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1. Introduction 

 
Nowadays, the use of carbon nanotubes in polymer/ 

carbon nanotube composites has attracted wide attention 
(Wagner et al. 1997). A high aspect ratio, low weight of 
CNTs and their extraordinary mechanical properties 
(strength and flexibility) provide the ultimate reinforcement 
for the next generation of extremely lightweight but highly 
elastic and very strong advanced composite materials. On 
the other hand, by using of the polymer/CNT composites in 
advanced multilayered composite materials (sandwich 
structures) we can achieve structures with low weight, high 
strength and high stiffness in many structures of civil, 
mechanical and space engineering. 

Functionally graded materials (FGMs) are advanced 
composite materials that are engineered to have a smooth 
spatial variation of material properties. This is achieved by 
fabricating the composite material to have a gradual spatial 
variation of the constituent materials’ relative volume 
fractions and microstructure (Koizumi 1993). Plates 
fabricated from FGMs have several engineering applica-
tions. Malekzadeh et al. (2011) analyzed the free vibration 
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analysis of FGM thin-to-moderately thick annular plates 
subjected to thermal environment and supported on two-
parameter elastic foundation using first order shear 
deformation theory (FSDT) as well as DQM. Chakraverty 
et al. (2007) presented the effect of nonhomogeneity of the 
material properties on the vibration frequencies of circular 
and elliptic plates. They used boundary characteristic 
orthogonal polynomials as the basis function in the 
Rayleigh Ritz method to solve the problem. Free vibration 
frequencies and modes of variable thickness thick annular 
isotropic and FGM plates were studied by Efraim and 
Eisenberger (2007) using exact element method. Hosseini-
Hashemi et al. (2010) performed the vibration of 
piezoelectric coupled thick annular functionally graded 
plates (FGPs) subjected to different combinations of 
boundary conditions at the inner and outer edges of the 
annular plate on the basis of the Reddy’s third-order shear 
deformation theory (TSDT). Free and forced vibration of 
FGM annular sectorial plates with simply supported radial 
edges and arbitrary circular edges were investigated by Nie 
and Zhong (2008). The inhomogeneity of the plate was 
characterized by taking exponential variation of Young’s 
modulus and mass density of the material along the radial 
direction whereas Poisson’s ratio was assumed to remain 
constant. Yas and Tahouneh (2012) investigated the free 
vibration analysis of thick FG annular plates on elastic 
foundations via differential quadrature method based on the 
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three-dimensional elasticity theory. The same authors 
(Tahouneh and Yas 2012, 2013, Tahouneh 2014a, b) 
investigated the free vibration analysis of thick one- and 
two-directional FG annular sector plates on Pasternak 
elastic foundations using DQM. Tahouneh et al. (2013) 
studied free vibration characteristics of annular continuous 
grading fiber reinforced (CGFR) plates resting on elastic 
foundations using DQM. Arefi (2015) proposed and elastic 
solution for a curved beam made of functionally graded 
materials with different cross sections. The beam was 
loaded under pure bending. Using the linear theory of 
elasticity, the general relation for radial distribution of 
radial and circumferential stresses of arbitrary cross section 
was derived. Bennai et al. (2015) developed a new refined 
hyperbolic shear and normal deformation beam theory to 
study the free vibration and buckling of functionally graded 
(FG) sandwich beams under various boundary 
conditions. The effects of transverse shear strains as well as 
the transverse normal strain were taken into account. 
Tahouneh (2016) used a semi-analytical approach 
composed of differential quadrature method (DQM) and 
series solution to present a 3-D elasticity solution for free 
vibration analysis of thick continuously graded carbon 
nanotube-reinforced (CGCNTR) rectangular plates; In this 
study, an equivalent continuum model based on the 
Eshelby-Mori-Tanaka approach was employed to estimate 
the effective constitutive law of the elastic isotropic 
medium (matrix) with oriented, straight carbon nanotubes 
(CNTs). Yas and Sobhani Aragh (2010) achieved the natural 
frequencies of rectangular continuous grading fiber 
reinforced (CGFR) plates resting on elastic foundations; 
The CGFR plate was simply supported at the edges and was 
assumed to have an arbitrary variation of fiber volume 
fraction in the thickness direction. The results obtained 
indicated the advantages of using CGFR plate with graded 
fiber volume fractions over traditional discretely laminated 
plates. Matsunaga (2008) analyzed the natural frequencies 
and buckling stresses of FG plates using a higher order 
shear deformation theory which are based on the through 
the thickness series expansion of the displacement 
components. Zhou et al. (2004) used Ritz method to 
analyze the free-vibration characteristics of rectangular 
thick plates resting on elastic foundations. Matsunaga 
(2000) investigated a two-dimensional, higher-order theory 
for analyzing the thick simply supported rectangular plates 
resting on elastic foundations. Hosseini-Hashemi et al. 
(2010) employed the differential quadrature method to 
investigate free vibration of FGM circular and annular 
sectorial thin plates of variable thickness, resting on the 
Pasternak elastic foundation. 

The discovery of carbon nanotubes (CNTs) by Iijima 
(1991) has generated a great and sustained interest in 
carbon based materials and nanotechnologies. CNTs have 
been shown to possess exceptional electrical, mechanical 
and thermal properties, which are attractive for diverse 
potential applications ranging from nano-electronics to 
biomedical devices. A detailed summary of the mechanical 
properties of CNTs can be found in (Salvetat and Rubio 
2002). The exceptional mechanical properties of CNTs have 
shown great promise for a wide variety of applications, such 

