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1. Introduction 

 
Sandwich structures, because of their outstanding 

characteristics, such as high stiffness and low weight, have 
been widely employed in fields of aircraft, aerospace, 
naval/marine, construction, transportation, and wind energy 
systems (Vinson 2001, 2005). However, the abrupt variation 
in material characteristics within the interfaces between the 
face sheets and the core can result in large interlaminar 
stresses inducing delamination, which is an important 
problem in classical sandwich structures. Furthermore, the 
difference in the values of thermal coefficients of the 
materials may induce residual stresses. In order to 
overcome these problems, the concept of functionally 
graded material (FGM) is introduced in sandwich plates 
design. FGM are heterogeneous advanced composite 
material where the mechanical properties are changed 
continuously and gradually from one surface of the 
structure to the other. The use of such materials helps us to 
eliminate mechanically and thermally the induced stresses 
because of the material property mismatch and to improve 
the bonding strength (Birman et al. 2013, Bouderba et al. 
2013, Zidi et al. 2014, Merazi et al. 2015, Swaminathan et 
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al. 2015, Akbaş 2015, Arefi 2015a, b, Arefi and Allam 
2015, Zemri et al. 2015, Belkorissat et al. 2015, Boukhari et 
al. 2016, Bounouara et al. 2016, Mouaici et al. 2016, Hadji 
et al. 2016, Saidi et al. 2016, Abdelbari et al. 2016, 
Ebrahimi and Shafiei 2016, Bousahla et al. 2016, Turan et 
al. 2016, Celebi et al. 2016, Akbarov et al. 2016, Raminnea 
et al. 2016, Aizikovich et al. 2016, Darabi and Vosoughi 
2016, Ebrahimi and Jafari 2016, Benferhat et al. 2016, 
Houari et al. 2016, Mouffoki et al. 2017, Zidi et al. 2017). 

Buckling and bending of FGM plates under thermal or 
thermo-mechanical loads has been investigated by many 
researchers. Cheng and Batra (2000) examined the thermo-
mechanical deformations of a linear elastic FG elliptic plate 
with rigidly clamped edges. Reddy and Cheng (2001) 
studied 3D thermo-mechanical deformations of simply 
supported FG rectangular plates by employing an 
asymptotic approach. Vel and Batra (2002) proposed an 
exact solution for 3D deformations of a simply supported 
FG thick plate subjected to mechanical and thermal loads. 
Feldman and Aboudi (1997) investigated the elastic 
bifurcation of FG plates under in-plane compressive loading 
based on a combination of micromechanical and structural 
approaches. Matsunaga (1997) showed the buckling 
instabilities of a simply supported thick elastic plate 
subjected to in-plane stresses. Najafizadeh and Eslami 
(2002) analyzed the buckling response of radially loaded 
solid circular plate made of functionally graded material. 
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By employing the HSDT, Najafizadeh and Heydari (2008) 
also presented an exact solution for buckling of FG circular 
plates under uniform radial compression. Thermal stability 
of a simply supported FG skew plate by employing the 
FSDT in conjunction with the finite element method was 
studied by Ganapathi and Prakash (2006). Based on the 
classical plate theory (CPT), Ma and Wang (2003) 
examined the axisymmetric large deflection bending of a 
FG circular plate is investigated under mechanical, thermal 
loadings. Bui et al. (2013) investigated the transient 
responses and natural frequencies of sandwich beams with 
inhomogeneous functionally graded core by proposing a 
novel truly meshfree method in which the displacement 
field is approximated by the radial point interpolation 
method (RPIM) regardless of predefined mesh, and the 
domain integrals are evaluated by the so-called Cartesian 
transformation method (CTM) to obviate the need for a 
background cell. Kar and Panda (2015a) analyzed the large 
deformation bending behavior of FG spherical shell using 
finite element method. Kar and Panda (2015b) also studied 
the nonlinear flexural vibration of shear deformable FG 
spherical shell panel. Morimoto et al. (2006) discussed the 
thermal buckling behavior of FG rectangular plates 
subjected to partial heating in a plane and uniform 
temperature rise within its thickness. Na and Kim (2006) 
investigated the FG composite structures that composed of 
ceramic, functionally graded material (FGM), and metal 
layers. By employing finite element method, Na and Kim 
(2004) also studied the 3D thermal buckling of FG plates. 
Lee et al. (2010) studied the post-buckling response of FG 
plates under edge compression and temperature field 
conditions using the element-free kp-Ritz method. Based on 
neutral surface of structures, Lee et al. (2016) also 
examined the thermal stability behavior of FG plates. The 
post-buckling of piezoelectric FG plates under thermo-
electro-mechanical loading is studied by Liew et al. (2003) 
by employing the HSDT. Bourada et al. (2012) proposed a 
new four-variable refined plate theory for thermal buckling 
analysis of FG sandwich plates. Tran et al. (2013) proposed 
an isogeometric finite element approach (IGA) in 
combination with the third-order deformation plate theory 
for thermal stability analysis of FG plates. Yaghoobi et al. 
(2014) presented and analytical study on postbuckling and 
nonlinear free vibration analysis of FG beams resting on 
nonlinear elastic foundation under thermo-mechanical 
loading. By utilizing a local Kriging meshless method 
Zhang et al. (2014) examined the mechanical and thermal 
buckling behaviors of FG plates. Tung (2015) investigated 
the nonlinear bending and post-buckling response of FG 
sandwich plates resting on elastic foundations and subjected 
to uniform external pressure. By employing the exact 3D 
theory of elasticity, instead of the approximate plate models, 
Asemi and Shariyat (2016) the influences of heterogeneous 
auxetic of the materials in uniaxial and biaxial post-
buckling responses of the FG plates. Yu et al. (2016a) 
studied the numerical results of thermal stability of FG 
plates with internal defects (e.g., crack or cutout) using the 
extended isogeometric investigation (XIGA). Based on the 
FSDT, Yaghoobi and Yaghoobi (2013) investigated the 
stability response of sandwich plates with FG face sheets 

