0

𝑏

+
𝜕𝑀𝑥𝑦

𝜕𝑦
𝛿 𝑤 0

𝑎 −  
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
𝛿𝑤𝑑𝐴

𝐴

 

(24) 

 

in which 
 

 𝑀𝑥𝑥 , 𝑀𝑦𝑦 , 𝑀𝑥𝑦  
𝑇

=   𝜍𝑥𝑥 𝑧, 𝜍𝑦𝑦 𝑧, 𝜍𝑥𝑦 𝑧 
𝑇
𝑑𝑧

(𝑕 2 )

−(𝑕 2 )

 (25) 

 

The kinetic energy can be written as 
 

𝛿𝑃1 = − 𝐼0

𝜕2𝑤

𝜕𝑡2
𝛿𝑤𝑑𝐴

𝐴

+ 𝐼1
𝜕3𝑤

𝜕𝑥𝜕𝑡2
𝛿 𝑤 0

𝑎  

− 𝐼1
𝜕4𝑤

𝜕𝑡2𝜕𝑥2
𝛿𝑤𝑑𝐴 + 𝐼1

𝜕3𝑤

𝜕𝑦𝜕𝑡2
𝛿 𝑤 0

𝑏

𝐴

 

− 𝐼1
𝜕4𝑤

𝜕𝑡2𝜕𝑦2
𝛿𝑤𝑑𝐴

𝐴

 

(26) 

 

𝛿𝑈𝑔 = 𝑁𝑥
0
𝜕𝑤

𝜕𝑥
𝛿 𝑤 0

𝑎  

− 𝑁𝑥
0
𝜕2𝑤

𝜕𝑥2
𝛿𝑤𝑑𝐴 + 𝑁𝑦

0
𝜕𝑤

𝜕𝑦
𝛿 𝑤 0

𝑏

𝐴

 

− 𝑁𝑦
0
𝜕2𝑤

𝜕𝑦2
𝛿𝑤𝑑𝐴 + 𝑁𝑥𝑦

0
𝜕𝑤

𝜕𝑥
𝛿 𝑤 0

𝑏

𝐴

 

− 𝑁𝑥𝑦
0

𝜕2𝑤

𝜕𝑥𝜕𝑦
𝛿𝑤𝑑𝐴 +

𝐴

𝑁𝑥𝑦
0

𝜕𝑤

𝜕𝑦
𝛿 𝑤 0

𝑎  

− 𝑁𝑥𝑦
0

𝜕2𝑤

𝜕𝑥𝜕𝑦
𝛿𝑤𝑑𝐴

𝐴

 

(27) 

 

