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1. Introduction 

 

Recent developments in material processing technology 

have resulted to the fabrication of a new kind of materials 

called functionally graded materials (FGMs) (Koizumi 

1993, 1997). The most significant characteristic of this type 

of material is their continuous variation in composition and 

material properties. Hence, unwanted stress concentrations 

can be prevented in FGMs and they have excellent thermo-

mechanical properties. Since FGMs have more superiority 

than laminated composites and homogeneous materials, 

they are widely used in numerous engineering fields such 

as, optics, biomedicine, aerospace, nuclear and mechanical. 

Between structures, beams have wide applications in 

engineering fields. Therefore, understanding the mechanical 

behaviour of these structures is very important in design of 

these structures. Sina et al. investigated free vibration of 

functionally graded beams by a new beam theory (Sina et 

al. 2009). The bending and free vibration of layered FGM 

beam using the third order zigzag theory studied by Kapuria 

et al. (2008). Alshorbagy et al. (2011) presented the 

dynamic characteristics of functionally graded beam with 

material graduation in axially or transversally through the 

thickness using finite element method. Mahi et al. (2010) 

presented an exact solutions for studying the free vibration 

of a FG beam with material properties vary continuously 

through the thickness according to a power law distribution 

(P-FGM), or an exponential law distribution (E-FGM) or a 

sigmoid law distribution (S-FGM). 
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Recently, fast development in the use of micro/nano 

structures in engineering fields, led scientists to model 

nanostructures (Rahmani and Noroozi Moghaddam 2014, 

Rahmani et al. 2015, 2016a, b, 2017a, b). Using FG 

materials allow the designer to achieve a particular goal. 

For example, the static deflection does not exceed from a 

specified value, the critical buckling load is less than a pre-

determined value, or the natural frequency of the system is 

less or more than a specified amount. Because of these 

advantages of functionally graded materials and by 

developing of the material technology, FGMs are widely 

used in micro and nano structures such as thin films, 

microswitches, micro piezoactuator, and micro/nano-

electromechanical systems (MEMS and NEMS) (Lun et al. 

2006, Batra et al. 2008, Carbonari et al. 2009, Jia et al. 

2011, 2012). Due to the demands in applications and high 

sensibility of MEMS/NEMS to external excitations, obtain 

the mechanical properties of these nanoscale devices have 

attracted a lot of attention. Between the nanostructures, 

nanobeams due to their wide applications in engineering, 

such as nanowires, nanoprobes, atomic force microscope 

(AFM), and nanosensors have attracted a lot of 

consideration (Hung and Senturia 1999, Pei et al. 2004, 

Moser and Gijs 2007, Moghimi Zand and Ahmadian 2009, 

Hosseini and Rahmani 2016a, b, c, Rahmani et al. 2016a). 

Hence, many investigations have been carried out about 

buckling, vibration and bending of nanobeams (Jandaghian 

and Rahmani 2016a, Reddy 2007, Aydogdu 2009, Rahmani 

and Jandaghian 2015, Jandaghian and Rahmani 2016b). 

However, for micro/nanostructures, direct employ of 

classical continuum theory led to wrong results in 

predicting their mechanical behavior, the classical theory 

cannot capture the size effects, because structures at 

nanometer length scale display size-dependent behavior 
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(Miller and Shenoy 2000). Since the experimental methods 

at the nanoscale are too time-consuming, so many 

researchers in nanotechnology use continuum mechanics for 

modeling the nanostructures. Such theories contain 

information about the forces between atoms, and the 

internal length scale is introduced into the constitutive 

equations as a material parameter. Among these theories, 

due to its simplicity and high accuracy, Eringen‟s theory has 

found wide application to study the behaviour of 

micro/nanostructures. Studies show that the results obtained 

from this theory are in good agreement with the results 

obtained by the method of molecular dynamics (Eringen 

and Edelen 1972, Eringen 1983, 2002, 2006). Therefore, in 

many studies about the nanostructures researchers use this 

theory (Murmu and Pradhan 2009, Pradhan and Phadikar 

2009, Janghorban and Zare 2011, Hosseini-Hashemi et al. 