resting on elastic foundation. Sobhy (2013) examined the 
stability and free vibration of exponentially graded 
sandwich plates resting on elastic foundations under various 
boundary conditions. Ait Amar Meziane et al. (2014) 
discussed the buckling and dynamic behavior of FG 
sandwich plates using an efficient and simple refined shear 
deformation theory. Swaminathan and Naveenkumar (2014) 
presented analytical solutions for the stability analysis of 
FG plates using higher order refined computational models. 
Adda Bedia et al. (2015) examined the thermal buckling 
characteristics of armchair single-walled carbon nanotube 
embedded in an elastic medium based on nonlocal 
continuum elasticity. Nguyen et al. (2015) proposed a 
refined higher-order shear deformation theory for bending, 
vibration and buckling analysis of FG sandwich plates. 
Bouguenina et al. (2015) presented a numerical analysis of 
FGM plates with variable thickness subjected to thermal 
buckling. Bakora and Tounsi (2015) investigated the 
thermo-mechanical post-buckling behavior of thick FG 
plates resting on elastic foundations. Barati and Shahverdi 
(2016) presented a four-variable plate theory for thermal 
vibration of embedded FG nanoplates under non-uniform 
temperature distributions with different boundary 
conditions. Beldjelili et al. (2016) studied the hygro-
thermo-mechanical bending of S-FGM plates resting on 
variable elastic foundations using a four-variable 
trigonometric plate theory. Ahouel et al. (2016) discussed 
the Size-dependent mechanical behavior of functionally 
graded trigonometric shear deformable nanobeams 
including neutral surface position concept. Abdelhak et al. 
(2016) examined the thermal buckling response of 
functionally graded sandwich plates with clamped boundary 
conditions. Barka et al. (2016) discussed the thermal post-
buckling behavior of imperfect temperature-dependent 
sandwich FGM plates resting on Pasternak elastic 
foundation. El-Hassar et al. (2016) analyzed the thermal 
stability of solar functionally graded plates on elastic 
foundation using an efficient hyperbolic shear deformation 
theory. Ghorbanpour Arani et al. (2016) studied dynamic 
buckling of FGM viscoelastic nano-plates resting on 
orthotropic elastic medium based on sinusoidal shear 
deformation theory. Trinh et al. (2016) analyzed post-
buckling responses of elastoplastic FGM beams on 
nonlinear elastic foundation. Chikh et al. (2016) 
investigated the thermo-mechanical postbuckling of 
symmetric S-FGM plates resting on Pasternak elastic 
foundations using hyperbolic shear deformation theory. 
Bouderba et al. (2016) analyzed the thermal buckling 
response of FG sandwich plates using a simple shear 
deformation theory. Laoufi et al. (2016) analyzed the 
mechanical and hygrothermal behaviour of FG plates using 
a hyperbolic shear deformation theory. Khetir et al. (2017) 
proposed a new nonlocal trigonometric shear deformation 
theory for thermal buckling analysis of embedded nanosize 
FG plates. Klouche et al. (2017) presented an original 
single variable shear deformation theory for buckling 
analysis of thick isotropic plates. Meksi et al. (2017) 
presented and analytical solution for bending, buckling and 
vibration responses of FGM sandwich plates. Liu et al. 
(2017) analyzed FG plates by a simple locking-free quasi-
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3D hyperbolic plate isogeometric method. Yu et al. (2017) 
employed isogeometric analysis (IGA) based on the FSDT 
without shear-locking effect to present new numerical 
results of thermal-mechanical buckling of FG rectangular 
and skew plates under combined thermal and mechanical 
loads. El-Haina et al. (2017) proposed a simple analytical 
approach for thermal buckling of thick FG sandwich plates. 
Bellifa et al. (2017) proposed a nonlocal zeroth-order shear 
deformation theory for nonlinear postbuckling of 
nanobeams. Yin et al. (2016) presented a numerical study of 
buckling and free vibration of functionally graded plates 
considering in-plane material inhomogeneity using a new 
and effective approach based on isogeometric analysis 
(IGA) and HSDT. Bui et al. (2016) presented a finite 
element formulation for heated FG plate taking the 
advantages of a novel simple third-order shear deformation 
plate theory. The advantage of this novel theory is it 
substantially provides more accuracy than other higher-
order shear deformation plate theories. It may be due to the 
fact that the kinematic of displacements is derived from an 
elasticity formulation rather than the hypothesis of 
displacements as is described by Shi (2007). Although the 
theory presented by Bui et al. (2016) has only five 
variables, the development of other theories with fewer 
variables is interesting for the present work. 