𝛿𝑃2 =  𝐼0 Ω1 + Ω2 𝑤𝛿𝑤𝑑𝐴
𝐴

+ 𝐼2 Ω1 + Ω3 
𝜕𝑤

𝜕𝑦
𝛿 𝑤 0

𝑏  

− 𝐼2 Ω1 + Ω3 
𝜕2𝑤

𝜕𝑦2
𝐴

𝛿𝑤𝑑𝐴 

+𝐼2 Ω2 + Ω3 
𝜕𝑤

𝜕𝑥
𝛿 𝑤 0

𝑎  

− 𝐼2 Ω2 + Ω3 
𝜕2𝑤

𝜕𝑥2
𝐴

𝛿𝑤𝑑𝐴 

−2  𝐼1 Ω2Ω3 
𝜕𝑤

𝜕𝑦𝐴

𝛿𝑤𝑑𝐴 − 2𝐼1 Ω2Ω3 𝑤𝛿 𝑤 0
𝑏  

+2  𝐼1 Ω2Ω3 
𝜕𝑤

𝜕𝑦𝐴

𝛿𝑤𝑑𝐴 

−2  𝐼1 Ω1Ω3 
𝜕𝑤

𝜕𝑥𝐴

𝛿𝑤𝑑𝐴 

−2𝐼1 Ω1Ω3 𝑤𝛿 𝑤 0
𝑎 + 2  𝐼1 Ω1Ω3 

𝜕𝑤

𝜕𝑥𝐴

𝛿𝑤𝑑𝐴 

−2𝐼0 Ω1Ω2 
𝜕𝑤

𝜕𝑦
𝛿 𝑤 0

𝑎  

+2  𝐼0 Ω1Ω2 
𝜕2𝑤

𝜕𝑥𝜕𝑦𝐴

𝛿𝑤𝑑𝐴 

−2𝐼0 Ω1Ω2 
𝜕𝑤

𝜕𝑥
𝛿 𝑤 0

𝑏  

+2  𝐼0 Ω1Ω2 
𝜕2𝑤

𝜕𝑥𝜕𝑦𝐴

𝛿𝑤𝑑𝐴 

(28) 

 

𝛿𝑃3 = − 𝐼1Ω1

𝜕2𝑤

𝜕𝑦𝜕𝑡𝐴

𝛿𝑤𝑑𝐴 

− 𝐼1Ω2

𝜕2𝑤

𝜕𝑥𝜕𝑡𝐴

𝛿𝑤𝑑𝐴 + 𝐼1Ω1

𝜕𝑤

𝜕𝑡
𝛿 𝑤 0

𝑏  

− 𝐼1Ω1

𝜕2𝑤

𝜕𝑦𝜕𝑡𝐴

𝛿𝑤𝑑𝐴 + 𝐼1Ω2

𝜕𝑤

𝜕𝑡
𝛿 𝑤 0

𝑎  

− 𝐼1Ω2

𝜕2𝑤

𝜕𝑥𝜕𝑡𝐴

𝛿𝑤𝑑𝐴 −  𝐼1Ω2

𝜕2𝑤

𝜕𝑥𝜕𝑡𝐴

𝛿𝑤𝑑𝐴 

+  𝐼1Ω1

𝜕2𝑤

𝜕𝑦𝜕𝑡𝐴

𝛿𝑤𝑑𝐴 −  𝐼1Ω2

𝜕2𝑤

𝜕𝑥2
𝐴

𝛿𝑤𝑑𝐴 

+  𝐼1Ω1

𝜕2𝑤

𝜕𝑦2
𝐴

𝛿𝑤𝑑𝐴+𝐼1Ω2

𝜕𝑤

𝜕𝑥
𝛿 𝑤 0

𝑎  

−𝐼1Ω1

𝜕𝑤

𝜕𝑦
𝛿 𝑤 0

𝑏 − 𝐼2Ω3

𝜕2𝑤

𝜕𝑥𝜕𝑡
𝛿 𝑤 0

𝑏  

+𝐼2Ω3

𝜕2𝑤

𝜕𝑦𝜕𝑡
𝛿 𝑤 0

𝑎 + 𝐼2Ω3

𝜕2𝑤

𝜕𝑦𝜕𝑡
𝛿 𝑤 0

𝑎  

−𝐼2Ω3

𝜕2𝑤

𝜕𝑥𝜕𝑡
𝛿 𝑤 0

𝑏  

(29) 

 

𝛿𝑊𝑒𝑥𝑡 = 𝑁𝑇𝑥

𝜕𝑤

𝜕𝑥
𝛿 𝑤 0

𝑎 −  𝑁𝑇𝑥
𝐴

𝜕2𝑤

𝜕𝑥2
𝛿𝑤𝑑𝐴 

+𝑁𝑇𝑦

𝜕𝑤

𝜕𝑦
𝛿 𝑤 0

𝑏 −  𝑁𝑇𝑦
𝐴

𝜕2𝑤

𝜕𝑦2
𝛿𝑤𝑑𝐴 

(30) 
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After the above steps, to obtain the governing equation 
 

 

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

 =  

𝐷11 𝐷12 0
𝐷21 𝐷22 0

0 0 𝐷66

 

 
 
 
 