as nanotransistors, nanofillers, semiconductors, hydrogen 
storage devices, structural materials, molecular sensors, 
field-emission-based displays, and fuel cells, to name just a 
few (Endo et al. 2004). The addition of nano-sized fibers or 
nanofillers, such as CNTs, can further increase the merits of 
polymer composites (Wernik and Meguid 2011). These 
nanocomposites, easily processed due to the small diameter 
of the CNTs, exhibit unique properties (Thostenson et al. 
2001, Moniruzzaman and Winey 2006), such as enhanced 
modulus and tensile strength, high thermal stability and 
good environmental resistance. This behavior, combined 
with their low density makes them suitable for a broad 
range of technological sectors such as telecommunications, 
electronics (Valter et al. 2002) and transport industries, 
especially for aeronautic and aerospace applications where 
the reduction of weight is crucial in order to reduce the fuel 
consumption. For example, Qian et al. (2000) showed that 
the addition of 1wt.% (i.e., 1% by weight) multiwall CNT 
to polystyrene resulted in 36-42% and 25% increases in the 
elastic modulus and the break stress of the nanocomposite 
properties, respectively. In addition, Yokozeki et al. (2007) 
reported the retardation of the onset of matrix cracking in 
the composite laminates containing the cup-stacked CNTs 
compared to those without the cup-stacked CNTs. The 
properties of the CNT-reinforced composites (CNTRCs) 
depend on a variety of parameters including CNT geometry 
and the interphase between the matrix and CNT. Interfacial 
bonding in the inter-phase region between embedded CNT 
and its surrounding polymer is a crucial issue for the load 
transferring and reinforcement phenomena (Shokrieh and 
Rafiee 2010a). The traditional approach to fabricating 
nanocomposites implies that the nanotube is distributed 
either uniformly or randomly such that the resulting 
mechanical, thermal, or physical properties do not vary 
spatially at the macroscopic level. Experimental and 
numerical studies concerning CNTRCs have shown that 
distributing CNTs uniformly as the reinforcements in the 
matrix can achieve moderate improvement of the 
mechanical properties only (Qian et al. 2000, Seidel and 
Lagoudas 2006). This is mainly due to the weak interface 
between the CNTs and the matrix where a significant 
material property mismatch exists. The concept of FGM can 
be utilized for the management of a material’s 
microstructure so that the vibrational behavior of a 
plate/shell structure reinforced by CNTs can be improved. 
According to a comprehensive survey of literature, the 
authors found that there are few research studies on the 
mechanical behavior of functionally graded CNTRC 
structures. For the first time, Shen (2009) suggested that the 
nonlinear bending behavior can be considerably improved 
through the use of a functionally graded distribution of 
CNTs in the matrix. He introduced the CNT efficiency 
parameter to account load transfer between the nanotube 
and polymeric phases. Compressive postbuckling and 
thermal buckling behavior of functionally graded 
nanocomposite plates reinforced by aligned, straight 
SWCNTs subjected to in-plane temperature variation were 
reported by Shen and Zhu (2010) and Shen and Zhang 
(2010). They found that in some cases the CNTRC plate 
with intermediate CNT volume fraction does not have 
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intermediate buckling temperature and initial thermal post 
buckling strength. Moreover, Ke et al. (2010) investigated 
the nonlinear free vibration of functionally graded CNTRC 
Timoshenko beams. They found that both linear and 
nonlinear frequencies of functionally graded CNTRC beam 
with symmetrical distribution of CNTs are higher than those 
of beams with uniform or unsymmetrical distribution of 
CNTs. Kamarian et al. (2015) studied vibration analysis of 
sandwich beams. The material properties of the FG 
nanocomposite sandwich beam are estimated using the 
Eshelby-Mori-Tanaka approach. Marin and Lupu (1998) 
obtained a spatial estimate, similar to that of Saint-Venant 
type by using a measure of Toupin type associated with the 
corresponding steady-state vibration and assuming that the 
exciting frequency was lower to a certain critical frequency. 
Marin (2010) extended the concept of domain of influence 
in order to cover the elasticity of microstretch materials. 
Sharma and Marin (2013) studied wave propagation in 
micropolar thermoelastic solid half space with distinct 
conductive and thermodynamic temperatures. Reflection of 
plane waves incident obliquely at the free surface of 
micropolar generalized thermoelastic solid half space with 
two temperature was investigated. 

Though there are research works reported on general 
sandwich structures, very little work has been done to 
consider even the vibration behavior of FG sandwich 
structures (Anderson 2003, Kashtalyan and Menshykova 
2009). Li et al. (2008) studied free vibrations of FGSW 
rectangular plates with simply supported and clamped 
edges. Zenkour (2005a, b) presented a two-dimensional 
solution to study the bending, buckling and free vibration of 
simply supported FG ceramic-metal sandwich plates. 
Kamarian et al. (2013) studied free vibration of FGSW 
rectangular plates with simply supported edges and rested 
on elastic foundations using differential quadratic method.  
Very recently, Wang and Shen (2011) investigated the large 
amplitude vibration and the nonlinear bending of a 
sandwich plate with CNTRC face sheets resting on an 
elastic foundation on the basis of a micromechanical model 
and multi-scale approach. Tahouneh and Naei (2016) 
investigated free vibration and vibrational displacements of 
thick laminated curved panels with finite via DQ method. 
The material properties varied continuously through the 
layers’ thickness according to a three-parameter power-law 
distribution. It was assumed that the inner surfaces of the 
functionally graded sheets are metal rich, while the outer 
surfaces of the layers could be metal rich, ceramic rich or 
made of a mixture of two constituents. Bouchafa et al. 
(2015) investigated thermal stresses and deflections of 
functionally graded sandwich plates via a new refined 
hyperbolic shear deformation theory. The sandwich plate 
faces were assumed to have isotropic, two-constituent 
material distribution through the thickness, and the modulus 
of elasticity, Poisson's ratio of the faces, and thermal 
expansion coefficients were assumed to vary according to a 
power law distribution in terms of the volume fractions of 
the constituents. 

