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1. Introduction 

 
Laminated plate structures are widely employed in the 

aerospace, automotive, civil, marine and other structural 
applications due to advantageous features such as high ratio 
of stiffness and strength to weight and low maintenance 
cost (Khandan et al. 2012, Grover et al. 2013, Guo et al. 
2014, Mahapatra et al. 2016). However, shear deformation 
influences become more important in such structures 
because of the low transverse shear moduli as compared to 
high in-plane tensile moduli, when subjected to transverse 
loads. This requires the accurate structural investigation of 
composite plates. 

The classical laminated plate theory (CLPT), which 
does not introduce the transverse shear deformation effects, 
gives reasonable results for thin plates. However, it under-
predicts transverse displacements and over-predicts 
frequencies as well as buckling loads with moderately thick 
plates (Reddy 1997). In order to overcome the problem 
encountered in CLPT, shear deformation theories 
considering the transverse shear deformation effect, have 
been proposed. The first-order shear deformation theory 
(FSDT) considers linear distribution of axial displacements 
within the thickness. Many investigations of the free 
vibration of laminated plates have presented by employing 
FSDT (Whitney and Pagano 1970, Noor and Burton 1989, 
Khdeir 1989a). Since FSDT does not verify equilibrium 
conditions at the top and bottom faces of the plate, shear 
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correction factors are necessitated to correct the unrealistic 
distribution of the shear strain/stress across the thickness 
(Bouderba et al. 2016). The value of shear correction 
coefficient is influenced not only on the lamination and 
geometric parameters, but also on the loading and boundary 
conditions. To avoid the employ of shear correction 
coefficients, the higher-order shear deformation theories 
(HSDT) have been recommended. The HSDT has been 
widely utilized to study the behavior of composite 
structures (Ren 1986, Khdeir 1989b, Matsunaga 2001, 
Singh et al. 2001, Aagaah et al. 2006, Swaminathan and 
Patil 2008, Tounsi et al. 2013, Bouderba et al. 2013, Ait 
Amar Meziane et al. 2014, Draiche et al. 2014, Nedri et al. 
2014, Fekrar et al. 2014, Zidi et al. 2014, Ait Yahia et al. 
2015, Mahi et al. 2015, Ait Atmane et al. 2015, Attia et al. 
2015, Belkorissat et al. 2015, Taibi et al. 2015, Akavci and 
Tanrikulu 2015, Bousahla et al. 2016, Houari et al. 2016, 
Bellifa et al. 2016, Beldjelili et al. 2016, Boukhari et al. 
2016, Bounouara et al. 2016, Chikh et al. 2017, Mouffoki  
et al. 2017, Klouche et al. 2017, Besseghier et al. 2017, 
Bellifa et al. 2017, El-Haina et al. 2017). A review of 
various shear deformation models for the investigation of 
laminated composite plates is found in Refs (Noor 1989, 
Reddy 1990, Mallikarjuna and Kant 1993, Dahsin and 
Xiaoyu 1996, Sayyad and Ghugal 2015). Recently, a new 
and simple FSDT is developed by Mantari and Ore (2015) 
for laminated composite and sandwich plates. In addition, it 
can be found in some studies the thickness stretching effect 
in structures behaviors such as (Bessaim et al. 2013, 
Bousahla et al. 2014, Belabed et al. 2014, Hebali et al. 
2014, Larbi Chaht et al. 2015, Meradjah et al. 2015, 
Bourada et al. 2015, Hamidi et al. 2015, Draiche et al. 
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2016, Bennoun et al. 2016). 
The purpose of this work is to propose a new 

displacement field for the free vibration of laminated 
composite plates. The proposed kinematic employs 
undetermined integral terms with only four variables. 
Equations of motion are deduced from the Hamilton’s 
principle. The analytical solutions for simply supported 
antisymmetric cross-ply and angle-ply laminates are 
determined by utilizing Navier procedure. The influences of 
parameters such as the aspect ratio, thickness ratio, modulus 
ratio and number of layers on the natural frequencies of the 
laminates are examined. Numerical results are discussed to 
demonstrate the accuracy and efficiency of the present 
model in studying the vibration behavior of laminated plates 
by comparing the obtained results with those calculated via 
various theories and the exact solutions of three-
dimensional elasticity theory. 