 
 
 
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2

𝜕2𝑤

𝜕𝑥𝜕𝑦 
 
 
 
 
 
 

;   

𝐷11 𝐷12 0
𝐷21 𝐷22 0

0 0 𝐷66

  

=  

 
 
 
 
 
 
 −

𝐸(𝑧)𝑧2

1 − 𝜈2
−

𝐸(𝑧)𝑧2𝜈

1 − 𝜈2
0

−
𝐸(𝑧)𝑧2𝜈

1 − 𝜈2
−

𝐸(𝑧)𝑧2

1 − 𝜈2
0

0 0 −
𝐸(𝑧)𝑧2

(1 + 𝜈) 
 
 
 
 
 
 

𝑑𝑧
(𝑕 2 )

−(𝑕 2 )

 

(31) 

 

And the governing equation is as follows 
 

𝐷11

𝜕4𝑤

𝜕𝑥4
+  𝐷12 + 𝐷21 + 2𝐷66 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤

𝜕𝑦4
 

+𝑁𝑥
0
𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦

0
𝜕2𝑤

𝜕𝑦2
+ 2𝑁𝑥𝑦

0
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑁𝑇𝑥

𝜕2𝑤

𝜕𝑥2
 

+𝑁𝑇𝑦

𝜕2𝑤

𝜕𝑦2
+ 𝐼2 Ω1 + Ω3 

𝜕2𝑤

𝜕𝑦2
+ 𝐼2 Ω2 + Ω3 

𝜕2𝑤

𝜕𝑥2
 

+𝐼1Ω2

𝜕2𝑤

𝜕𝑥2
− 𝐼1Ω1

𝜕2𝑤

𝜕𝑦2
+ 2𝐼0 Ω1Ω2 

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

+𝐼0 Ω1 + Ω2 𝑤 = 𝐼0

𝜕2𝑤

𝜕𝑡2
+ 2𝐼1Ω1

𝜕2𝑤

𝜕𝑦𝜕𝑡
+ 2𝐼1Ω2

𝜕2𝑤

𝜕𝑥𝜕𝑡
 

+𝐼1
𝜕4𝑤

𝜕𝑡2𝜕𝑦2
+ 𝐼1

𝜕4𝑤

𝜕𝑡2𝜕𝑥2
+ 𝐼1Ω2

𝜕2𝑤

𝜕𝑥𝜕𝑡
− 𝐼1Ω1

𝜕2𝑤

𝜕𝑦𝜕𝑡
 

(32) 

 

In the final step, assuming that Ω1 = Ω0 cos 𝜃0, Ω2 = 

Ω0 sin 𝜃0  and Ω3 = 0 

 

𝐷11

𝜕4𝑤

𝜕𝑥4
+ 2 𝐷21 + 𝐷66 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤

𝜕𝑦4
 

+ 𝑁𝑥
0 + 𝑁𝑇𝑥 + Ω0𝐼2 sin 𝜃 + Ω0𝐼1 sin 𝜃 

𝜕2𝑤

𝜕𝑥2
 

+ 𝑁𝑦
0 + 𝑁𝑇𝑦 + Ω0𝐼2 cos 𝜃 − Ω0𝐼1 sin 𝜃 

𝜕2𝑤

𝜕𝑦2
 

+ 2𝑁𝑥𝑦
0 + 𝐼0Ω0

2𝑠𝑖𝑛2𝜃 
𝜕2𝑤

𝜕𝑥𝜕𝑦
 

+(𝐼0Ω0(𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃))𝑤 

= 𝐼0

𝜕2𝑤

𝜕𝑡2
+ 3𝐼1Ω0𝑐𝑜𝑠𝜃

𝜕2𝑤

𝜕𝑦𝜕𝑡
+ 3𝐼1Ω0𝑠𝑖𝑛𝜃

𝜕2𝑤

𝜕𝑥𝜕𝑡
 

+𝐼1(
𝜕4𝑤

𝜕𝑡2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑡2𝜕𝑥2
) 