In all studies mentioned above, the material properties 
of functionally graded CNTRCs were assumed to be graded 
in the thickness direction, and were estimated through the 

extended rule of mixture in which the CNT efficiency 
parameter was determined by matching the elastic modulus 
of CNTRCs observed from the MD simulation results with 
the numerical results obtained from the extended rule of 
mixture. On the other hand, the extended rule of mixture is 
not applicable when CNTs are oriented randomly in the 
matrix. CNTs have low bending stiffness (due to small 
diameter and small elastic modulus in the radial direction) 
and high aspect ratio, which make CNTs easy to 
agglomerate in a polymer matrix (Shaffer and Windle 1999, 
Vigolo et al. 2000). In order to achieve the desired 
properties of CNTRCs, it is critical to make CNTs 
uniformly dispersed in the matrix (Shi et al. 2004). It has 
been observed in CNTRCs that a large amount of the 
nanotubes are concentrated in agglomerates (Wuite and 
Adali 2005). Stephan et al. (2000) observed that in the 7.5 
percent concentration sample, a large amount of CNTs are 
concentrated in aggregates. In some research works, 
Authors have considered agglomeration effect of single-
walled carbon nanotubes in different types of structures 
(Kamarian et al. 2016, 2015, Heshmati and Yas 2013, 
Tornabene et al. 2016, Moradi-Dastjerdi et al. 2013). 

The specific objective of the present investigation is to 
provide a 3-D elasticity solution for the analysis of the 
natural frequencies of functionally graded (FG) nanocom-
posite sandwich plates resting on Pasternak foundation. The 
volume fractions of randomly oriented agglomerated 
SWCNTs are assumed to be graded in the thickness 
direction of sheets. The direct application of CNTs 
properties in micromechanics models for predicting 
material properties of the nanotube/polymer composite is 
inappropriate without taking into account the effects 
associated with the significant size difference between a 
nanotube and a typical carbon fiber (Odegard et al. 2003). 
In other words, continuum micromechanics equations 
cannot capture the scale difference between the nano and 
micro levels. In order to overcome this limitation, a virtual 
equivalent fiber consisting of nanotube and its interphase 
which is perfectly bonded to surrounding resin is applied. A 
two-parameter micromechanics model of agglomeration is 
used to determine the effect of CNT agglomeration on the 
elastic properties of randomly oriented CNTRCs. In this 
research work, an equivalent continuum model based on the 
Eshelby-Mori-Tanaka approach is employed to estimate the 
effective constitutive law of the elastic isotropic medium 
(matrix) with oriented straight CNTs. In the present work, 
the generalized differential quadrature method (GDQM) 
approach is used to solve the governing equations of 
sandwich plates. 

 
 

2. Material properties of CNTRCs 
 
2.1 Properties of the equivalent fiber 
 
In this section, a virtual equivalent fiber consisting of 

nanotube and its interphase, which is perfectly bonded to 
surrounding resin, is introduced to obtain the mechanical 
properties of the CNT/polymer composite by using the 
results of multiscale finite element method (FEM). The 
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equivalent fiber for SWCNT with chiral index of (10,10) is 
a solid cylinder with diameter of 1.424 nm. ROM is used 
inversely for calculating material properties of equivalent 
fiber (Tsai et al. 2003) 
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where ELEF, ETEF, GEF, υEF, ELC, ETC, GC, υC, EM, GM, υM, 
VEF, and VM are respectively longitudinal modulus of 
equivalent fiber, transverse modulus of equivalent fiber, 
shear modulus of equivalent fiber, Poisson’s ratio of 
equivalent fiber, longitudinal modulus of composites, 
transverse modulus of composites, shear modulus of 
composites, Poisson’s ratio of composites, modulus of 
matrix, shear modulus of matrix, Poisson’s ratio of matrix, 
volume fraction of the equivalent fiber, and volume fraction 
of the matrix. ELC, GC, and ETC are obtained from multiscale 
FEM or molecular dynamics (MD) simulations, respec-
tively. Mechanical properties of the developed equivalent 
fiber are listed in Table 1 (Shokrieh and Rafiee 2010b). It 
must be mentioned that in (Shokrieh and Rafiee 2010b), 
material properties of the matrix are as 

 
32.1 , 1150 / , 0.34m m mE Gpa kg m     

 
2.2 Effect of CNT agglomeration on the properties 

of the composite 
 

It has been found that in CNTRCs due to large aspect 
ratio (usually >1000), low bending rigidity of CNTs and van 
der Waals forces, CNTs have a tendency to bundle or cluster 
together. The effect of nanotube agglomeration on the 
elastic properties of randomly oriented CNTRC is presented 
in this section. Shi et al. (2004) derived a two-parameter 
micromechanics model to determine the effect of nanotube 
agglomeration on the elastic properties of randomly 
oriented CNTRC (Fig. 1). It is assumed that a number of 
CNTs are UD throughout the matrix and that other CNTs 
appear in cluster form because of agglomeration, as shown 
in Fig. 1. The total volume of the CNTs in the representative 

 
 

Table 1 Material properties of equivalent fiber 

Mechanical properties 
Equivalent fiber 
(Tsai et al. 2003) 

Longitudinal Young’s modulus (Gpa) 649.12 

Transverse Young’s modulus (Gpa) 11.27 

Longitudinal shear modulus (Gpa) 5.13 

Poisson’s ratio 0.284 

Density (kg/m3) 1400 
 

 

 

Fig. 1 Representative volume element (RVE) with Eshelby 
inclusion model of agglomeration of CNTs 