This work presents an analytical solution to investigate 
the thermal stability behavior of FG sandwich plates under 
uniform, linear and non-linear temperature rise using a new 
trigonometric shear deformation theory. The new plate 
theory is constructed by including the integral term in the 
kinematics leading to a reduction in the number of 
unknowns and governing equations. Thus, it can be noted 
that the novelty of this theory is the use of the integral term 
in in-plane displacements contrary to other similar simple 
theories with four variables (Vu et al. 2017, Yu et al. 2015, 
2015, 2016b) where we this term is not employed. The 
mathematical formulations include the influences of thermal 
loads, and von-Karman-type nonlinearity. Effects of 
gradient index, geometric parameters, and temperature 
distributions on the response of FG sandwich FG plate are 
discussed in details. The results of this work are compared 
with the known data in the literature. 

 
 

2. Statement of the problem 
 
The geometry and dimensions of the sandwich FG plate 

made are represented in Fig. 1. Rectangular Cartesian 
coordinates (x, y, z) are employed to describe infinitesimal 
deformations of a three-layer sandwich elastic plate 
occupying the region [0, a] × [0, b] × [‒h/2, h/2] in the 
unstressed reference configuration, and the axes are parallel 
to the edges of the plate. The plate has length a, width b, 
and uniform thickness h. The mid-plane of the sandwich FG 
plate is defined by z = 0 and its external surfaces being 
defined by z = h/2. The vertical positions of the lower 
surface, the two interfaces between the core and faces 
layers, and the upper surface are denoted, respectively, by 
h0 = ‒h/2, h1, h2 and h3 = h/2. 

The effective material properties for each layer, such as 
Young’s modulus, Poisson’s ratio, and thermal expansion 

Fig. 1 Geometry of the FGM sandwich plate 
 
 
coefficient, can be defined as (Ait Atmane et al. 2015, Mahi 
et al. 2015, Meksi et al. 2015, Ait Yahia et al. 2015, Attia et 
al. 2015, Tounsi et al. 2016) 
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where P(j) is the effective material property of FGM of layer 
j. Pm and Pc are the Young’s modulus (E), Poisson’s ratio (v) 
of the lower and upper faces of layer 1 (h0 ≤ z ≤ h1), 
respectively, and vice versa for layer 3 (h2 ≤ z ≤ h3) 
depending on the volume fraction V(j) (j = 1, 2, 3). Note that 
Pm and Pc are, respectively, the corresponding properties of 
the metal and ceramic of the FG sandwich plate. The 
volume fraction V(j) of the FGMs is assumed to obey a 
power-law function along the thickness direction (Bourada 
et al. 2012, Tounsi et al. 2013, Taibi et al. 2015, Bennoun et 
al. 2016) 
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where k is the gradient index, which takes values greater 
than or equals to zero. The core layer is independent of the 
value of k, which is a fully ceramic layer. However, the 
value of k equal to zero represents a fully ceramic plate. 
Thus, this parameter permits us to control the mixture 
ceramic - metal. 

 
2.1 Kinematics and strains 
 
In this work, the classical HSDT is modified by taking 

into account some simplifying assumptions so that the 
number of unknowns is reduced. The kinematic of the 
classical HSDT is defined by 
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),(),,( 0 yxwzyxw   (3c)
 

where u0; v0; w0, φx, φy are five unknown displacements of 
the mid-plane of the plate, f(z) represents shape function 
defining the variation of the transverse shear strains and 
stresses within the thickness. By considering that 

 dxyxx ),( and ,),( dyyxy  the displacement 

field of the proposed HSDT can be written in a simpler 
form as (Merdaci et al. 2016, Bourada et al. 2016, Hebali et 
al. 2016, Besseghier et al. 2017, Chikh et al. 2017, Fahsi et 
al. 2017) 
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In this work, the shape function is defined by: 
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It can be seen that the kinematic in Eq. (4) uses only 
four unknowns (u0, v0, w0 and θ). The non-linear von 
Karman strain–displacement equations are as follows 
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The integrals used in the above equations shall be 
resolved by a Navier type method and can be given as 
follows 
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where the coefficients A′ and B′ are expressed according to 
the type of solution used, in this case via Navier. Therefore, 
A′, B′, k1 and k2 are expressed as follows 
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where μ and β are used in expression (20). 
It should be noted that unlike the FSDT, this model does 

not require shear correction coefficients. 
The constitutive relations of a FG sandwich plate can be 

expressed as 
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where Cij (i, j = 1, 2, 4, 5, 6) are the elastic stiffness of the 
FG sandwich plate defined by 
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and T (x, y, z) is the temperature rise through-the-thickness. 
 