(33) 

 

 

4. Employing generalized differential 
quadrature method 
 

In this section, generalized differential quadrature 

method (GDQM) is applied to governing equation to 

calculate the spatial derivative of the field variable from the 

equilibrium equation. Recently, this method has been used 

by many researchers to analyze plates or beams behaviors 

(Shahrokhi et al. 2015, Ghadiri and Shafiei 2015, 

Tornabene et al. 2014, 2015a, b, Sofiyev 2015). In this 

method, grids suggest the locations of calculating 

derivatives and field variables. Derivative of the function 

with respect to a variable at an arbitrary node is equal to 

sum of the function values at all of nodes of mesh lines. 
 

 𝜕
𝑟𝑓(𝑥)

𝜕𝑥𝑟
 
𝑥=𝑥,𝑃

=  𝐶𝑖𝑗
 𝑟 𝑓(𝑥𝑖)

𝑛

𝑗=1

 (34) 

 

In the above equation, n is the total number of discrete 

grid points in approximation and 𝐶𝑖𝑗
 𝑟 

 is the weighting 

coefficient. For example, 𝐶𝑖𝑗
 𝑟 

 is obtained from the first 

derivative which is defined as: 
 

𝐶𝑖𝑗
 1 

=
𝑀 𝑥𝑖 

 𝑥𝑖 − 𝑥𝑗  𝑀 𝑥𝑗  
, 

𝑖, 𝑗 = 1,2, … , 𝑛    and    𝑖 ≠ 𝑗 

(35) 

 

In which 
 

𝑀 𝑥𝑖 =   𝑥𝑖 − 𝑥𝑗  

𝑛

𝑗=1,𝑗≠𝑖

 (36) 

 

The equation of higher order derivate for weighting 

coefficient is shown below 
 

𝐶𝑖𝑗
 𝑟 = 𝑟  𝐶𝑖𝑗

 𝑟−1 
𝐶𝑖𝑗

 1 
𝐶𝑖𝑗

 𝑟−1 

 𝑥𝑖 − 𝑥𝑗  
  

𝑖, 𝑗 = 1,2, … , 𝑛    and    𝑖 ≠ 𝑗 

(37) 

 

𝐶𝑖𝑖
 𝑟 =  𝐶𝑖𝑗

 𝑟 

𝑛

𝑗=1,𝑖≠𝑗

 

𝑖, 𝑗 = 1,2, … , 𝑛    and    𝑖 = 𝑗 

(38) 

 

Selected grid points are along the coordinate axes 

direction at the computational domain. It carefully shows 

that the result of non-uniform grid points with the same 

number of spaced grid point is great. Thus, similar to this, 

choosing the set of grid points in natural coordinate 

directions of x and y, as shown in the figure of the plate, the 

length of plate in x direction is a and in the y direction is b. 

So 

𝑥𝑖 =
𝑎

2
 1 − cos  

 𝑖 − 1 𝜋

 𝑛𝑖 − 1 
   

𝑦𝑖 =
𝑏

2
 1 − cos 

 𝑗 − 1 𝜋

 𝑛𝑗 − 1 
   

(39) 

 

𝜁𝑖 =
1

2
 1 − cos  

 𝑖 − 1 𝜋

 𝑛𝑖 − 1 
   

𝜂𝑖 =
1

2
 1 − cos 

 𝑗 − 1 𝜋

 𝑛𝑗 − 1 
   

(40) 
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Assuming W as the following periodic form 

 

𝑤 𝑥, 𝑦, 𝑡 = 𝑊(𝑥, 𝑦)𝑒𝑖𝜔𝑡  (41) 

 

Substituting W in the equation of the motion, the 

governing equation of the rotating plate is calculated as 

 

𝐷11  𝐶𝑖,𝑘
 4 

𝑊𝑘,𝑗

𝑛𝑗

𝑘=1

 