 
 

volume element (RVE), denote by Vr, can be divided into 
the following two parts 
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r r rV V V   (2)
 

where cluster
rV represents the volumes of CNTs inside a 

cluster, and m
rV  is the volume of CNTs in the matrix and 

outside the clusters. The two parameters used to describe 
the agglomeration are defined as 
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where V is the volume of RVE, Vcluster is the volume of 
clusters in the RVE. μ is the volume fraction of clusters with 
respect to the total volume of the RVE and η is the volume 
ratio of the CNTs inside the clusters over the total CNT 
inside the RVE. μ = 1 denotes the case that all CNTs are 
uniformly dispersed in the matrix and with the decrease of 
μ, the agglomeration degree of CNTs is more severe. If η = 
1, all the nanotubes are located in the clusters. The case μ = 
η means that the volume fraction of CNTs inside the 
clusters is as same as that of CNTs outside the clusters 
(fully dispersed). When μ < η, the bigger value of η denotes 
the more heterogeneous the spatial distribution of CNTs. 
Thus, we consider the CNTRC as a system consisting of 
clusters of sphere shape embedded in a matrix. We may first 
estimate, respectively, the effective elastic stiffness of the 
clusters and the matrix, and then calculate the overall 
property of the whole composite system. The effective bulk 
modulus Kin and shear modulus Gin of the cluster and the 
effective bulk modulus Kout and shear modulus Gout of the 
equivalent matrix outside the cluster can be calculated by 
(Shi et al. 2004) 
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where 
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The subscripts m and r stand for the quantities of the 
matrix and the reinforcing phase, Km and Gm are the bulk 
and shear moduli of the matrix, respectively, and kr, lr, mr, 
nr, and pr are the Hill’s elastic moduli for the reinforcing 
phase (CNTs), which can be found from the equality of two 
following matrices 
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where EL, ET, EZ, GTZ, GZL, GLT, ʋLT are material properties 
of the equivalent fiber, which can be determined from the 
inverse of the ROM. It must be noticed that before the use 
of the ROM, material properties of nanoscale RVE of 
nanocomposite must be obtained from multiscale FEM 
analysis or MD simulations. The effective bulk modulus K 
and the effective shear modulus G of the composite are 
derived from the MT method as follows (Shi et al. 2004) 

( 1)

1
1 (1 )( 1)

in

out
out

in

out

K
K

K K
K
K

  
  

    
 



 

 

(14)

 

( 1)

1
1 (1 )( 1)

in

out
out

in

out

G
G

G G
G
G

  
  

    
 



 

 

(15)

 

in which 
 

1

3(1 )
out

out

S

S







 
(16)

 
2(4 5 )

15(1 )
out

out

S

S







 
(17)

 

0

3 2

2(3 )
out out

out

out ut

K G
S

K G






 
(18)

 
Finally, the effective Young’s modulus E and Poisson’s 

ratio υ of the composite are given by 
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3. Problem description 
 
Consider a sandwich rectangular plate with length a, 

width b, and thickness h as depicted in Fig. 2. The plate is 
supported by an elastic foundation with Winkler’s (normal) 
and Pasternak’s (shear) coefficients. The deformations 
defined with reference to a Cartesian coordinate system (x, 
y, z) are u, v and w in the x, y and z directions, respectively. 
In the present work, Vcnt and Vm are considered as the CNT 
and matrix volume fraction, respectively. We assume that 
the CNTs volume fraction varies through the thickness of 
FG-CNTR plate according to a generalized power-law 
distribution with four parameters as the following 
(Tornabene et al. 2015, Tornabene and Viola 2009) 

 
 

Fig. 2 Geometry of a FG-CNTR sandwich plate resting 
on an elastic foundation (the origin is placed in the 
middle of sandwich plate) 
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(21)

 

where h and hf are the thicknesses of plate and the face 
sheets, respectively, V* is the maximum possible amount of 
CNT volume fraction in the face sheets. Furthermore, 
volume fraction index p (0 ≤ p ≤ ∞) and the parameters a, b, 
and c indicate the CNT volume fraction profile through the 
thickness of structure. It should be noticed that the values of 
parameters a, b, and c must be chosen so that (0 ≤ Vcnt ≤ 
V*). According to relation Eq. (21), the core of structure 
does not contain CNT, whereas the lower and upper face 
sheets are made of a mixture of the two constituents. 
Various material profiles through the thickness of face 
sheets can be illustrated by using the four-parameter power-
law distribu-tion. The through-thickness variations of 
volume fraction for some profiles are illustrated in Fig. 3 
for different amounts of parameter b, c and p. 

 
 

4. Governing equations and solution procedure 
 
The mechanical constitutive relations that relate the 

stresses to the strains are as follows 
 

2ij kk ij ij      (22)
 

where λ and ψ are the Lame constants, εij is the infinitesimal 
strain tensor and δij is the Kronecker delta. In the absence of 
body forces, the equations of motion are as follows 

 
 

2
,

2

2
,

2

2

2

uxyx xz
x y z t

vxy y yz

x y z t

wyzxz z
x y z t

  
  

   
   

  
   

  
  

   

 


  


 


 (23)

 

The infinitesimal strain tensor is related to the displace-
ments as follows 

 

, , ,

,

u v w u v
x y z xyx y z y x

u w v w
xz yzz x z y

    
    
    

   
   
   

   

 
 (24)

 

where u, v and w are displacement components along the x, 
y and z axes, respectively. Upon substitution Eq. (24) into 
Eq. (22) and then into Eq. (23), the equations of motion in 
terms of displacement components with infinitesimal 
deformations can be written as 

 

2

2
1 1 1 2
2 2 2 2
3 3 3 2

2

u

t
F F F ux y z

v
F F F vx y z

twF F Fx y z
w

t

  
              

     
       

 
 







 (25)

 

The related boundary conditions at z = -h/2 and h/2 are 

 

Fig. 3 Variation of the fiber volume fraction (Vcnt) through the thickness of the FG graded sandwich plate 
A: a = 1, b = 0, c = 2; B: a = 1, b = 1, c = 2; C: a = 1, b = 1, c = 6 
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at  z = h/2 
 

zx zy zz0, 0, 0       (27)
 

where σij are the components of stress tensor; Kw and Kg are 
Winkler and shearing layer elastic coefficients of the 
foundation. The stress components are related to the 
displacement components using the three-dimensional 
constitutive relations as 

 

x 11 12 13 yz 44

y 12 22 23 xz 55

z 13 23 33 xy 66
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    

 
(28)

 

Different types of classical boundary conditions at the 
edges of the plate can be stated as 

 

- Simply supported (S) 
 

yy 0,w 0,u 0     (29)
 