2013, Bounouara et al. 2016). Recently, some researchers 

have studied FG micro/nanobeam based on Euler-Bernoulli 

and Timoshenko beam theory. Janghorban and Zare (2011) 

investigated free vibration analysis of functionally graded 

carbon nanotube with variable thickness based on the 

Timoshenko beam theory by differential quadrature method 

(DQM). Eltaher et al. (2012) have studied free vibration 

analyses of functionally graded (FG) size-dependent 

nanobeams using finite element method. Ke et al. (2012), 

Ke et al. (2012), and Asghari et al. (2010) investigated 

nonlinear vibrations of a micro-beam made of functionally 

graded materials using modified couple stress theory. 

Bending and buckling of analysis of FG nanobeams studied 

by Şimşek and Yurtcu (2013) based on Euler-Bernoulli and 

Timoshenko beams theory. Nguyen et al. (2014) present an 

analytical solutions for the size-dependent static analysis of 

the functionally graded (FG) nanobeams with various 

boundary conditions based on the nonlocal continuum 

model. Uymaz (2013) investigated forced vibration analysis 

of functionally graded (FG) nanobeams by using Navier 

method for various shear deformation theories. Rahmani 

and Pedram (2014) studied the vibration of FG nanobeams 

based on the nonlocal elasticity and Timoshenko beam 

model. Zemri et al. (2015) present a nonlocal shear 

deformation beam theory for bending, buckling and 

vibration of functionally graded nanobeams by using the 

nonlocal differential constitutive relations of Eringen. A 

new nonlocal hyperbolic refined plate model for free 

vibration properties of functionally graded (FG) plates was 

presented by Belkorissat et al. (2015). This nonlocal nano-

plate model incorporates the length scale parameter, which 

can capture the small scale effect. To analyse FG 

micro/nanobeam with exact stress fields, more studies are 

needed. In the Euler-Bernoulli beam theory, the effect of the 

transverse shear strain and shear stress are neglected. In the 

Timoshenko beam theory, the transverse shear strain and 

consequently transverse shear stress are represented as 

constant through the beam thickness, which is a gross 

approximation of the true variation that vanishes on the top 

and bottom surfaces of the beam. Shear correction factor is 

introduced to validate this discrepancy between the true 

variation and the constant state of stress. The third-order 

shear deformation theory of Reddy is based on a 

displacement field that includes the cubic term in the 

thickness coordinate, thus the transverse shear strain and 

hence stress are expressed as quadratic across the beam 

thickness and vanish on the bottom and top surfaces of the 

beam. Therefore, the shear correction factor is not needed in 

this theory. Despite relatively further complex algebraic 

equations and computational effort compared to the Euler-

Bernoulli and Timoshenko theories, the third-order shear 

deformation theory gives results that are close to 3-D 

elasticity solutions. Therefore, in this study we use the 

third-order shear deformation theory to investigate free 

vibration of FG micro/nanobeams based on the nonlocal 

elasticity. The governing equations of motion are derived by 

applying Hamilton‟s principle. Then these equations are 

solved by using Navier solution and the differential 

quadrature (DQ) method to determine the natural 

frequencies and mode shapes of FG micro/nanobeams 

under different boundary conditions. The effects of the 

nonlocal parameter, gradient index, length scale parameter 

and length-to-thickness ratio on the vibration characteristics 

of FGM micro/nanobeams with various boundary 

conditions are investigated. 

 

 

2. Functionally graded materials 
 

The material properties variation of FGMs are expressed 

in terms of a simple power law distribution (Praveen and 

Reddy 1998) as follow 
 

2 1 1

1
( ) ( ) ,

2

g
z

P z P P P
h

 
    

 
 (1) 

 

where g is the power-law index, 0 ≤ g ≤ ∞ and P1 and P2 are 

the corresponding material properties of the 1 and 2. Thus, 

for a functionally gradient material with two constituent 

materials, the Young‟s modulus and the mass density ρ can 

be stated as 
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3. Formulation 
 

The displacement field for an FG beam of length l, 

width b and height h based on the Reddy beam theory is 

given as (Reddy 2002) 
 

𝑢1 = 𝑢1 𝑥, 𝑡 + 𝑧𝜑 𝑥, 𝑡 − 𝑐1𝑧
3  𝜑 +

𝜕𝑤0

𝜕𝑥
 ,

𝑢2 = 0 

(4) 

 

 3 0 , .u w x t  (5) 

 

where u is the axial displacement, w0 is the transverse 

displacement of any point of the beam, u0 is the axial 

displacement, ϕ is the rotation of a point on the centroidal 
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axis x of the beam and c1 = 4/(3h2). The linear strains 

associated with the displacement field. 