2.2 Stability equations 
 
The governing equations of FG sandwich plates 

subjected to thermal loads may be determined on the basis 
of the stationary potential energy (Reddy 1984, Bellifa et al. 
2016, Draiche et al. 2016). The equilibrium equations are 
deduced as 
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Using constitutive relations, the stress and moment 
resultants are defined by 
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Upon substitution of Eq. (6) into Eq. (10) and the 
subsequent results into Eq. (13) the stress resultants are 
obtained in the matrix form as 
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where stiffness components are expressed as 
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The stress and moment resultants, ;T
y

T
x NN  bT
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x MM   to thermal loading are defined by 
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In order to determine the stability equations and study 
the thermal stability response of the FG sandwich plate, the 
adjacent equilibrium criterion is used (Brush and Almroth 
1975). By employing this approach, the stability equations 
become 
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where ,0
xN 0

xyN  and 0
yN  are the pre-buckling forces. Eq. 

(17) can be expressed in terms of displacements ,( 1
0u ,1

0v
,1

0w  θ1) by substituting for the stress resultants from Eq. 
(14). For FG sandwich plate, the governing equations Eq. 
(17) take the form 
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3. Analytical solution 
 
Rectangular sandwich plates are generally classified 

according to the type of support used. Here, we are 
concerned with the exact solutions of Eq. (18) for a simply 
supported FG sandwich plate. 

Based on the Navier procedure, the following expan-
sions of displacements ;1

0u  ;1
0v  

1
0w  and θ1 are chosen to 

automatically satisfy the boundary conditions. 
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where Umn, Vmn, Wmn, Xmn are arbitrary parameters to be 
determined. μ and β are defined as 
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Substituting Eq. (19) into Eq. (18), the closed-form 

solution of buckling load can be obtained from 
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By using the condensation technique to eliminate the 

axial displacements Umn and Vmn, Eq. (21) can be rewritten 
as 
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The system of homogeneous Eq. (23) has a nontrivial 

solution only for discrete values of the buckling load. For a 
nontrivial solution, the determinant of the coefficients (Wmn, 
Xmn) must equal zero 
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The obtained equation may be solved for the buckling 
load. This gives the following relation for buckling load 
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In this case, a rectangular sandwich plate subjected to 
thermal loads is examined. To obtain the critical buckling 
temperature, the pre-buckling thermal loads should be 
determined. Hence, solving the membrane form of the 
equilibrium equations and by using the technique proposed 
by Meyers and Hyer (1991), the pre-buckling load 
resultants of FG sandwich plate exposed to the temperature 
variation within the thickness are found to be 
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In this work, to investigate the influence of the 
considered type of temperature variation within the 
thickness on thermal buckling response of FG sandwich 
plate, three types of thermal loading within the plate 
thickness are considered. 

 

3.1 Uniform temperature rise (UTR) 
 

It is considered that the initial uniform temperature of 
the FG sandwich plate is Ti, and the temperature is 
uniformly elevated to a final value Tf such that the plate 
buckles. Thus, the temperature change is 
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By considering the equations (26), (27), and (28) the 
following equation for thermal stability load is obtained: 
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3.2 Linear temperature distribution through 
the thickness (LTD) 

 

The following linear temperature distribution within the 
thickness of the FG sandwich plate is considered 
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Identically to the UTR procedure, the following 
expression for thermal buckling load is deduced 
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3.3 Non-linear temperature distribution through 
the thickness (NTD) 

 

The following non-linear temperature distribution within 
the thickness of the FG sandwich plate is considered 
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Identically to the UTR procedure, the following 
expression for thermal buckling load is deduced 
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where γ is the temperature exponent (0 < γ < ∞). Note that 
the value of γ equal to unity represents a linear temperature 
change across the thickness. While the value of γ excluding 
unity represents a non-linear temperature change through-
the-thickness. 

 
 

4. Results and discussion 
 
To check the proposed formulation, a ceramic-metal 

functionally graded sandwich plate is examined. For this 
purpose, two different functionally graded plate materials 
are used for the present work. These are Titanium alloy (Ti–
6A1–4V)-Zirconia (ZrO2) and Aluminum (Al)-Alumina 
(Al2O3). The material properties of the constituents of these 
FGMs are reported in Table 1. 