- Clamped (C) 
 

u 0, v 0, w 0    (30)
 

- Free (F) 
 

yy xy yz0, 0, 0       (31)
 

Here, plates with two opposite edges at x = -a/2 and a/2 
simply supported and arbitrary conditions at edges y = -b/2 
and b/2 are considered. For free vibration analysis, by 
adopting the following form for the displacement 
components the boundary conditions at edges x = -a/2 and 
a/2 are satisfied 

 

( , , , ) ( , , ) cos( ( 2) )

( , , , ) ( , , ) sin( ( 2) )

( , , , ) ( , , ) sin( ( 2) )

i tu x y z t U y z t m x a a em
i tv x y z t V y z t m x a a em
i tw x y z t W y z t m x a a em

 

 

 





 (32)

 

where m is the wave number along the x- direction, ω is the 

natural frequency and i (= 1 ) is the imaginary number. 
Substituting for displacement components from Eq. (32) 
into the equations of motion which obtained in terms of 
displacement components, the coupled partial differential 
equations are reduced to a set of coupled ordinary 
differential equations (ODE). The geometrical and natural 
boundary can also be simplified, however, for brevity 
purpose, they are not shown here. 

It is necessary to develop appropriate methods to 
investigate the mechanical responses of functionally graded 
(FG) nanocomposite sandwich plates. But, due to the 
complexity of the problem caused by the inhomogeneity, it 
is difficult to obtain the exact solution. In this paper, the 
generalized differential quadrature method (GDQM) 
approach is used to solve the governing equations of 
rectangular plates. 

Substituting for displacement components from Eq. (32) 
into Eq. (25), and then using GDQ method to discretize the 
equations of motion, one can get the following equations (A 
brief review of GDQ method is given in Shu 2000, Shu and 
Richards 1992): 
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(33)

 

- In the y-direction 
 

2( ) ( ( ) ( ) )66
1

( ) (( ) )12
1

y

y

N
m m yc V A Ujk mjk mnkjna a

n
N

m yc A Ujk mnkjna
n


  











 



 

( ) ( ) ( )22 23
1 1 1

44( ) ( )

1 1

( ) (44
1

2)

1 1

y y z

yz

z

y z

N N N
y yzc B V c A A Wjk mnk jk mnrjn jnkr

n n r
NN

c yzA V A Wjk mjn mnkjnknz
n n

N
zc B Vjk mjnkn

n
N N

yzA A W Vmnr jk mjkjnkr
n r

  
  


 


 




 
 

 

 



  

(34)

 

- In the z-direction 
 

 
(35)
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(35)

 

where 
z
ij

y
ij AA ,  and 

z
ij

y
ij BB ,  are the first and second order 

DQ weighting coefficients in the y- and z-directions, 
respectively. In a similar manner the boundary conditions 
can be discretized. In order to carry out the eigenvalue 
analysis, the domain and boundary nodal displacements 
should be separated. In vector forms, they are denoted as 
{d} and {b}, respectively. Based on this definition, the 
discretized form of the equations of motion and the related 
boundary conditions can be represented in the matrix form 
as: 

Equations of motion 
 

  
 
 

    2 0
b

K K M ddb dd
d


       
  

 (36)

 

and boundary conditions 
 

       0K d K bbd bb   (37)
 

Eliminating the boundary degrees of freedom in Eq. (36) 
using Eq. (37), this equation becomes 

 

      2- 0K M d   (38)
 

where [K] = [Kdd] ‒ [Kdb][Kbb]
-1[Kbd]. The above eigenvalue 

system of equations can be solved to find the natural 
frequencies and mode shapes of the plates. 

 
 

5. Numerical results and discussion 
 
Firstly, the results are compared with those of 1-D 

conventional functionally graded rectangular plates, and 
then, the results of the presented formulations are given in 
the form of convergence studies with respect to Nz and Ny, 
the number of discrete points distributed along the thickness 
and width of the plate, respectively. The boundary 
conditions of the plate are specified by the letter symbols, 
for example, S-C-S-F denotes a plate with edges x = -a/2 
and a/2 simply supported (S), edge y = -b/2 clamped (C) 
and edge y = b/2 free (F). As a first example, the properties 
of the plate are assumed to vary through the thickness of the 

plate with a desired variation of the volume fractions of the 
two materials in between the two surfaces. The modulus of 
elasticity E and mass density ρ are assumed to be in terms 
of a simple power law distribution and Poisson’s ratio υ is 
assumed to be constant as follows 

 

M CM f 0 M CM f

p
CM C M CM C M f

E(z) E E V , (z) , (z) V

E E E , ,V (0.5 z h)

      

      
 (39)

 

where –h/2 ≤ z ≤ h/2 and p is the power law index which 
takes values greater than or equal to zero. Subscripts M and 
C refer to the metal and ceramic constituents which denote 
the material properties of the bottom and top surface of the 
plate, respectively. The mechanical properties are as 
follows: 
 

- Metal (Aluminum, Al) 
 

9 2 3
M ME 70*10 N m , 0.3, 2702 kg m      

 

- Ceramic (Alumina, Al2O3) 
 

9 2 3
C CE 380*10 N m , 0.3, 3800 kg m      

 

In Table 2, the first seven non-dimensional natural 
frequency parameters of simply supported thick FG plate 
are compared with those of Matsunaga (2008) and Yas and 
Sobhani (2010). As the second example, in order to validate 
the results for plates on an elastic foundation, the results for 
the first three natural frequency parameters of isotropic 
thick plate with two different values of thickness-to-length 
ratios and different values of Winkler elastic coefficient are 
presented in Table 3. They are compared with those of Zhou 
et al. (2004), Matsunaga (2000), and Yas and Sobhani 
(2010). In this example the non-dimensional natural 
frequency, Winkler and shearing layer elastic coefficients 
are as follows 

 
2 2 3 2

C C C C C

2 4
g g C w w C

b h D , D E h 12(1 )

k K b D , k K b D

       

 
 (40)

 