The linear strains associated with the displacement field 
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and c2 = 4/h2. It should be mentioned that ζxz = Gγxz is 

quadratic in z direction and the transverse shear strain is 

zero on the top and bottom surfaces, z = ± h/2, of the beam. 

Thus, there is no requiring applying shear correction factors 

in the Reddy beam theory. 

By using Hamilton‟s principle, the governing equations 

and the corresponding boundary conditions of FG 

nanobeam are obtained. The strain energy variation δU of 

the FG nanobeam is written as 
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The variation of the work done by applied forces can be 

written as 
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where 
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and the first variation of the kinetic energy is expressed as 
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f and q are the axial and transverse distributed loads and 

N is the applied axial compressive force. For obtaining the 

governing equations the Hamilton principle is written as 
 

0

( )dt 0

t
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Substituting Eqs. (10), (12) and (14) into Eq. (15), the 

governing equations of motion of the Reddy beam theory 

are obtained as follow 
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where 
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ℎ/2

−ℎ/2

 𝐼 2 = 𝐼2 − 𝑐1𝐼4, 𝐼 4 = 𝐼4 − 𝑐1𝐼6 (19) 

 

 

4. Nonlocal theory 
 
In nonlocal theory, it is assumed that the stress at a point 

x not only depends on the strain at the same point but also 

on strains at all other points of the body. Therefore, the 

nonlocal stress tensor   at point x is stated as 

 

 , ( )dij ij

V

K      x x x x  (20) 

 

K (|x′ ‒ x|, η) is the nonlocal kernel function; η is a 

material constant that depends on internal and external 

characteristic lengths (such as the lattice spacing and 

wavelength, respectively) in the body which is defined as η 
= e0a/l where e0 is a constant appropriate to each material, a 

is an internal characteristics length (e.g., lattice parameter, 

granular distance) and l is an external characteristics length 

(e.g., crack length, wavelength). ζ is the classical, local 

stress tensor at point x and satisfies the constitutive relations 
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where C is the fourth-order elasticity tensor, ε is the strain 

tensor and : indicates the „double-dot product‟. According 

to Eringen (1983), the nonlocal stress tensor   at point x 

can be written as 
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where 2
 is the Laplacian operator. For a beam type 

structure, the nonlocal behaviour can be neglected along the 

thickness. Hence, nonlocal constitutive equations for 

present FG nanobeam can be expressed as 
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where E(z) and G(z) are elastic and shear modulus of FG 

nanobeam, respectively. By using Eqs. (11) and (22)-(24), 

the stress resultants are attained as 
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The governing equation of the axial displacement is 

derived for the nonlocal theory by substituting the second 

derivative of the axial force N from Eq. (16) into Eq. (25) 
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From Eqs. (26)-(28) the nonlocal constitutive equations 

for the stress resultants of the FG Reddy micro/nanobeam 

theory are 
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Eliminating Q̂  from Eqs. (17) and (18) results in the 

following equation 
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Substituting the above result in the Eq. (34) the nonlocal 

bending moment is obtained as follow 
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Substituting the second derivative of Q̂  from Eq. (18) 

into the Eq. (39), yields to the following equation 
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Using Eq. (36), the following equation is obtained as 
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By substituting Eqs. (33), (39), (40) and (42) into Eqs. 

(16)-(18) the nonlocal equations of motion in terms of the 

displacements can be written as 
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 (45) 

 

 

5. Navier solution 
 

For free vibration, N  and q are zero. Consider an FG 

simply supported micro/nanobeam. The Navier solution 

method is used for obtaining the analytical solution and 

natural frequency in this section. The boundary conditions 

related to the simply supported nanobeam are 
 

0 0   0 ,  .w M at x L    (46) 

 

According to the Navier solution, the axial displacement 

u0, the transverse displacement w0 and the rotation ϕ are 

defined as (Reddy 2007) 
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(47) 

 

where αn = nπ/L, ωn is the natural frequency and (Un, Wn, 

Φn) are coefficients. Substituting Eqs. (47) into Eqs. (43)-

(45), the closed-form solutions can be obtained from the 

following system of equations 
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          

 (48) 

 

where coefficients a11 through a33 are given in Appendix. 