 
 

2. Mathematical formulation 
 
Consider a rectangular plate of total thickness h having 

n orthotropic layers with the coordinate system as plotted in 
Fig. 1. 

 
2.1 Kinematics 
 
In this investigation, some simplifying suppositions are 

adopted to the existing HSDT so that the number of 
unknowns is reduced. The displacement field of the existing 
HSDT is expressed by 
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Fig. 1 Coordinate system and layer numbering used for 
a typical laminated plate 

where u0, v0, w0, φx and φy are five generalized 
displacements, f(z) is the shape function representing the 
variation of the transverse shear strains and stresses within 

the thickness. By adopting that D and ,),( dyyxy   the 

kinematic of the proposed theory can be expressed in a 
simpler form as (Bourada et al. 2016, Hebali et al. 2016, 
Merdaci et al. 2016, Meksi et al. 2017, Fahsi et al. 2017) 
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where u0(x, y), v0(x, y), w0(x, y) and θ(x, y) are the four 
unknown displacement functions of middle surface of the 
laminate. The constants k1 and k2 depends on the geometry. 
The integrals utilized are undetermined. 

In this work, the present HSDT is obtained by putting 
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The strains associated with the displacements in Eq. (2) 

are 
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The integrals employed in the above relations shall be 
resolved by a Navier solution and can be expressed by 

 

,

   

,

 

,
    

(6)

 
where the parameters A′ and B′ are defined according to the 
type of solution utilized, in this case via Navier. Hence, A′ 
and B′ are expressed by 
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where α and β are defined in Eq. (23). 

 
2.2 Constitutive equations 
 
With the consideration that each layer posses a plane of 

elastic symmetry parallel to the x–y plane, the constitutive 
equations for a layer can be expressed as 

 

 (8)

 
where Qij are the plane stress-reduced stiffnesses, and are 
expressed in terms of the engineering constants in the 
material axes of the layer Q 

 

 

 

(9)

 
The constitutive equations of each lamina must be 

transformed to the laminate coordinates (x, y, z). The stress-
strain relations in the laminate coordinates of the kth layer 
are expressed as 

 

(10)

 
where k

ijQ  are the transformed material constants given as 
 

(11)

(11)

 

where θk is the angle of material axes with the reference 
coordinate axes of each layer. 

 
2.3 Equation of motions 
 
Hamilton’s principle is employed to deduce the equa-

tions of motion 
 

 (12)

 

where δU is the variation of strain energy; and δK is the 
variation of kinetic energy. 

The variation of strain energy of the plate is computed 
by 

 

(13)

 

where A is the top surface and the stress resultants N, M, 
and S are expressed by 
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The variation of kinetic energy of the plate can be 
calculated by 

 

(15)

 

where dot-superscript convention indicates the differentia-
tion with respect to the time variable t; ρ is the mass density 
of the material; and (Ii, Ji, Ki) are mass inertias calculated 
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by 

 

and
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Substituting the relations for δU, and δK from Eqs. (13) 
and (15) into Eq. (12) and integrating by parts, and 
collecting the coefficients of δu0, δv0, δw0 and δθ, the 
following equations of motion for the laminated plate are 
deduced as follows 
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Substituting Eq. (10) into Eq. (14) and integrating across 
the thickness of the laminated plate, the stress resultants are 
expressed as 
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and stiffness components are calculated by 
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Eq. (17) can be expressed in terms of displacements (u0, 
v0, w0, θ) by substituting for the stress resultants from Eq. 
(18). For homogeneous laminates, the equations of motion 
(17) take the form 
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3. Analytical solutions for 
anti-symmetric cross-ply laminates 
 
The Navier method is considered to present the 

analytical solutions of the partial differential equations in 
Eq. (19) for simply supported rectangular plates. For anti-
symmetric cross-ply laminated plates, the following 
stiffness components are identically zero 