According to the data presented in the above-mentioned 
tables, excellent solution agreements can be observed 
between the present method and those of the other methods. 
Based on the above studies, a numerical value of Nz = Ny = 
13 is used for the next studies. The variation of CNT 
distribution through the plate is assumed as follows (Fig. 4) 
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(41)

 
where *

CNTV  is the CNT volume fraction. It should be noted 
that for both UD and FG cases the values of mass fractions 
of CNTs are considered to be the same. After demonstrating 

718



 
The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates 

  
 

Table 2 Convergence behavior and accuracy of the first seven non-dimensional natural frequencies )( CC Eh    of 
a simply supported FG plate against the number of DQ grid points (b/h = 2) 

P Nz Ny ϖ1 ϖ2 ϖ3 ϖ4 ϖ5 ϖ6 ϖ7 

0 

7 

7 0.5569 0.9395 0.9735 1.3764 1.5072 1.6064 1.7384 

9 0.5570 0.9396 0.9741 1.3771 1.5083 1.6071 1.7401 

13 0.5570 0.9396 0.9740 1.3774 1.5088 1.6076 1.7407 

9 

7 0.5573 0.9398 0.9735 1.3771 1.5087 1.6074 1.7403 

9 0.5572 0.9400 0.9742 1.3777 1.5090 1.6079 1.7406 

13 0.5572 0.9400 0.9741 1.3778 1.5096 1.6086 1.7405 

13 

7 0.5571 0.9401 0.9735 1.3779 1.5094 1.6083 1.7411 

9 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7405 

13 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7406 

Matsunaga 2008 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7406 

Yas and Sobhani Aragh 2010 0.557243 0.940041 - - 1.508987 - 1.740602

0.5 

7 

7 0.4829 0.8222 0.8700 1.2250 1.3332 1.4364 1.5401 

9 0.4828 0.8229 0.8707 1.2258 1.3337 1.4367 1.5429 

13 0.4830 0.8224 0.8706 1.2254 1.3338 1.4370 1.5424 

9 

7 0.4833 0.8225 0.8701 1.2251 1.3335 1.4365 1.5402 

9 0.4835 0.8240 0.8708 1.2257 1.3340 1.4370 1.5431 

13 0.4836 0.8233 0.8707 1.2258 1.3340 1.4369 1.5426 

13 

7 0.4836 0.8227 0.8701 1.2251 1.3334 1.4366 1.5402 

9 0.4835 0.8231 0.8708 1.2259 1.3338 1.4370 1.5431 

13 0.4835 0.8233 0.8709 1.2259 1.3339 1.4370 1.5425 

Matsunaga 2008 0.4835 0.8233 0.8709 1.2259 1.3339 1.4370 1.5425 

Yas and Sobhani Aragh 2010 0.482849 0.822358 - - 1.332605 - 1.541085

1 

7 

7 0.4367 0.7476 0.7997 1.1158 1.2154 1.3085 1.4059 

9 0.4374 0.7477 0.8001 1.1165 1.2159 1.3090 1.4075 

13 0.4373 0.7478 0.8005 1.1163 1.2162 1.3088 1.4077 

9 

7 0.4368 0.7477 0.7998 1.1159 1.2157 1.3088 1.4068 

9 0.4374 0.7477 0.8003 1.1165 1.2161 1.3090 1.4076 

13 0.4374 0.7478 0.8006 1.1165 1.2162 1.3090 1.4078 

13 

7 0.4368 0.7477 0.7999 1.1159 1.2158 1.3088 1.4070 

9 0.4375 0.7478 0.8003 1.1165 1.2162 1.3091 1.4076 

13 0.4375 0.7478 0.8005 1.1165 1.2163 1.3091 1.4077 

Matsunaga 2008 0.4375 0.7477 0.8005 1.1166 1.2163 1.3091 1.4078 

Yas and Sobhani Aragh 2010 0.437396 0.747514 - - 1.216035 - 1.407459

4 

7 

7 0.3565 0.5988 0.6249 0.8724 0.9589 1.0000 1.1029 

9 0.3577 0.5995 0.6355 0.8729 0.9589 1.0007 1.1038 

13 0.3577 0.5996 0.6349 0.8728 0.9589 1.0003 1.1030 

9 

7 0.3569 0.5989 0.6250 0.8726 0.9589 1.0001 1.1032 

9 0.3579 0.5997 0.6357 0.8731 0.9589 1.0008 1.1040 

13 0.3578 0.5997 0.6351 0.8730 0.9589 1.0005 1.1032 

13 

7 0.3571 0.5991 0.6252 0.8727 0.9589 1.0001 1.1033 

9 0.3579 0.5997 0.6357 0.8731 0.9589 1.0008 1.1040 

13 0.3579 0.5997 0.6352 0.8731 0.9589 1.0008 1.1040 

Matsunaga 2008 0.3579 0.5997 0.6352 0.8731 0.9591 1.0008 1.1040 

Yas and Sobhani Aragh 2010 0.357758 0.599494 - - 0.958764 - 1.103674
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the convergence and accuracy of the method, parametric 
studies for 3-D vibration analysis of functionally graded 
(FG) nanocomposite sandwich plates resting on Pasternak 
foundation for various length to width ratio (a/b) and 
different combinations of free, simply supported and 

 
 

 
 
clamped boundary conditions at the edges, are computed. 

A comprehensive study is also carried out to investigate 
the effect of CNTs agglomeration on the vibrational 
response of sandwich structures. 