By solving the characteristic equation that are obtained by 

setting the determinant of the coefficient matrix [a]3×3 equal 

to zero, the natural frequencies of the FG nanoscale beam 

are obtained. 
 

 

6. Differential quadrature method 
 

The differential quadrature (DQ) method (Shu 2000) is 

used to solve Eqs. (43)-(45) and the associated boundary 

conditions to find the natural frequencies of FG micro/nano 

beam. The dimensionless quantities are introduced as 

follow 
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The boundary conditions of the FG micro/nanobeam 

may be clamped (C), simply supported (S), or free (F). 

Thus, the end support conditions can be written in the 

dimensionless form 
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Free (F): 

𝐴11

𝜕𝜑

𝜕𝑋
+ 𝐵11

𝜕𝜑

𝜕𝑋
− 𝑐1𝐸11  

𝜕𝜑

𝜕𝑋
+

1

𝐿

𝜕2𝑊

𝜕𝑋2
 = 0, 

𝐾 
𝜕𝑈

𝜕𝑋
+ 𝐿 

𝜕𝜑

𝜕𝑋
− 𝑐1𝐽  

𝜕𝜑

𝜕𝑋
+

1

𝐿

𝜕2𝑊

𝜕𝑋2
 = 0, 

𝐸11𝑐1

𝜕𝑈

𝜕𝑋
+ 𝐹11𝑐1

𝜕𝜑

𝜕𝑋
− 𝐻11𝑐1

2  
𝜕𝜑

𝜕𝑋
+

1

𝐿

𝜕2𝑊

𝜕𝑋2
 = 0. 

𝐴 𝐿2  𝜑 +
1

𝐿

𝜕𝑊

𝜕𝑋
 + 𝑐1  𝐸11𝑐1

𝜕2𝑈

𝜕𝑋2
+ 𝐹11𝑐1

𝜕2𝜑

𝜕𝑋2
  

 −𝐻11𝑐1
2  

𝜕2𝜑

𝜕𝑋2
+

1

𝐿

𝜕3𝑊

𝜕𝑋3
  = 0. 

(55) 

 

The functions U, W, and θ and their jth derivatives with 

respect to x can be approximated 
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where  N is the total number of nodes distributed along the 

x-axis, lk(X) is the Lagrange interpolation polynomials, and
)( j

ikC is the weighting coefficients of the jth-order differen-

tiation. The recursive formula for which can be found in 

Shu (2000). In numerical computations, the cosine pattern is 

employed to generate the DQ point system because of its 

fast convergence characteristics 
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Applying the relationships between Eqs. (56) and (57) 

to Eqs. (43)-(45), result in a set of ordinary differential 

equations 
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where the over dots indicating the partial derivative with 

respect to the time. The related boundary conditions can be 

handled in the same method. For example, the boundary 

conditions of the most commonly used cantilever micro/ 

nanobeam are approximated as 
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for the clamped end at X = 0, and 
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(63) 
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for the free end at X = 1. 

Denoting the unknown vector 
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(64) 

 

Eqs. (59)-(61) can be written in matrix form as 
 

Kδ =Mδ  (65) 

 

where  M and K  are the mass and the stiffness matrix, 

respectively. Expanding the dynamic displacement vector 
tie   where Ω is the natural frequency, 2L  

 

 

Table 1 Material properties of FGM constituents 

Properties Steel Alumina (Al2O3) 

E 210 (GPa) 390 (GPa) 

ρ 7800 (kg/m3) 3960 (kg/m3) 

ν 0.30 0.3 
 

 

 

2/12 hEcc is the dimensionless frequency, and   is the 

vibration mode shape vector. Substituting this expansion 

into Eq. (65) yields the eigenvalues equations as below 
 

 2 0  K M δ  (66) 

 

The natural frequencies and associated mode shapes of 

FG micro/nanobeam can be determined by solving Eq. (66). 
 