 
 

Table 1 Material properties used in the FG sandwich plate 

Properties Ti–6A1–4V ZrO2 Al Al2O3 

E (GPa) 66.2 244.27 70 380 

v 0.3 0.3 0.3 0.3 

α (10-6/K) 10.3 12.766 23 7.4 

 
 

Table 2 Minimum critical temperature parameter αTcr of 
the simply supported isotropic square plate 
(α0 = 1.0×10-6/K, E = 1.0×10-6N/m2, v = 0.3) 

a/h Present Matsunaga (2005) 

10 0.1198×10-1 0.1183×10-1 

20 0.3119×10-2 0.3109×10-2 

100 0.1265×10-3 0.1264×10-3 
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Table 3 Critical buckling temperature Tcr of FG sandwich square plates under uniform temperature rise (a/h = 5) 

k Theory 
Tcr 

(1-0-1) (1-1-1) (2-1-2) (3-1-3) 

0 

Present 3,24034 3,24034 3,24034 3,24034 

Bourada et al. (2012) 3.23652 3.23652 3.23652 3.23652 

SSDT 3.23775 3.23775 3.23775 3.23775 

TSDT 3.23652 3.23652 3.23652 3.23652 

FSDT 3.23493 3.23493 3.23493 3.23493 

CPT 3.96470 3.96470 3.96470 3.96470 

0.2 

Present 3,07450 3,05802 3,05834 3,06119 

Bourada et al. (2012) 3.07042 3.05484 3.05461 3.05729 

SSDT 3.07198 3.05591 3.05598 3.05875 

TSDT 3.07042 3.05484 3.05461 3.05729 

FSDT 3.04858 3.03637 3.03394 3.03603 

CPT 3.66606 3.65640 3.64978 3.65144 

0.5 

Present 2,87541 2,83512 2,83423 2,84099 

Bourada et al. (2012) 2.87074 2.83224 2.83030 2.83673 

SSDT 2.87277 2.83331 2.83194 2.83855 

TSDT 2.87074 2.83224 2.83030 2.83673 

FSDT 2.83507 2.80230 2.79675 2.80218 

CPT 3.34559 3.31343 3.30066 3.30593 

1 

Present 2,69376 2,59191 2,59707 2,61374 

Bourada et al. (2012) 2.68781 2.58882 2.59241 2.60856 

SSDT 2.69065 2.59015 2.59458 2.61100 

TSDT 2.68781 2.58882 2.59241 2.60856 

FSDT 2.64222 2.55161 2.55053 2.56519 

CPT 3.06734 2.96299 2.95538 2.97216 

2 

Present 2,63896 2,36407 2,39953 2,44692 

Bourada et al. (2012) 2.63018 2.36000 2.39637 2.43977 

SSDT 2.63460 2.36196 2.39953 2.44337 

TSDT 2.63018 2.36000 2.39637 2.43977 

FSDT 2.57355 2.31737 2.34734 2.38823 

CPT 2.96200 2.64806 2.68016 2.72994 

5 

Present 2,94934 2,21632 2,35871 2,47451 

Bourada et al. (2012) 2.93446 2.21009 2.34898 2.46321 

SSDT 2.94205 2.21327 2.35401 2.46905 

TSDT 2.93446 2.21009 2.34898 2.46321 

FSDT 2.86226 2.16069 2.28926 2.39882 

CPT 3.32950 2.44274 2.59922 2.73600 

10 

Present 3,32102 2,20243 2,43404 2,60902 

Bourada et al. (2012) 3.30340 2.19469 2.42186 2.59474 

SSDT 3.31230 2.20150 2.42733 2.60199 

TSDT 3.30340 2.19469 2.42186 2.59474 

FSDT 3.23289 2.14099 2.35529 2.52271 

CPT 3.82441 2.41650 2.68184 2.89384 

∞ 

Present 4,01613 4,01613 4,01613 4,01613 

Bourada et al. (2012) 4.01293 4.01293 4.01293 4.01293 

SSDT 4.01141 4.01141 4.01141 4.01141 

TSDT 4.01293 4.01293 4.01293 4.01293 

FSDT 4.00943 4.00943 4.00943 4.00943 

CPT 4.91392 4.91392 4.91392 4.91392 
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Table 4 Critical buckling temperature Tcr of FG sandwich square plates under linear temperature rise (a/h = 5) 

k Theory 
Tcr 

(1-0-1) (1-1-1) (2-1-2) (3-1-3) 