Before analyzing the free vibration of functionally 

Table 2 Continued 

P Nz Ny ϖ1 ϖ2 ϖ3 ϖ4 ϖ5 ϖ6 ϖ7 

10 

7 

7 0.3306 0.5454 0.5657 0.7866 0.8588 0.9043 0.9838 

9 0.3311 0.5460 0.5662 0.7890 0.8588 0.9047 0.9841 

13 0.3310 0.5459 0.5661 0.7881 0.8588 0.9050 0.9846 

9 

7 0.3308 0.5455 0.5659 0.7870 0.8588 0.9044 0.9840 

9 0.3313 0.5461 0.5664 0.7892 0.8588 0.9048 0.9842 

13 0.3312 0.5460 0.5663 0.7883 0.8588 0.9051 0.9846 

13 

7 0.3309 0.5455 0.5660 0.7871 0.8588 0.9045 0.9840 

9 0.3313 0.5461 0.5664 0.7892 0.8588 0.9049 0.9844 

13 0.3313 0.5461 0.5664 0.7884 0.8588 0.9051 0.9847 

Matsunaga 2008 0.3313 0.5460 0.5664 0.7885 0.8588 0.9050 0.9847 

Yas and Sobhani Aragh 2010 0.331146 0.545833 - - 0.858445 - 0.984365
 

Table 3 Comparison of the first three non-dimensional natural frequency parameters of a simply supported square isotropic 
plate on the elastic foundation (kg = 10) 

Kw Nz Ny 

b/h = 2 b/h = 5 

λ11 λ12 λ13 λ11 λ12 λ13 

0 

7 

7 1.6453 2.6906 3.8259 2.2325 4.4045 7.2429 

9 1.6461 2.6855 3.8264 2.2332 4.4058 7.2434 

13 1.6460 2.6848 3.8264 2.2330 4.4052 7.2433 

9 

7 1.6455 2.6905 3.8261 2.2329 4.4046 7.2431 

9 1.6462 2.6857 3.8267 2.2334 4.4060 7.2436 

13 1.6461 2.6850 3.8266 2.2333 4.4055 7.2435 

13 

7 1.6455 2.6907 3.8262 2.2330 4.4049 7.2432 

9 1.6462 2.6857 3.8267 2.2334 4.4060 7.2436 

13 1.6462 2.6851 3.8267 2.2334 4.4057 7.2436 

Zhou et al. 2004 1.6462 2.6851 3.8268 2.2334 4.4056 7.2436 

Matsunaga 2000 1.6462 2.6851 3.8268 2.2334 4.4056 7.2436 

Yas and Sobhani Aragh 2010 1.646182 2.685124 3.826819 2.233409 4.405606 7.243589

10 

7 

7 1.6569 2.6870 3.8261 2.2532 4.415 7.2474 

9 1.6575 2.6875 3.8280 2.2537 4.415 7.2484 

13 1.6574 2.6875 3.8271 2.2536 4.415 7.2483 

9 

7 1.6572 2.6872 3.8262 2.2534 4.415 7.2481 

9 1.6577 2.6878 3.8282 2.2539 4.415 7.2487 

13 1.6576 2.6876 3.8273 2.2538 4.415 7.2485 

13 

7 1.6573 2.6873 3.8264 2.2535 4.415 7.2482 

9 1.6577 2.6878 3.8282 2.2539 4.415 7.2487 

13 1.6577 2.6878 3.8275 2.2539 4.415 7.2487 

Zhou et al. 2004 1.6577 2.6879 3.8274 2.2539 4.415 7.2487 

Matsunaga 2000 1.6577 2.6879 3.8274 2.2539 4.415 7.2488 

Yas and Sobhani Aragh 2010 1.657742 2.687861 3.827391 2.253924 4.415035 7.248745
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Fig. 4 Schematic configuration of a carbon nanotube-
reinforced composite plate with four types of CNT 
distribution 

 
 

graded (FG) nanocomposite sandwich plates, the effects of 
agglomeration degree (μ and η) on the effective longitude 
Young’s modulus and Poisson’s ratio of UD-CNTRC plate 
are investigated in Fig. 5. A represents the fact that the 
highest values of Young’s modulus are attained for the 
agglomeration state of μ = η (fully dispersed), where the 
volume fraction of CNTs in the cluster and the matrix are 
equal. As it is observed, when μ is less than η (μ < η), the 
effective Young’s modulus increases with increasing the 
value of μ and has the maximum value when the CNTs are 
uniformly dispersed in the composite, i.e., μ = η and for μ > 
η, the effective stiffness decreases with the increase of μ. 

The effect of agglomeration degree on the Poisson’s 
ratio for UD-plate is plotted in Fig. 5(b). In contrast to 
Young modulus behavior, with the increase of μ, Poisson’s 
ratio decreases for μ < η and increases for μ > η due to the 
fact that the Poisson’s ratio of the equivalent fiber described 
in properties of the equivalent fiber section is less than the 
Poisson’s ratio of matrix. 

Using the relations presented in material properties of 
CNTRCs and Problem description sections, it is also 
possible to observe the variations of the effective material 
properties through the thickness of the FGS-CNTR plate for 
different agglomeration parameters. For instance, by 
considering hf/h = 0.25, a = 1, b = 0, p = 1, and V* = 30%, 
the variations of Young’s modulus and Poisson’s ratio of 

 
 

Fig. 6 The variation of Young’s modulus along the thickness 
of the FGS-CNTR plate with agglomeration effect 

 
 

Fig. 7 The variation of Poisson’s ratio along the thickness 
of the FGS-CNTR plate with agglomeration effect 

 
 

FGS plates with respect to the different agglomeration 
parameters μ and η = 1 are illustrated in Figs. 6 and 7. As 
expected, at a constant value of z/h ratio, with the increase 
of parameter μ, the effective Young’s modulus increases and 
on the other hand, the Poisson’s ratio decreases, because μ < 
η = 1. It is also completely obvious that the agglomeration 
 
 

Fig. 5 Influence of CNT agglomeration parameters μ and η on the A: effective Young’s modulus; 
B: Poisson’s ratio of UD nanocomposite plate 
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Fig. 8 The variation of frequency parameters versus agglomeration parameter for different types of 
CNTRC plates and boundary conditions (η = 1, a/b = 1, b/h = 2, Kg = Kw = 10) 

 

Fig. 9 The variation of frequency parameters versus agglomeration parameter for different types of 
CNTRC plates and boundary conditions ( η = 0.5, a/b = 1, b/h = 2) 
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Fig. 10 Variation of the fundamental frequency parameter of CNTR plates for different type of 
boundary conditions versus the power-law exponent p (a/b = 1, b/h = 2, Kg = Kw = 10) 

Fig. 11 Variation of the fundamental frequency parameter of FGS-CNTR plates for different types of 
boundary conditions versus the power-law exponent p (a/b = 1, b/h = 2, Kg = Kw = 10) 
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parameters have significant effects on the material 
properties. Therefore, it is concluded that CNTs agglomera-
tion plays an important role in vibrational characteristics of 
FGS-CNTR plates. 