 

7. Numerical results and discussion 
 

The analytical and the numerical results obtained in the 

previous sections are presented for an FG micro/nanobeam 

under different boundary conditions, including SS, CS, CF 

and CC. The FG micro/nanobeam is composed of steel and 

alumina (Al2O3) with the material properties listed in Table 

1 and its properties grade smoothly in the thickness 

direction. The top and the bottom surfaces of the beam are 

pure alumina and pure steel, respectively. The FG 

micro/nanobeam has following parameters, which are used 

in computing the numerical values (Eltaher et al. 2012) L 

(length) = 10000 (nm), b (width) = 1000 (nm), h (thickness) 

= 100 (nm). 

In order to verify the analysis, results for simply 

supported nanobeams are compared with Eltaher et al. 

(2012) and Rahmani and Pedram (2014), see Table 2. The 

comparisons illustrate that the present results are in good 

agreement with those in the literatures. All frequencies are 

reduced by increasing the nonlocal parameter. It also 
 

 

Table 2 The variation of non-dimensional frequency for different material distributions and 

nonlocal parameter for SS beam 

Power index 

(g) 

Nonlocal parameter 

(μ) 

Eltaher et al. 

2012 

Rahmani and Pedram 

2014 

Present 

Navier HDQ 

0 

0 9.8797 9.8296 9.8271 9.8291 

1 9.4238 9.3777 9.3763 9.3772 

2 9.0257 8.9829 8.9811 8.9825 

3 8.6741 8.6341 8.6325 8.6337 

4 8.3607 8.3230 8.3213 8.3226 

0.5 

0 7.8061 7.7149 7.7142 7.7158 

1 7.4458 7.3602 7.3595 7.362 

2 7.1312 7.0504 7.0498 7.0521 

3 6.8533 6.7766 6.7764 6.7722 

4 6.6057 6.5325 6.5322 6.5411 

1 

0 7.0904 6.9676 6.9676 6.9627 

1 6.7631 6.6473 6.6468 6.6474 

2 6.4774 6.3674 6.3677 6.3629 

3 6.2251 6.1202 6.1199 6.1153 

4 6.0001 5.8997 5.8991 5.9846 

5 

0 6.0025 5.9172 5.9167 5.9145 

1 5.7256 5.6452 5.6442 5.6421 

2 5.4837 5.4075 5.4067 5.4011 

3 5.2702 5.1975 5.1967 5.1952 

4 5.0797 5.0103 5.0091 5.0115 
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Table 3 The variation of non-dimensional frequency for different material distributions and nonlocal parameter 

for CC beam 

μ 
Mode 

number 

Power index (g) 