+ 𝐷12 + 𝐷21 + 2𝐷66   𝐶𝑖,𝑘1
 2 

𝐶 𝑖,𝑘2
 2 

𝑊𝑘1,𝑘2

𝑛𝑗

𝑘2=1

𝑛𝑖

𝑘1=1

 

+𝐷22  𝐶 𝑖,𝑘
 4 

𝑊𝑖,𝑘

𝑛𝑗

𝑘=1

 𝐶𝑖,𝑘
 1 

 𝑁𝑥𝑥  𝐶𝑖,𝑘
 1 

𝑊𝑘,𝑗

𝑛𝑖

𝑘=1

 

𝑛𝑖

𝑘=1

 

+  𝐶 𝑖,𝑘
 1 

 𝑁𝑦𝑦  𝐶 𝑖,𝑘
 1 

𝑊𝑘,𝑗

𝑛𝑗

𝑘=1

 

𝑛𝑗

𝑘=1

 

 𝐶𝑖,𝑘
 1 

 𝑁 𝑥𝑦  𝐶 𝑖,𝑘
 1 

𝑊𝑖,𝑘

𝑛𝑗

𝑘=1

 

𝑛𝑖

𝑘=1

 

+  𝐶 𝑖,𝑘
 1 

 𝑁𝑦𝑦  𝐶𝑖,𝑘
 1 

𝑊𝑘,𝑗

𝑛𝑖

𝑘=1

 

𝑛𝑗

𝑘=1

 

(42) 

 

 

 

 

 

 

 𝐼2 Ω2 + Ω3 + 𝐼1Ω2  𝐶𝑖,𝑘
 2 

𝑊𝑘,𝑗

𝑛𝑖

𝑘=1

 

+ 𝐼2 Ω1 + Ω3 + 𝐼1Ω1  𝐶 𝑖,𝑘
 1 

𝑊𝑖,𝑘

𝑛𝑗

𝑘=1

 2𝐼0Ω2Ω1  

  𝐶𝑖,𝑘1
 1 

𝐶 𝑖,𝑘2
 1 

𝑊𝑘1,𝑘2

𝑛𝑗

𝑘2=1

𝑛𝑖

𝑘1=1

+ 𝐼0 Ω2 + Ω1 𝑊𝑖,𝑗  

=
𝜕2  𝐼0𝑊𝑖,𝑗 + 𝐼1  𝐶𝑖,𝑘

 1 
𝑊𝑘,𝑗

𝑛𝑖
𝑘=1 +  𝐶 𝑖,𝑘

 2 
𝑊𝑖,𝑘

𝑛𝑗

𝑘=1
  

𝜕𝑡2
 

+
𝜕  𝐼1Ω1  𝐶 𝑖,𝑘

 1 
𝑊𝑖,𝑘

𝑛𝑗

𝑘=1
+ 3𝐼1Ω2  𝐶𝑖,𝑘

 1 
𝑊𝑘,𝑗

𝑛𝑖
𝑘=1   

𝜕𝑡
 

(42) 

 

where, 𝐶𝑖𝑗
 𝑟 

 and 𝐶 𝑖𝑗
 𝑟 

 are weighting coefficients associated 

with the r-th order derivative in x‒and y‒directions, 

respectively. Also, ni and nj stand for the numbers of total 

discrete grid points along x and y directions, respectively. 