 

(22)

 

Based on the Navier procedure, the following solutions 
of displacements are employed to automatically respect the 
simply supported boundary conditions of plate 

 

 (23)

 

where Umn, Vmn, Wmn and Xmn are coefficients; ω is the 
natural frequency of the system; and α and β are expressed 
as 

and  (24)
 

Substituting Eqs. (22) into Eq. (19), the Navier solution 
of anti-symmetric cross-ply laminates can be deduced from 
equations 

 

(25)

 
 

4. Numerical results and discussion 
 
In this section the accuracy of the developed HSDT 

which contain a displacement field with four variables, is 
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Free vibrations of laminated composite plates using a novel four variable refined plate theory 

Table 1 Displacement models 
 

Model Theory Unknown
variables

CLPT Classical laminate plate theory 3 

FSDT 
First-order shear deformation theory 

(Whitney and Pagano 1970) 
5 

TSDT 
Third-order shear deformation theory 

(Reddy 1997) 
5 

HSDT 
Higher-order shear deformation 
(Swaminathan and Patil 2008) 

12 

Present 
Present higher-order shear 

deformation theory 
4 

 
 

assessed in studying the dynamic response of simply 
supported anti-symmetric cross-ply and angle-ply laminated 
plates. The influences of aspect ratio, thickness ratio, 
modulus ratio and number of layers on the free vibration 
behavior of plates are examined. The results calculated by 
employing the present model are compared with those given 
via various plate models and exact solutions of 3D elasticity 
theory. The different plate theories used in this study are 
described in Table 1. 

In the proposed examples, a shear correction coefficient 
of 5/6 is considered for FSDT. All layers are supposed to 
have the same thickness, mass of density and orthotropic 
material characteristics in the material principle axes. The 
following lamina properties are utilized 

 

 Material 1 (Noor 1973) 
 

 

 
(26a)

 

 Material 2 (Noor and Burton 1990) 
 
 

Table 2 Non-dimensional natural frequencies of anti-symmetric 
cross-ply square laminates with a/h = 5 

No. of
layers

Theory
E1/E2 

3 10 20 30 40 

(0/90)1

Exact(*) 6.2578 6.9845 7.6745 8.1763 8.5625

TSDT 6.2169 6.9887 7.8210 8.5050 9.0871

FSDT 6.2085 6.9392 7.7060 8.3211 8.8333

Present 6.2169 6.9887 7.8210 8.5050 9.0871

(0/90)2

Exact(*) 6.5455 8.1445 9.4055 10.1650 10.6789

TSDT 6.5008 8.1954 9.6265 10.5348 11.1716

FSDT 6.5043 8.2246 9.6885 10.6198 11.2708

Present 6.5008 8.1954 9.6265 10.5348 11.1716

(0/90)3

Exact(*) 6.6100 8.4143 9.8398 10.6958 11.2728

TSDT 6.5558 8.4052 9.9181 10.8547 11.5012

FSDT 6.5569 8.4183 9.9427 10.8828 11.5264

Present 6.5558 8.4052 9.9181 10.8547 11.5012

(0/90)5

Exact(*) 6.6458 8.5625 10.0843 11.0027 11.6245

TSDT 6.5842 8.5126 10.0674 11.0197 11.6730

FSDT 6.5837 8.5132 10.0638 11.0058 11.6444

Present 6.5842 8.5126 10.0674 11.0197 11.6730

(*) Values taken from Noor (1973) 
 
 

 

 

(26b)

 

For convenience, the following dimensionless natural 
frequency is employed in investigating the numerical results 

 

 (27)
 

Example 1: A simply supported anti-symmetric cross- 
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Fig. 2 The effect of modulus ratio on nondimensionalized natural frequencies of antisymmetric cross-ply (0/90)n 
square laminates with a/h = 5 
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ply square plates with thickness ratio a/h = 5 is examined 
using Material 1 and by considering the effects of the 
modulus ratio and the number of layers on the non-
dimensional natural frequency. Numerical results are 
presented in Table 2 where a good agreement between the 
shear deformations theories is demonstrated. It can be 
observed that the results calculated by TSDT and the 
present theory are identical. The influence of modulus ratio 
on natural frequencies of two-layer (0/90) and ten-layer 
(0/90)5 square plates with a/h = 5 is demonstrated in Fig. 2. 