0 0.1 0.2 0.5 1 5 10 

0 

1 22.0009 20.5157 19.4095 17.3377 15.6991 13.2913 12.6665 

2 59.3934 55.3974 52.4199 46.8354 42.4005 35.8166 34.1359 

3 113.4050 105.8034 100.1370 89.4939 81.0018 68.2479 65.0513 

4 181.7155 169.5835 160.5368 143.5176 129.8686 109.1162 104.0161 

5 262.2208 204.2284 194.0232 174.0444 156.6479 126.9721 120.8853 

1 

1 20.7636 19.3617 18.3175 16.3621 14.8159 12.5447 11.9550 

2 49.1713 45.8602 43.3936 38.7692 35.0999 29.6613 28.2690 

3 80.6520 75.2370 71.2022 63.6295 57.5973 48.5658 46.2897 

4 110.8427 103.4252 97.8973 87.5094 79.1983 66.6150 63.4984 

5 138.4790 129.2454 122.3624 109.4107 99.0005 83.0535 79.1747 

2 

1 19.7089 18.3780 17.3867 15.5306 14.0631 11.9082 11.3484 

2 42.8431 39.9570 37.8072 33.7776 30.5814 25.8477 24.6342 

3 66.0245 61.5893 58.2851 52.0851 47.1487 39.7645 37.9006 

4 86.9567 81.1348 76.7967 68.6464 62.1286 52.2681 49.8224 

5 105.7218 98.6693 93.4129 83.5240 75.5789 63.4160 60.4539 

3 

1 17.5272 16.5818 16.5818 14.8114 13.4120 11.3575 10.8236 

2 35.8559 33.9264 33.9264 30.3101 27.4424 23.1970 22.1079 

3 53.4530 50.5847 50.5847 45.2034 40.9198 34.5146 32.8967 

4 68.9922 65.3027 65.3027 58.3717 52.8302 44.4492 42.3692 

5 82.9557 78.5358 78.5358 70.2213 63.5423 53.3202 50.8296 

4 

1 17.9981 16.7824 15.8771 14.1819 12.8420 10.8754 10.3641 

2 35.1678 32.7979 31.0327 27.7247 25.1018 21.2198 20.2235 

3 51.3530 47.9021 45.3314 40.5087 36.6703 30.9321 29.4820 

4 65.4555 61.0718 57.8056 51.6701 46.7651 39.3481 37.5067 

5 78.2029 72.9847 69.0958 61.7805 55.9047 46.9131 44.7216 
 

Table 4 The variation of non-dimensional frequency for different material distributions and nonlocal parameter 

for CS beam 

μ 
Mode 

number 

Power index (g) 

0 0.1 0.2 0.5 1 5 10 

0 

1 15.2483 14.2185 13.4525 12.0207 10.8910 9.2238 8.7860 

2 48.5579 45.2897 42.8525 38.2860 34.6675 29.3129 27.9332 

3 98.9298 92.2790 87.3279 78.0361 70.6397 59.5901 56.7936 

4 164.2756 153.2949 145.0971 129.6829 117.3498 98.7350 94.1205 

5 242.4770 204.4477 194.2158 174.1574 156.6867 127.0576 121.0019 

1 

1 14.4425 13.4669 12.7413 11.3852 10.3154 8.7368 8.3221 

2 40.6759 37.9364 35.8939 32.0683 29.0389 24.5611 23.4048 

3 71.2520 66.4550 62.8861 56.1928 50.8723 42.9415 40.9250 

4 101.4663 94.6735 89.6046 80.0854 72.4860 61.0413 58.1821 

5 129.5423 120.8870 114.4375 102.3089 92.5814 77.7621 74.1268 

2 

1 13.7500 12.8211 12.1303 10.8392 9.8208 8.3183 7.9234 

2 35.6996 33.2943 31.5013 28.1436 25.4854 21.5589 20.5439 

3 58.5678 54.6236 51.6892 46.1871 41.8154 35.3036 33.6456 

4 79.8192 74.4722 70.4837 62.9953 57.0200 48.0270 45.7767 

5 99.0253 92.4064 87.4750 78.2037 70.7714 59.4546 56.6742 
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observed from Table 2 that the local theory (μ = 0) over-

estimates the natural frequency of the FG nanobeams 

compared to the nonlocal one, and the difference between 

local and nonlocal theories is significant for high value of 

the nonlocal parameter. This is due to the fact that the local 

 

 

 

 

theory is unable to capture the small scale effect of the 

micro/nanobeams. 

The effects of boundary conditions, material graduation, 

and nonlocal parameter on the first five dimensionless 

frequencies are presented in Tables 3-5. 

Table 4 Continued 

μ 
Mode 

number 

Power index (g) 

0 0.1 0.2 0.5 1 5 10 

3 

1 13.1470 12.2587 11.5981 10.3637 9.3900 7.9538 7.5762 

2 32.1981 30.0281 28.4108 25.3823 22.9852 19.4457 18.5301 

3 50.9132 47.4842 44.9329 40.1497 36.3501 30.6925 29.2508 

4 67.9504 63.3969 60.0010 53.6262 48.5405 40.8885 38.9725 

5 83.2657 77.6994 73.5523 65.7565 59.5082 49.9966 47.6583 

4 

1 12.6158 11.7634 11.1294 9.9449 9.0107 7.6327 7.2703 

2 29.5635 27.5707 26.0856 23.3048 21.1041 17.8554 17.0146 

3 45.6544 42.5794 40.2914 36.0022 32.5955 27.5238 26.2309 

4 60.1875 56.1533 53.1453 47.4987 42.9945 36.2187 34.5215 

5 73.2444 68.3476 64.6994 57.8418 52.3461 43.9814 41.9243 
 

Table 5 The variation of non-dimensional frequency for different material distributions and nonlocal parameter 

for CF beam 

μ 
Mode 

number 

Power index (g) 