0 

Present 6,43068 6,43068 6,43068 6,43068 

Bourada et al. (2012) 6.42305 6.42305 6.42305 6.42305 

SSDT 6.42550 6.42550 6.42550 6.42550 

TSDT 6.42305 6.42305 6.42305 6.42305 

FSDT 6.41986 6.41986 6.41986 6.41986 

CPT 7.87940 7.87940 7.87940 7.87940 

0.2 

Present 6,09901 6,06604 6,06668 6,07237 

Bourada et al. (2012) 6.09084 6.05968 6.05922 6.06459 

SSDT 6.09396 6.06183 6.06197 6.06751 

TSDT 6.09084 6.05968 6.05922 6.06459 

FSDT 6.04716 6.02273 6.01789 6.02207 

CPT 7.28211 7.26279 7.24955 7.25287 

0.5 

Present 5,70082 5,62023 5,61846 5,63198 

Bourada et al. (2012) 5.69148 5.61449 5.61059 5.62346 

SSDT 5.69554 5.61663 5.61389 5.62710 

TSDT 5.69148 5.61449 5.61059 5.62346 

FSDT 5.62014 5.55460 5.54350 5.55435 

CPT 6.64118 6.57686 6.55131 6.56187 

1 

Present 5,33752 5,13382 5,14414 5,17747 

Bourada et al. (2012) 5.32562 5.12765 5.13482 5.16711 

SSDT 5.33130 5.13030 5.13918 5.17201 

TSDT 5.32562 5.12765 5.13482 5.16711 

FSDT 5.23443 5.05323 5.05105 5.08038 

CPT 6.08468 5.87599 5.86076 5.89431 

2 

Present 5,22793 4,67814 4,75538 4,84385 

Bourada et al. (2012) 5.21036 4.66999 4.74275 4.82954 

SSDT 5.21920 4.67392 4.74908 4.83673 

TSDT 5.21036 4.66999 4.74275 4.82954 

FSDT 5.09711 4.58475 4.64468 4.72645 

CPT 5.87400 5.24612 5.31032 5.40989 

5 

Present 5,84868 4,38263 4,66742 4,89903 

Bourada et al. (2012) 5.81891 4.37017 4.64797 4.87641 

SSDT 5.83411 4.37654 4.65805 4.88811 

TSDT 5.81891 4.37017 4.64797 4.87641 

FSDT 5.67452 4.27139 4.52851 4.74763 

CPT 6.60901 4.83549 5.14843 5.42200 

10 

Present 6,59203 4,35486 4,80636 5,16805 

Bourada et al. (2012) 6.55680 4.33937 4,81805 5.13948 

SSDT 6.57459 4.35224 4.80638 5.15396 

TSDT 6.55680 4.33937 4.79372 5.13948 

FSDT 6.41578 4.23198 4.66058 4.99542 

CPT 7.59882 4.78299 5.31369 5.73769 

∞ 

Present 7,98226 7,98226 7,98226 7,98226 

Bourada et al. (2012) 7.97281 7.97281 7.97281 7.97281 

SSDT 7.97585 7.97585 7.97585 7.97585 

TSDT 7.97281 7.97281 7.97281 7.97281 

FSDT 7.96885 7.96885 7.96885 7.96885 

CPT 9.77784 9.77784 9.77784 9.77784 
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Table 5 Critical buckling temperature Tcr of FG sandwich square plates under non-linear temperature rise (γ = 5 and a/h = 5) 

k Theory 
Tar 

(1-0-1) (1-1-1) (2-1-2) (3-1-3) 