 
Example 2: A simply supported anti-symmetric cross- 
 
 

 
 

ply square plates with modulus ratio E1/E2 = 40 is 
investigated using Material 1 and by considering the 
influences the thickness ratio and the number of layers on 
dimensionless natural frequency. The natural frequencies 
calculated via various plate theories for the considered anti-
symmetric cross-ply square laminates are presented in Table 
3. It is remarked that there is an excellent agreement 
between the results predicted by present model, and TSDT. 

The effect of thickness ratios on dimensionless funda-
mental frequencies of two-layer (0/90) and six-layer (0/90)3 
square plates, is shown in Fig. 3. It can be observed that this 
influence is considerable for thick plates where the trans- 

 
 

 
 

Table 3 Non-dimensional natural frequencies of anti-symmetric cross-ply square laminates with E1/E2 = 40 

No. of 
layers 

Theory 
a/h 

2 4 10 20 50 100 

(0/90)1 

TSDT 5.7170 8.3546 10.5680 11.1052 11.2751 11.3002 

FSDT 5.21047 8.0349 10.4731 11.0779 11.2705 11.2990 

CLPT 8.6067 10.4244 11.1537 11.2693 11.3023 11.3070 

Present 5.7170 8.3546 10.5680 11.1052 11.2751 11.3002 

(0/90)2 

TSDT 5.7546 9.7357 14.8463 16.5733 17.1849 17.2784 

FSDT 5.6656 9.8148 14.9214 16.6008 17.1899 17.2796 

CLPT 14.1036 16.3395 17.1448 17.2682 17.3032 17.3082 

Present 5.7546 9.7357 14.8463 16.5733 17.1849 17.2784 

(0/90)3 

TSDT 5.8741 9.9878 15.4632 17.3772 18.0644 18.1698 

FSDT 5.5992 9.9852 15.5010 17.3926 18.0673 18.1706 

CLPT 15.0895 17.2676 18.0461 18.1652 18.1990 18.2038 

Present 5.8741 9.9878 15.4632 17.3772 18.0644 18.1698 

(0/90)5 

TSDT 5.9524 10.1241 15.7700 17.7743 18.4984 18.6097 

FSDT 5.7140 10.0628 15.7790 17.7800 18.4995 18.6100 

CLPT 15.6064 17.7314 18.4916 18.6080 18.6410 18.6457 

Present 5.9524 10.1241 15.7700 17.7743 18.4984 18.6097 
 

 

Fig. 3 The effect of thickness ratio on nondimensionalized natural frequencies of antisymmetric cross-ply (0/90)n 
square laminates with E1/E2 = 40 
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Table 4 Non-dimensional natural frequencies of ten-layer 

anti-symmetric angle-ply (45/-45)5 square laminates 

a/h Theory   

5 

TSDT 10.1537 

FSDT 10.1288 

CLPT 15.4661 

Present 10.1537 

10 

TSDT 13.6078 

FSDT 13.614 

CLPT 15.846 

Present 13.6078 
 

 
 
 

 
 
 
Table 4 Continued 

a/h Theory   

100 

TSDT 15.9482 

FSDT 15.9484 

CLPT 15.9775 

Present 15.9482 

 
 
verse shear deformation effect is more important. As the 
number of layers increases, the difference between the 
present theory and TSDT decreases significantly. 