Now free vibration characteristics of FGS-CNTR plates 
rested on Pasternak foundation is studied using MT 
approach based on the equivalent fiber discussed in 
Properties of the equivalent fiber section and using Table 1. 
Also, the material properties of the matrix are as 

 
32.1 , 1150 / , 0.34m m mE Gpa kg m     

 
The non-dimensional natural frequency, Winkler and 

shearing layer elastic coefficients are as follows (Tahouneh 
and Naei 2014) 

 
2
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, /12(1 )

,

m m m m m

g g m w w m

b
h D D E

K k b D K k b D

   

 

  


 
(42)

 
The effect of agglomeration on vibrational response of 

FG plates resting on a two-parameter elastic foundation for 
different boundary conditions are depicted in Fig. 8. It is 
clear the lowest magnitude frequency parameter is obtained 
by using a FG plates, Type 4 and followed by Type 3, 2, 1 
and FG sandwich plate; respectively. It is also seen for great 
amount of η, for instance η = 1 and for small amount of μ, 
the FG sandwich plates have lower amount of frequency 
than FG Type 1. It should be noted that, for all the Types of 
CNTs distribution with the increase of μ, the frequency 
parameters increase. It can be seen that the discrepancies 
between frequencies for the plates with Type 3 and Type 2 
material distribution of CNTs remain almost unaltered with 
the increase of μ. 

Fig. 9 shows that for lower amount of η the frequency 
response of plates with different types of material 
distribution has changed. These figures reveal that with the 
increase of μ, the natural frequency increase but for μ 
approximately more than 0.5, the frequency parameters tend 
to decrease.The influence of the index p and parameters a 
on the fundamental frequency parameters of FGS-CNTR 
plate rested on Pasternak foundation is shown in Fig. 10 for 
S-F-S-F, S-F-S-C and S-C-S-C boundary conditions. 

Fig. 10 shows the fundamental frequency parameters of 
the FGS-CNTR plate rested on Pasternak foundation versus 
the power-law index p for various values of the parameter 
a, when b = 0.3 and c = 3. In any cases, with the increase of 
parameter p the frequency parameter of sandwich plates 
increased. It should be taken into account that for small 
amount of a, the frequency parameter steadily increased but 
for great amount of this parameter the increase of frequency 
parameter happens sharply. 

The influence of the parameter c on the free vibration of 
sandwich plates with FG-CNTR face sheets is investigated 
when parameter c varies from 2 to 12. As one can see from 
Fig. 11 with the increase of parameter c, the fundamental 
frequency increases. This is due to the fact that with the 
increase in the value of parameter c, the CNTs volume 
fraction and therefore the frequency parameters increase. 

The effect of Winkler elastic coefficient on the non- 

Fig. 12 Variation of the non-dimensional frequency 
parameter of S-F-S-F FG-CNTR plates versus 
Winkler elastic coefficient for different shearing 
layer elastic coefficients (a/b = 1, b/h = 2, 
a = 1.25, p = 5, η = μ = 0.5) 

 
 

Fig. 13 Variation of frequency parameter versus shearing 
layer elastic coefficient for different values of 
Winkler elastic foundation stiffness for S-F-S-F 
FG-CNTR plates (a/b = 1, b/h = 2, a = 1.25, 
p = 5, η = μ = 0.5) 

 
 
dimensional natural frequency parameter at different values 
of shearing layer elastic coefficient is shown in Fig. 12. It is 
observed for the large values of Winkler elastic coefficient, 
the shearing layer elastic coefficient has less effect and the 
results become independent of it. In other word, the non-
dimensional natural frequency parameters converge with 
increasing Winkler elastic coefficient of the foundation. It 
can be concluded from Fig. 12 that the non-dimensional 
natural frequency parameters converge at the large values of 
Winkler elastic coefficient. Fig. 13 shows the effect of 
shearing layer elastic coefficient on the non-dimensional 
natural frequency parameters for different values of Winkler 
elastic coefficient. It can be seen for the large values of 
shearing layer elastic coefficient, the Winkler elastic 
coefficient has less effect and the results become 
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independent of it. It results the variations of Winkler elastic 
coefficient has little effect on the non-dimensional 
frequency parameters at different values of shearing layer 
elastic coefficient. 

 
 

6. Conclusions 
 

In this research work, 2-D generalized differential 
quadrature method was employed to obtain a highly 
accurate semi-analytical solution for free vibration of 
functionally graded (FG) nanocomposite sandwich plates 
resting on Pasternak foundation under various boundary 
conditions. The study was carried out based on the three-
dimensional, linear and small strain elasticity theory. The 
MT approach was implemented to estimate the effective 
material properties of the nanocomposite sandwich plate. 

The agglomeration effect of single-walled carbon 
nanotubes, is considered in this study and it is shown that 
the natural frequencies of structure are seriously affected by 
the influence of CNTs agglomeration. Results presented the 
fact that mechanical properties and therefore free vibrations 
of FGS-CNTR plates are seriously affected by CNTs 
agglomeration. It was found that except some states, FGS 
types of structures improve the vibrational characteristics of 
CNTRCs. The effects of different boundary conditions, 
various geometrical parameters, different material profiles 
along the thickness and elastic coefficients of foundation of 
sandwich rectangular plates resting on a two-parameter 
elastic foundation were investigated. 
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