0 

Present 19,29203 19,29203 19,29203 19,29203 

Bourada et al. (2012) 19.26915 19.26915 19.26915 19.26915 

SSDT 19.27651 19.27651 19.27651 19.27651 

TSDT 19.26915 19.26915 19.26915 19.26915 

FSDT 19.25957 19.25957 19.25957 19.25957 

CPT 23.63820 23.63820 23.63820 23.63820 

0.2 

Present 20,59236 20,33007 20,44976 20,49461 

Bourada et al. (2012) 20.56479 20.30876 20.42463 20.46833 

SSDT 20.57531 20.31595 20.43388 20.47819 

TSDT 20.56479 20.30876 20.42463 20.46833 

FSDT 20.41729 20.18492 20.28528 20.32483 

CPT 24.58692 24.34093 24.43703 24.47887 

0.5 

Present 21,64883 21,14600 21,36814 21,45395 

Bourada et al. (2012) 21.61337 21.12438 21.33822 21.42148 

SSDT 21.62878 21.13244 21.35073 21.43534 

TSDT 21.61337 21.12438 21.33822 21.42148 

FSDT 21.34246 20.89907 21.08307 21.15824 

CPT 25.21986 24.74530 24.91598 24.99617 

1 

Present 22,46081 21,71806 22,02269 22,12553 

Bourada et al. (2012) 22.41074 21.69196 21.98279 22,14890 

SSDT 22.43462 21.70318 22.00140 22.12553 

TSDT 22.41074 21.69196 21.98279 22.10459 

FSDT 22.02700 21.37713 21.62417 21.73355 

CPT 25.60494 24.85771 25.09061 25.21549 

2 

Present 23,10689 22,02137 22,41227 22,59731 

Bourada et al. (2012) 23.02926 21.98304 22.35275 22.53055 

SSDT 23.06831 22.00152 22.38252 22.56412 

TSDT 23.02926 21.98304 22.35275 22.53055 

FSDT 22.52869 21.58175 21.89055 22.04964 

CPT 25.96247 24.69501 25.02775 25.23797 

5 

Present 23,83092 22,12608 22,70953 23,01642 

Bourada et al. (2012) 23.70963 22.06317 22.61489 22.91015 

SSDT 23.77153 22.09533 22.66384 22.96510 

TSDT 23.70963 22.06317 22.61489 22.91015 

FSDT 23.12129 21.56445 22.03367 22.30513 

CPT 26.92893 24.41235 25.04991 25.47341 

10 

Present 24,14028 22,18585 22,92909 23,30857 

Bourada et al. (2012) 24.01127 22.10708 22.81317 23.17972 

SSDT 24.07633 22.17208 22.86373 23.24502 

TSDT 24.01127 22.10708 22.81317 23.17972 

FSDT 23.49484 21.55996 22.17958 22.52996 

CPT 27.82720 24.36712 25.28770 25.87769 

∞ 

Present 23,94679 23,94679 23,94679 23,94679 

Bourada et al. (2012) 23.91843 23.91843 23.91843 23.91843 

SSDT 23.92755 23.92755 23.92755 23.92755 

TSDT 23.91843 23.91843 23.91843 23.91843 

FSDT 23.90656 23.90656 23.90656 23.90656 

CPT 29.33351 29.33351 29.33351 29.33351 
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In the following, we note that several types of sandwich 

plates are employed: 
 

 The (1-0-1) FG sandwich plate: The plate is 
symmetric and made of only two equal-thickness 
FGM layers, that is, there is no core layer. 
Thus, h1 = h2 = 0. 

 The (1-1-1) FG sandwich plate: Here the plate is 
symmetric and made of three equal thickness layers. 
In this case, we have, h1 = ‒h/6, h2 = h/6. 

 The (2-1-2) FG sandwich plate: The plate is 
symmetric and we have: h1 = ‒h/10, h2 = h/10. 

 The (3-1-3) FG sandwich plate: Here, the plate is 
also symmetric and the thickness of the core is half 
the face thickness. In this case, we have, h1 = ‒h/14, 
h2 = h/14. 

 

The shear correction factor for FSDT is set equal to 5/6. 
For the linear and nonlinear temperature rises through the 
thickness, Tt = 25°C. 

To check the accuracy of the proposed HSDT, 

 
 
comparisons are carried out between the thermal stability 
results computed from the present theory and those 
calculated by Matsunaga (2005) as shown in Table 2. It can 
be observed that the obtained results are in agreement with 
the published results for simply supported isotropic plates. 

In order to check also the validity of the proposed 
theory, results were determined for FG sandwich plates 
subjected to uniform, linear, and nonlinear thermal loading 
according to all plate theories. The critical stability 
temperature difference (Tcr = 10-3ΔTcr) are determined for k 
= 0, 1, 2, 5, 10, and ∞ (metal) and for different types of FG 
sandwich plates as is shown in Tables 3-5. It can be seen 
from Tables 3-5 that there is a very good agreement 
between the proposed new plate theory and other HSDTs. It 
is observed that the thermal stability temperature increases 
with increasing thickness of the FG layers and especially 
for k ≥ 1. For different values of gradient index k, the 
thermal stability temperature values are between those of 
plates made of ceramic (ZrO2) and metal (Ti–6A1–4V). As 
the plate becomes more and more metallic, the thermal 

(a) (b) 
  

(c) (d) 

Fig. 2 Critical stability temperature difference Tcr vs. the gradient index k for various types of FG sandwich square 
plates (a/h = 10): (a) the (1–0–1) FG sandwich plate; (b) the (1–1–1) FG sandwich plate; (c) the (2–1–2) FG 
sandwich plate, and (d) the (3–1–3) FG sandwich plate. For non-linear temperature γ = 2 
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stability temperature increases. It can be remarked from the 
results reported in Tables 3-5 that, the thermal stability 
temperature of fully metallic plate is higher to ceramic rich 
Ti–6A1–4V/ZrO2 FG plate. This is due to the Young’s 
modulus of ceramic (ZrO2; 244.27 GPa) which is higher to 
that of metal (Ti–6A1–4V; 66.2 GPa). It is interesting to 
note that the critical stability temperatures determined based 
on CPT are noticeably greater than values determined based 
on HSDT. 

Fig. 2 presents the influences of the gradient index k and 
the types of thermal loads on the critical stability 
temperature Tcr by using the proposed theory. It is clear that 
the critical stability temperature Tcr for the plates under a 
nonlinear thermal load is higher than that for the plates 
under uniform thermal load. While Tcr for the plates 
subjected to linear thermal load is intermediate to the two 
previous thermal loading cases. It is also observed that, for 
the plate without core, the critical stability Tcr diminishes 
rapidly to reach minimum values and then increases 
gradually as the gradient index k increases as indicated in 

 
 
Fig. 2(a). However, for the other sandwich FG plates (see 
Figs. 2(b), (c), and (d)), Tcr diminishes smoothly as the 
gradient index k increases. 