The influence of aspect ratio on fundamental frequen- 

 

Fig. 4 The effect of aspect ratio on nondimensionalized natural frequencies of two-layer (0/90) rectangular laminates 
with b/h = 5 and E1/E2 = 40 

 

Fig. 5 The effect of thickness ratio on nondimensionalized natural frequencies of two-layer (45/-45) square 
laminates with E1/E2 = 40 
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Table 5 Non-dimensional natural frequencies of anti-symmetric angle-ply (45/-45) square laminates 

E1/E2 a/h 
Theory 

Present HSDT (a) TSDT FSDT CLPT 

3 

4 6.0861 6.1223 6.0861 6.0665 6.9251 

10 7.0739 7.1056 7.0739 7.0700 7.2699 

20 7.2705 7.3001 7.2705 7.2694 7.3228 

50 7.3293 7.3583 7.3293 7.3291 7.3378 

100 7.3378 7.3666 7.3378 7.3378 7.3400 

10 

4 7.3470 7.2647 7.3470 7.2169 8.7950 

10 8.9660 8.9893 8.9660 8.9324 9.3444 

20 9.3266 9.3265 9.3266 9.3173 9.4304 

50 9.4377 9.4377 9.4377 9.4362 9.4548 

100 9.4540 9.5123 9.4540 9.4537 9.4583 

20 

4 8.4152 8.0490 8.4152 8.1185 10.6314 

10 10.7151 10.6412 10.7151 10.6265 11.3406 

20 11.2772 11.2975 11.2772 11.2517 11.4525 

50 11.4553 11.5074 11.4553 11.4511 11.4844 

100 11.4816 11.5385 11.4816 11.4806 11.4889 

30 

4 9.1752 8.5212 9.1752 8.7213 12.1586 

10 12.0971 11.8926 12.0971 11.9456 12.9888 

20 12.8659 12.8422 12.8659 12.8208 13.1203 

50 13.1153 13.1566. 13.1153 13.1077 13.1577 

100 13.1524 12.2035 13.1524 13.1505 13.1631 

40 

4 9.7594 8.8426 9.7594 9.1609 13.5059 

10 13.2631 12.9115 13.2631 13.0439 14.4392 

20 14.2463 14.1705 14.2463 14.1790 14.5873 

50 14.5724 14.6012 14.5724 14.5608 14.6295 

100 14.6212 14.6668 14.6212 14.6183 14.6356 
 

(*) Values taken from Noor (1973) 

 

Fig. 6 The effect of modulus ratio on nondimensionalized natural frequencies of two-layer (45/-45) square 
laminates with a/h = 5 
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cies of two-layer (0/90) rectangular plates with b/h = 5 and 
E1/E2 = 40 is also demonstrated in Fig. 4. 

 

Example 3: A simply supported anti-symmetric angle-
ply (45/–45)5 square plates is studied using Material 2 for 
different values of thickness ratio. The fundamental 
frequencies predicted by employing various plate models 
are reported in Table 4. It can be shown from Table 4, that 
both TSDT and the present theory provide identical results. 
The influence of thickness ratio on fundamental frequencies 
of (45/–45) square plates with E1/E2 = 40 is demonstrated in 
Fig. 5 by considering various plate models. 

 

Example 4: A simply supported anti-symmetric angle-
ply (45/–45) square composite plates is examined using 
Material 1 for different values of thickness ratio and 
modulus ratio. The fundamental frequencies calculated by 
employing various plate models are presented in Table 5. 
Compared to HSDT solutions (Swaminathan and Patil 
2008), the results predicted by the proposed theory for thick 
laminated plates with higher values of modulus ratio are 
considerably different to those of HSDT (Swaminathan and 
Patil 2008). This might be due to the thickness stretching 
influence in very thick plates which is neglected in the 
proposed theory and TSDT. It should be mentioned that the 
proposed model contains four variables as against five in 
the case of TSDT and twelve in the case of HSDT 
(Swaminathan and Patil 2008). 

The influences of modulus ratio on fundamental 
frequencies of (45/–45) square laminates are illustrated in 
Fig. 6. 

The influence of aspect ratio on fundamental frequen-
cies of (45/–45) rectangular plates with b/h = 5 and E1/E2 = 
40 is also demonstrated in Fig. 7. 