Now, boundary conditions and eigenvalues are applied 

to above equation to reach the final form for the solution as 

below 
 

 
 𝐴𝑏𝑏   𝐴𝑏𝑖  

 𝐴𝑖𝑏   𝐴𝑖𝑖  
  

𝑊𝑏

𝑊𝑖
  

= 𝜔2  
0 0

 𝐵𝑖𝑏   𝐵𝑖𝑖  
  

𝑊𝑏

𝑊𝑖
 + 𝜔  

0 0
 𝐶𝑖𝑏   𝐶𝑖𝑖  

  
𝑊𝑏

𝑊𝑖
  

(43) 

Table 1 Comparison of the results for vibration of the classical plate with CFFF boundary conditions 

 
Mode number = 1 Mode number = 2 Mode number = 3 Mode number = 4 

(Lessia 1969) 3.494 8.547 21.44 27.46 

(Wang et al. 1987) 3.41 8.28 21.45 26.67 

Present 3.454 8.866 22.366 28.265 
 

Table 2 Comparison of the results for vibration of the FGM rotary plate with CFFF boundary conditions 

 
Fundamental 

frequency 

Second 

frequency 

Third 

frequency 

Forth 

frequency 

Fifth 

frequency 

Yoo and Pierre 2003 13.273 15.311 29.792 43.289 48.851 

Li and Zhang 2016 13.260 15.278 29.728 43.126 49.406 

Present 13.221 15.345 30.571 43.594 49.811 
 

Table 3 The temperature related properties of metal and ceramic phases for smart materials (Yang and Shen 2002) 

Material Properties X0 X-1 X1 X2 X3 

SUS304 

E (Pa) 2.0104e+11 0 0.000308 -6.53e-07 0 

α(K-1) 1.23e-05 0 0.000809 0 0 

ρ (Kg/m3) 8166 0 0 0 0 

ν 0.3262 0 -0.0002 3.80e-07 0 

Aluminum Oxid 

E (Pa) 3.4955e+11 0 -0.0003853 4.027e-07 -1.673e-11 

α(K-1) 6.8269e-06 0 0.0001838 0 0 

ρ (Kg/m3) 3750 0 0 0 0 

ν 0.26 0 0 0 0 
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where, the subscripts Wb and Wi refer to the boundary and 

domain grid points, respectively. 
 

 

5. Results and discussion 
 

Here, the results of numerical solutions for the trans-

verse free vibration of the rotating FG plate are presented. 

The results are compared with previous results of other 

studies in several numerical examples to illustrate the 

accuracy of this work. In order to display the influence of 

plate important parameters such as the angular velocity, 

temperature change, FG-index and aspect ratio on various 

mode numbers, several figures and tables are presented. 

Non-dimensional parameters are defined as follows to make 

the analysis easier 
 

𝑟 = 𝛿𝐿;   Φ2 =  
𝑚0

𝐸𝐼
 
𝑐𝑒𝑟𝑎𝑚𝑖𝑐

𝐿4Ω2; 

(44) 

Ψ2 =  
𝑚0

𝐸𝐼
 
𝑐𝑒𝑟𝑎𝑚𝑖𝑐

𝐿4𝜔2;  
𝑚0

𝐸𝐼
 
𝑐𝑒𝑟𝑎𝑚𝑖𝑐

=
12𝜌𝑐𝑒𝑟𝑎𝑚𝑖𝑐

𝐸𝑐𝑒𝑟𝑎𝑚𝑖𝑐 𝑕1
2 ; 

 

where, Ψ, Φ and δ indicate non-dimensional frequency, 

non-dimensional angular velocity and non-dimensional hub 

radius, respectively. 

Solving above equation can represent vibration behavior 
 

 

of a plate rotating with a constant angular velocity around 

the vertical axis. This section shows the effect of different 

thermal changes, FG indexes, angular velocities and aspect 

ratios on the non-dimensional frequency. Firstly, we 

compared the classical plate vibration resulted from solving 

the above equation with the provided plate in this research 

with the same condition: cantilever boundary condition and 

various mode numbers. It shows a good agreement with 

previous experimental study by Lessia (1969) and analytical 

study by Wang et al. (1987). The results of this comparison 

are presented in Table 1. 

In other comparison, the results of proposed method 

shows good accuracy with the results of previous work 

which are in the field of rectangular functionally graded 

plate’s vibration by Li and Zhang (2016) and rectangular 

rotary plate’s vibration by Yoo and Pierre (2003). This 

comparison is shown in Table. 2. And these results have 

been extracted for special non-dimensional angular velocity 

(Φ = 10) and special non-dimensional hub radius (𝛿 = 1). 