Fig. 3 presents the influences of the aspect ratio b/a on 
the critical stability temperature change Tcr of FG sandwich 
plates subjected to various thermal loading types. It is 
noticed that, regardless of the sandwich plate types, the 
critical stability Tcr diminishes gradually with the increase 
of the plate aspect ratio b/a wherever the loading type is. It 
is also observed from Fig. 3 that the v increases with the 
increase of the nonlinearity parameter v. 

Fig. 4 shows the variation of critical temperatures Tcr of 
FG sandwich square plates subjected to various thermal 
loading types with respect to the side-to-thickness ratio a/h. 
It is observed that the critical temperature difference 
diminishes monotonically as the side-to-thickness ratio a/h 
increases. It is also noticed from Fig. 4 that the critical 
temperatures v of the FG plate under uniform thermal load 
rise is smaller than that of the plate under linear thermal 
load and the latter is smaller than that of the plate under 

(a) (b) 
  

(c) (d) 

Fig. 3 Critical stability temperature difference Tcr vs. the plate aspect ratio b/a for various types of FG sandwich 
square plates (k = 1, a/h = 10): (a) the (1–0–1) FG sandwich plate; (b) the (1–1–1) FG sandwich plate; (c) the 
(2–1–2) FG sandwich plate; and (d) the (3–1–3) FG sandwich plate 
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nonlinear thermal loading. Also, it is observed that Tcr 
increases as the nonlinearity parameter γ increases. 

The variation of the critical temperature versus the 
aspect ratio b/a is plotted in Figs. 5(a)-(d) for both Ti–6A1–
4V/ZrO2 and Al/Al2O3 FG sandwich plates exposed to 
nonlinear thermal loads by considering different types of 
sandwich plates. The Ti–6A1–4V/ZrO2 plates present high 
critical temperatures Tcr because of the bending stiffness of 
these plates. 

The critical buckling temperature versus the side-to-
thickness ratio a/h plots in non-dimensional Tcr ‒ a/h plane 
is presented in Figs. 6(a)-(d). In each of the figures, thermal 
buckling behavior is shown for Ti–6A1–4V/ZrO2 and 
Al/Al2O3 FG sandwich plates. In general, the critical 
buckling temperature is shown to be decreasing with 
increased the side-to-thickness ratio v level as a result of 
enhanced shear effect. Again, in all considered types of 
sandwich plates, the stiffness exhibited by Ti–6A1–
4V/ZrO2 sandwich plate is the highest. 

 

 
 

5. Conclusions 
 
In this work, a novel HSDT is proposed to investigate 

the thermal buckling responses of FG sandwich plates 
exposed to uniform, linear and nonlinear temperature 
distributions within the thickness. By considering further 
simplifying suppositions to the conventional HSDTs and 
with the incorporation of an undetermined integral term, the 
number of unknowns and governing equations of the 
proposed HSDT are reduced by one, and thus, make this 
model simple and efficient to utilize. The governing 
equations are obtained by employing the energy based 
variational principle and then are solved via Navier's 
method. The results determined by the proposed theory can 
be summarized as follows: 

 
 The critical stability temperature computed using 

the proposed theory (with four variables) and other 
HSDTs (with five variables) are almost identical. 
 

(a) (b) 
  

(c) (d) 

Fig. 4 Critical buckling temperature difference Tcr vs. the side-to-thickness ratio a/h for various types of FG 
sandwich square plates (k = 1): (a) the (1–0–1) FG sandwich plate; (b) the (1–1–1) FG sandwich plate; 
(c) the (2–1–2) FG sandwich plate; and (d) the (3–1–3) FG sandwich plate 
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 The critical stability temperature difference 
diminishes as the side-to-thickness ratio and the 
plate aspect ratio increases. 

 The critical stability temperature differences of FG 
sandwich plates are generally lower than the 
corresponding values for homogeneous ceramic 
plates. 

 The critical stability temperature of FG sandwich 
plate under nonlinear temperature rise within the 
thickness increases as the temperature exponent γ 
increases. 

 
Finally, an improvement of present formulation will be 

considered in the future work to account for the thickness 
stretching effect by using quasi-3D shear deformation 
models (Bessaim et al. 2013, Bousahla et al. 2014, Belabed 
et al. 2014, Fekrar et al. 2014, Hebali et al. 2014, Larbi 
Chaht et al. 2015, Meradjah et al. 2015, Hamidi et al. 2015, 
Bourada et al. 2015, Bennai et al. 2015, Bennoun et al. 
2016, Draiche et al. 2016, Benbakhti et al. 2016, Benahmed 

 
 
et al. 2017, Bouafia et al. 2017, Benchohra et al. 2017) and 
the wave propagation problem (Mahmoud et al. 2015, Ait 
Yahia et al. 2015). 
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