 
 

5. Conclusions 
 

In this work, a novel version of HSDT is proposed for 

 
 
free vibration of laminated composite plates. By 
considering some additional simplifying suppositions to the 
existing HSDT, with introducing an undetermined integral 
term, the number of unknowns and equations of motion of 
the developed HSDT are diminished by one, and hence, 
make this theory simple and efficient to use. The model 
provides parabolic distribution of the transverse shear 
strains, and respects the zero traction boundary conditions 
on the surfaces of the laminated plate without utilizing 
shear correction coefficients. The validity and efficiency of 
the present model has been proved for dynamic responses 
of simply supported anti-symmetric cross-ply and angle- 
ply plates. In conclusion, the proposed model can improve 
the numerical computational cost because of their reduced 
degrees of freedom. 
 
 
References 
 
Aagaah, M.R., Mahinfalah, M. and Jazar, G.N. (2006), “Natural 

frequencies of laminated composite plates using third order 
shear deformation theory”, Compos. Struct., 72(3), 273-279. 

Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), 
“An efficient and simple refined theory for buckling and free 
vibration of exponentially graded sandwich plates under various 
boundary conditions”, J. Sandw. Struct. Mater., 16(3), 293-318. 

Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. 
(2015), “A computational shear displacement model for 
vibrational analysis of functionally graded beams with 
porosities”, Steel Compos. Struct., Int. J., 19(2), 369-384. 

Ait Yahia, S., Ait Atmane, H., Houari, M.S.A.  and Tounsi, A. 
(2015), “Wave propagation in functionally graded plates with 
porosities using various higher-order shear deformation plate 
theories”, Struct. Eng. Mech., Int. J., 53(6), 1143-1165. 

Akavci, S.S. and Tanrikulu, A.H. (2015), “Static and free vibration 
analysis of functionally graded plates based on a new quasi-3D 
and 2D shear deformation theories”, Compos. Part B, 83, 203-
215. 

Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. 
(2015), “Free vibration analysis of functionally graded plates 

 

Fig. 7 The effect of aspect ratio on nondimensionalized natural frequencies of two-layer (45/45) rectangular 
laminates with b/h = 5 and E1/E2 = 40 

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
0

5

10

15

20

25

30

 Present
 TSDT
 FSDT
 CLPT

a/b

611



 
Mohammed Sehoul, Mohamed Benguediab, Ahmed Bakora and Abdelouahed Tounsi 

with temperature-dependent properties using various four 
variable refined plate theories”, Steel Compos. Struct., Int. J., 
18(1), 187-212. 

Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and 
Anwar Bég, O. (2014), “An efficient and simple higher order 
shear and normal deformation theory for functionally graded 
material (FGM) plates”, Compos.: Part B, 60, 274-283. 

Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), “Hygro-
thermo-mechanical bending of S-FGM plates resting on 
variable elastic foundations using a four-variable trigonometric 
plate theory”, Smart Struct. Syst., Int. J., 18(4), 755-786. 

Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and 
Mahmoud, S.R. (2015), “On vibration properties of functionally 
graded nano-plate using a new nonlocal refined four variable 
model”, Steel Compos. Struct., Int. J., 18(4), 1063-1081. 

Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, 
A. (2016), “Bending and free vibration analysis of functionally 
graded plates using a simple shear deformation theory and the 
concept the neutral surface position”, J. Braz. Soc. Mech. Sci. 
Eng., 38, 265-275. 

Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and 
Mahmoud, S.R. (2017), “A nonlocal zeroth-order shear 
deformation theory for nonlinear postbuckling of nanobeams”, 
Struct. Eng. Mech., Int. J., 62(6), 695-702. 

Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), “A novel five 
variable refined plate theory for vibration analysis of 
functionally graded sandwich plates”, Mech. Adv. Mater. 
Struct., 23(4), 423-431. 

Besseghier, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. 
(2017), “Free vibration analysis of embedded nanosize FG 
plates using a new nonlocal trigonometric shear deformation 
theory”, Smart Struct. Syst., Int. J., 19(6), 601-614. 

Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and 
Adda Bedia, E.A. (2013),  “A  new higher order shear and 
normal deformation theory for the static and free vibration 
analysis of sandwich plates with functionally graded isotropic 
face sheets”, J. Sandw. Struct. Mater., 15(6), 671-703. 