0 0.1 0.2 0.5 1 5 10 

0 

1 3.5252 3.2865 3.1090 2.7773 2.5160 2.1342 2.0334 

2 21.5678 20.1069 19.0193 16.9845 15.3801 13.0420 12.4311 

3 59.7784 55.7420 52.7380 47.1153 42.6668 36.1080 34.4116 

4 113.7455 106.0837 100.3799 89.6928 78.3165 63.4868 60.4431 

5 183.2862 102.1139 97.0103 87.0165 81.2056 68.5765 65.3661 

1 

1 3.5393 3.2997 3.1215 2.7885 2.5261 2.1428 2.0416 

2 20.2575 18.8857 17.8644 15.9536 14.4468 12.2495 11.6754 

3 49.4342 46.0967 43.6124 38.9618 35.2817 29.8558 28.4535 

4 80.7445 75.3081 71.2598 63.6703 57.6409 48.6710 46.3924 

5 111.2410 100.8770 95.8353 85.9629 77.3701 62.7185 59.7112 

2 

1 3.5539 3.3133 3.1343 2.7999 2.5364 2.1516 2.0500 

2 19.1227 17.8279 16.8640 15.0606 13.6382 11.5632 11.0210 

3 43.1163 40.2056 38.0389 33.9823 30.7720 26.0382 24.8153 

4 65.9962 61.5536 58.2454 52.0432 47.1151 39.7793 37.9161 

5 87.2245 81.3742 77.0168 68.8368 62.3074 52.4692 50.0146 

3 

1 3.5252 3.2865 3.1090 2.7773 2.5160 2.1342 2.0334 

2 21.5678 20.1069 19.0193 16.9845 15.3801 13.0420 12.4311 

3 59.7784 55.7420 52.7380 47.1153 42.6668 36.1080 34.4116 

4 113.7455 106.0837 100.3799 89.6928 78.3165 63.4868 60.4431 

5 183.2862 102.1139 97.0103 87.0165 81.2056 68.5765 65.3661 

4 

1 3.5393 3.2997 3.1215 2.7885 2.5261 2.1428 2.0416 

2 20.2575 18.8857 17.8644 15.9536 14.4468 12.2495 11.6754 

3 49.4342 46.0967 43.6124 38.9618 35.2817 29.8558 28.4535 

4 80.7445 75.3081 71.2598 63.6703 57.6409 48.6710 46.3924 

5 111.2410 100.8770 95.8353 85.9629 77.3701 62.7185 59.7112 
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Fig. 2 The variation of the first and second frequencies with 

nonlocal parameter at power index (g = 0.5) 

 

 

 

Fig. 3 The variation of the first and second frequencies with 

nonlocal parameter at power index (g = 0.5) 

 

 

Table 3 illustrates the effect material graduation and 

nonlocal parameter on the vibration characteristics for 

Clamped FG micro/nanobeam. As shown in Table 3, by 

increasing the nonlocal parameter, natural frequency for all 

modes decreases and this reduction is more prominent at 

higher modes, and so the small-scale effect cannot be 

neglected. For instance, by increasing nonlocal parameter 

from 0 to 4 the first mode is reduced by 18.18%, but for the 

fifth mode for increasing the nonlocal parameterfrom0 

to4natural frequency is reduced by 70.22%. The reduction 

may be described as follows. The nonlocal parameter effect 

makes the FG micro/nanobeam more flexible as the 

nonlocal model may be viewed as atoms connected by 

elastic springs whereas the local continuum model supposes 

the spring constant to take on an infinite value. In sum, the 

nonlocal beam theory should be employed if we need exact 

predictions of high frequencies of micro/nanobeams. 

 

Fig. 4 The effect of the nonlocal parameter on the first 

mode shapes of the FG micro/nanobeams for SS ends 
 

 

 

Fig. 5 The effect of the nonlocal parameter on the first 

mode shapes of the FG micro/nanobeams for CC ends 

 

 

The effect of material graduation and nonlocal para-

meter for the frequencies in case clamped-simply supported 

beam is presented in Table 4. The behavior of this nano-

beam is consistent with the simply (SS) and clamped (CC) 

micro/nanobeams. The frequencies of this case are higher 

than the simply supported micro/nanobeam and lower than 

the clamped micro/nanobeam. 

Clamped-free beam shows unusual manner than the 

other type of boundary condition. While, the first frequency 

increased by increasing the nonlocal parameter and the 

nonlocal parameter has not a significant effect for the first 

frequency as presented in Table 5. Whereas, the other 

frequencies decrease as the nonlocality parameter increased 

for all power indexes. 