Mechanical properties of this plate is related to the 

temperature of both phases including metal and ceramic. 

These properties are assumed thermo-elastic and are related 

to the temperature. Following equation is presented for 

using these properties at various temperatures. Substituting 

the parameters of Table 3 into the mechanical properties 

equation, the properties in different temperatures can be 
 

 

 

Fig. 2 The effect of various angular velocities on non-dimensional frequency in different FG indexes 
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calculated. T in this equation is the operating temperature of 

the system and shows the relation between material 

properties and temperature. Yang and Shen, presented these 

details in their previous study (Yang and Shen 2002) 
 

X = X0(X−1T−1 + X1T + X2T2 + X3T3 + 1) (45) 
 

Fig. 2 shows the effect of various angular velocities on 

the non-dimensional frequency of a functionally graded 

rotating plate. Different mode numbers from the 

fundamental frequency to the forth frequency were 

included. Every graph is drawn for different FG indexes 

from pure metal to pure ceramic. These results have been 

calculated assuming that the temperature change is equal to 

zero, hub radius is zero, twist angle is 37 degrees and 

plate’s dimension is  
𝑎

𝑕
= 30. When the angular velocity 

increases, the amount of non-dimensional frequency 

increases for all of mode numbers. By increasing in amount 

of mode number, it is expected that frequency increases due 

to wavelength increase. This is shown in the Fig. 2 clearly. 

This increase is resulted from increasing the rotary inertia. 

Increase the frequency of pure ceramic plate is more 

 

 

considerable than that for FGM or pure ceramic plates. The 

reason of this behavior is that, when the phase changes from 

metal to ceramic, the stiffness of the system increases. The 

increase in frequency is resulted from an increase in 

stiffness of the system. 

Fig. 3 shows the effect of temperature change on non-

dimensional frequency of functionally graded rotating plate 

in different angular velocities. Various mode numbers from 

fundamental frequency to the forth frequency were 

included. These results have been calculated with this 

assumption that the hub radius is equal to zero, plate 

dimension is 
𝑎

𝑕
= 50, FG index is equal to 1 and twist angle 

is 37 degrees. Based on classical plate theory, increasing the 

value of  
𝑎

𝑕
 causes that the extracted results would be more 

realistic. The reason of this behavior is that, some effects 

have been neglected in the classical plate theory; for 

example, transverse deformations are more effective at 

smaller amounts of  
𝑎

𝑕
. At the fundamental frequency, the 

behavior of plate vibration is different from other cases. 

This difference in results is due to special selected boundary 

conditions. Previous articles have shown that the response 

 

Fig. 3 The effect of various thermal changes on non-dimensional frequency at different angular velocities 
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of fundamental frequency of a cantilever plate (i.e. with 

CFFF boundary conditions) for different parameters is 

different from other boundary conditions. Fundamental 

frequency with a cantilever boundary condition has a 

unique behavior, for example, it increases with increasing 

the rate of the cross-section (Huang and Li 2010) and 

increasing nonlocal parameters at the nonlocal theory 

(Aranda-Ruiz et al. 2012), or decreases with increasing the 

non-linear amplitude (Ghadiri and Shafiei 2015) and etc. 

These kinds of responses persuaded us to consider 

cantilever boundary condition in our investigation. In the 

case of fundamental frequency, it increases as the thermal 

change increases. But, other frequencies decrease as the 

thermal change increases. The non-dimensional frequency 

increases as the mode number increases from 2 to 4 and this 

predictable increase is resulted from the reduction in 

amplitude of transverse deformation of the plate in higher 

mode numbers. 

Table 4 shows the effect of different aspect ratios in the 

first and the second mode numbers of non-dimensional 

frequency, different thermal changes and different FG 

indexes. In all cases of the fundamental frequency, when the 

 

 

 

 

thermal change increases, the amount of frequency 

increases and in the second frequency, it decreases as the 

thermal change increases. And also, frequency increases as 

the aspect ratio increases. This table clearly shows that the 

frequency of pure ceramic plate is larger than frequency of 

FGM plate in all states. FG index increase causes stiffness 

of the system decreases, and it also causes the reduction in 

frequency. This behavior can be obtained in this table. 

Meanwhile in this table it has been shown performance 

difference between ceramic and metal at thermal 

environments. 

The effects of various angular velocities on non-

dimensional frequency at different twist angles are 

presented in Fig. 4. This figure clearly shows that non-

dimensional frequency increases as the angular velocity 

increases. This increase is correct in both the fundamental 

frequency and the second frequency. Of course the second 

frequency in this case is always larger than the fundamental 

frequency, because the blade twist angle is related to its 

angular velocity. When the blade does not spin, blade angle 

of twist does not have any effect on frequency but when the 

angular velocity increases, change in angle of twist affects 

Table 4 The effect of various aspect ratios, FG index and thermal change on non-dimensional fundamental and second frequency 

  
Fundamental frequency Second frequency 

Aspect ratio FG index ΔT = 0 ΔT = 15 ΔT = 30 ΔT = 45 ΔT = 0 ΔT = 15 ΔT = 30 ΔT = 45 

0.5 

Pure ceramic 3.989 4.115 4.248 4.391 6.373 6.369 6.368 6.373 

FG, n = 1 3.173 3.298 3.435 3.585 4.969 4.975 4.987 5.006 

Pure metal 2.710 2.823 2.952 3.097 4.174 4.192 4.220 4.262 

1 

Pure ceramic 3.908 4.026 4.149 4.280 9.188 9.105 9.020 8.934 

FG, n = 1 3.096 3.212 3.337 3.473 6.740 6.659 6.576 6.489 

Pure metal 2.631 2.736 2.854 2.985 5.267 5.194 5.119 5.040 

2 

Pure ceramic 4.006 4.072 4.136 4.200 15.835 15.742 15.646 15.54 

FG, n = 1 3.180 3.225 3.279 3.341 11.408 11.310 11.210 11.10 

Pure metal 2.698 2.733 2.7778 2.821 8.668 8.577 8.482 8.378 
 

 

Fig. 4 The effect of various angular velocities on non-dimensional frequency in different twist angles 
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the rotational inertia and finally the frequency changes. So 

that, when the angle of twist changes from zero to 90, due 

to reduction of inertia, the frequency decreases. The most 

important effect of angular velocity can be seen when the 

twist angle of the plate is equal to zero. The effect of 

angular velocity decreases as the hub radius of the plate 

increases. These results have been calculated with 

assumption that thermal change is 25 C and hub radius is 

equal to zero. Meantime usually changes in twist angle 

happens due to creating smooth air flow lines but this 

change leaves bad effects on vibration of system. 

 

 

6. Conclusions 
 

Vibration of a rotating FGM plate under thermal loading 

has been studied in this paper. The governing equation 

derived from Hamilton’s principle and the generalized 

differential quadratic method is used to solve the extracted 

equation. A general review of the paper shows a lot of 

contents such as importance of angular velocity, thermal 

change, FG index, angular velocity, hub radius, mode 

number and aspect ratio. The frequency increases as the 

angular velocity increases. The fundamental frequency 

increases as the thermal change increases but in larger mode 

numbers, frequency decreases as the thermal change 

increases. The frequency increases as the aspect ratio 

increases and also, the frequency increases as the twist 

angle decreases. The frequency increases as the angular 

velocity increases. The non-dimensional frequency of pure 

ceramic plate is larger than other states; in addition, all of 

these results have been calculated for the cantilever 

boundary condition. This paper results can helpful for 

designers who work in the field of rotating systems, 

especially turbine blade’s designs. 
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