In order to see better the effects of power index and 

nonlocal parameter variations on the natural frequencies of 

the FG micro/nanobeams with different boundary 

conditions, Figs. 2 and 3 also illustrate these variations. Fig. 

2 shows the effect of nonlocal parameter on the first and 
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second mode numbers of FG micro/nanobeams. For this 

purpose, natural frequency ratio is defined as follows 
 

 

 

Frequency Ratio = 

     
   

     

nl

l

Natural Frequency from nonlocal theory

Natural Frequency from local theory





 (67 

 

It can be seen from Fig. 2 for the first mode Clamped-

free beam shows a different behavior than the other type of 

boundary condition. Whereas, by increasing the nonlocal 

parameter the first frequency increased. Therefore, this 

observation must be considered in design of nanodevices. 

Similar to isotropic micro/nanobeams, the nonlocal para-

meters effects increase with increase in mode numbers. This 

is because of small wavelength effect for higher modes and 

thus the small-scale effect cannot be neglected. Also, it can 

be found that, as the rigidity of the beam increased the 

effect of nonlocality on the natural frequency will be 

increased. 

Effect of power law index (g) on the natural frequency 

of the FG micro/nanobeam for various boundary conditions 

is illustrated in Fig. 3. As can be seen, by increasing the 

power law index (g) for all boundary conditions natural 

frequency decreases and this reduction is especially 

significant at lower power law index. This is due to the fact 

that higher values of power law index (g) correspond to 

high portion of material 1 in comparison with the material 2 

part, thus makes such FG beams less flexible. The highest 

values for natural frequencies are obtained for full material 

1 beams (g = 0), while the lowest natural frequencies are 

obtained for full material 2 beams (g → ∞). This is because 

an increase in the value of the power law index results in a 

decrease in the value of elasticity modulus. In other words, 

the FG nanobeam becomes flexible as the power law index 

increases. As it is seen from Fig. 3, the behavior of the 

micro/nanobeam follows the same tendency in all boundary 

conditions, i.e., the natural frequencies of the micro/ 

nanobeam decrease by increasing of g and become stable 

for g values greater than 5. In fact, for g >> 1 the FG 

micro/nanobeam becomes a metal micro/nanobeam and its 

mechanical properties become almost steady. 

The effect of the nonlocal parameter on the fundamental 

mode shapes (the dimensionless displacement W) of the CC 

and SS FG micro/nanobeams are plotted in Figs. 4 and 5. 

The nonlocal parameter nearly has no effect on the mode 

shapes W for the SS FG micro/nanobeam, but has a 

distinguished effect for the CC FG micro/nanobeam. 
 

 

5. Conclusions 
 

In the present work, vibration analysis of FG micro/ 

nanobeams based on Reddy beam theory is developed. 

Nonlocal constitutive equations of Eringen are being 

employed in the formulations to obtain the vibration 

behavior of FG micro/nanobeam. Equations of motion are 

obtained from the Hamilton‟s principal. Navier solution and 

DQ method are employed to find the natural frequencies 

and mode shapes of the FG micro/nanobeams with different 

boundary conditions. Effects of nonlocal parameter, the 

power law index, boundary condition, and mode number on 

the natural frequencies of FG micro/nanobeams are studied. 

From the present study, the following results are derived: 
 

 It is seen that increasing the power law index g will 

decrease the stiffness of the FG micro/nanobeams, 

and consequently, leads to a decrease in the natural 

frequencies for all different nonlocal parameter μ 

and mode numbers. Therefore, by manipulating the 

material-distribution profile of FG micro/nanobeam, 

we can select a specific design frequency. 

 Fundamental frequencies decreased as the nonlocal 

parameter increased for all boundary conditions 

except for the first mode in the case of CF FG 

micro/nanobeam where it increased. 

 Similar to isotropic micro/nanobeams, the nonlocal 

parameters effects increase with increasing in mode 

numbers. This is because of small wavelength effect 

for higher modes and thus the small-scale effect 

cannot be neglected. 
 

The analytical and numerical nonlocal Reddy beam 

solutions presented in this work can be helpful for engineers 

who are designing micro and nanoelectromechanical 

devices. 
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