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), “Thermo-
mechanical bending response of FGM thick plates resting on 
Winkler–Pasternak elastic foundations”, Steel Compos. Struct., 
Int. J., 14(1), 85-104. 

Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. 
(2016), “Thermal stability of functionally graded sandwich 
plates using a simple shear deformation theory”, Struct. Eng. 
Mech., Int. J., 58(3), 397-422. 

Boukhari, A., Ait Atmane, H., Tounsi, A., Adda Bedia, E.A. and 
Mahmoud, S.R. (2016), “An efficient shear deformation theory 
for wave propagation of functionally graded material plates”, 
Struct. Eng. Mech., Int. J., 57(5), 837-859. 

Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. 
(2016), “A nonlocal zeroth-order shear deformation theory for 
free vibration of functionally graded nanoscale plates resting on 
elastic foundation”, Steel Compos. Struct., Int. J., 20(2), 227-
249. 

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), “A 
new simple shear and normal deformations theory for 
functionally graded beams”, Steel Compos. Struct., Int. J., 
18(2), 409-423. 

Bourada, F., Amara, K. and Tounsi, A. (2016), “Buckling analysis 
of isotropic and orthotropic plates using a novel four variable 
refined plate theory”, Steel Compos. Struct., Int. J., 21(6), 1287-
1306. 

Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. 
(2014), “A novel higher order shear and normal deformation 
theory based on neutral surface position for bending analysis of 
advanced composite plates”, Int. J. Comput. Meth., 11(6), 
1350082. 

Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. 

(2016), “On thermal stability of plates with functionally graded 
coefficient of thermal expansion”, Struct. Eng. Mech., Int. J., 
60(2), 313-335. 

Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), 
“Thermal buckling analysis of cross-ply laminated plates using 
a simplified HSDT”, Smart Struct. Syst., Int. J., 19(3), 289-297. 

Dahsin, L. and Xiaoyu, L. (1996), “An overall view of laminate 
theories based on displacement hypothesis”, J. Compos. Mater., 
30, 1539-1561. 

Draiche, K., Tounsi, A. and Khalfi, Y. (2014), “A trigonometric 
four variable plate theory for free vibration of rectangular 
composite plates with patch mass”, Steel Compos. Struct., Int. 
J., 17(1), 69-81. 

Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), “A refined 
theory with stretching effect for the flexure analysis of 
laminated composite plates”, Geomech. Eng., Int. J., 11(5), 671-
690. 

El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and 
Mahmoud, S.R. (2017), “A simple analytical approach for 
thermal buckling of thick functionally graded sandwich plates”, 
Struct. Eng. Mech., Int. J. [In press] 

Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and 
Mahmoud, S.R. (2017), “A four variable refined nth-order shear 
deformation theory for mechanical and thermal buckling 
analysis of functionally graded plates”, Geomech. Eng., Int. J., 
13(3). [In press] 

Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), 
“A new five-unknown refined theory based on neutral surface 
position for bending analysis of exponential graded plates”, 
Meccanica, 49(4), 795-810. 

Grover, N., Singh, B.N. and Maiti, D.K. (2013), “Analytical and 
finite element modeling of laminated composite and sandwich 
plates: An assessment of a new shear deformation theory for 
free vibration response”, Int. J. Mech. Sci., 67, 89-99. 

Guo, Y., Nagy, A.P. and Grdal, Z. (2014), “A layerwise theory for 
laminated composites in the framework of isogeometric 
analysis”, Compos. Struct., 107, 447-457. 

Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. 
(2015), “A sinusoidal plate theory with 5-unknowns and 
stretching effect for thermomechanical bending of functionally 
graded sandwich plates”, Steel Compos. Struct., Int. J., 18(1), 
235-253. 

Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda 
Bedia, E.A. (2014), “New quasi-3D hyperbolic shear deforma-
tion theory for the static and free vibration analysis of 
functionally graded plates”, J. Eng. Mech. - ASCE, 140(2), 374-
383. 

Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), “A novel 
four variable refined plate theory for bending, buckling, and 
vibration of functionally graded plates”, Steel Compos. Struct., 
Int. J., 22(3), 473-495. 

Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. 
(2016), “A new simple three-unknown sinusoidal shear 
deformation theory for functionally graded plates”, Steel 
Compos. Struct., Int. J., 22(2), 257-276. 

Khandan, R., Noroozi, S., Sewell, P. and Vinney, J. (2012), “The 
development of laminated composite plate theories: A review”, 
J. Mater. Sci., 47(16), 5901-5910. 

Khdeir, A.A. (1989a), “Comparison between shear deformable and 
Kirchhoff theories for bending, buckling and vibration of 
antisymmetric angle-ply laminated plates”, Compos. Struct., 
13(3), 159-172. 

Khdeir, A.A. (1989b), “Free vibration and buckling of 
unsymmetric cross-ply laminated plates using a refined theory”, 
J. Sound Vib., 128(3), 377-395. 

Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, 
S.R. (2017), “An original single variable shear deformation 
theory for buckling analysis of thick isotropic plates”, Struct. 

612



 
Free vibrations of laminated composite plates using a novel four variable refined plate theory 

Eng. Mech., Int. J. [In press] 
Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Bég, 

O. and Mahmoud, S.R. (2015), “Bending and buckling analyses 
of functionally graded material (FGM) size-dependent nano-
scale beams including the thickness stretching effect”, Steel 
Compos. Struct., Int. J., 18(2), 425-442. 

Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2016), “Large 
amplitude vibration analysis of laminated composite spherical 
panels under hygrothermal environment”, Int. J. Struct. Stabil. 
Dyn., 16(3), 1450105. 

Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), “A new 
hyperbolic shear deformation theory for bending and free 
vibration analysis of isotropic, functionally graded, sandwich 
and laminated composite plates”, Appl. Math. Model., 39(9), 
2489-2508. 

Mallikarjuna, M. and Kant, T. (1993), “A critical review and some 
results of recently developed refined theories of fiber-reinforced 
laminated composites and sandwiches”, Compos. Struct., 23(4), 
293-312. 

Mantari, J.L. and Ore, M. (2015), “Free vibration of single and 
sandwich laminated composite plates by using a simplified 
FSDT”, Compos. Struct., 132, 952-959. 

Matsunaga, H. (2001), “Vibration and stability of angle-ply 
laminated composite plates subjected to in-plane stresses”, Int. 
J. Mech. Sci., 43(8), 1925-1944. 

Meksi, R, Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, 
E.A. and Mahmoud, S.R. (2017), “An analytical solution for 
bending, buckling and vibration responses of FGM sandwich 
plates”, J. Sandw. Struct. Mater. [In press] 

Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and 
Mahmoud, S.R. (2015), “A new higher order shear and normal 
deformation theory for functionally graded beams”, Steel 
Compos. Struct., Int. J., 18(3), 793-809. 

Merdaci, S., Tounsi, A. and Bakora, A. (2016), “A novel four 
variable refined plate theory for laminated composite plates", 
Steel Compos. Struct., Int. J., 22(4), 713-732. 

Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and 
Mahmoud, S.R. (2017), “Vibration analysis of nonlocal 
advanced nanobeams in hygro-thermal environment using a 
new two-unknown trigonometric shear deformation beam 
theory”, Smart Struct. Syst., Int. J. [In press] 

Nedri, K., El Meiche, N. and Tounsi, A. (2014), “Free vibration 
analysis of laminated composite plates resting on elastic 
foundations by using a refined hyperbolic shear deformation 
theory”, Mech. Compos. Mater., 49(6), 629-640. 

Noor, A.K. (1973), “Free vibrations of multilayered composite 
plates”, AIAA J, 11(7), 1038-1039. 

Noor, A.K. and Burton, W.S. (1989), “Stress and free vibration 
analyses of multilayered composite plates”, Compos. Struct., 
11(3), 183-204. 

Noor, A.K. and Burton, W.S. (1990), “Three-dimensional solutions 
for anti-symmetrically laminated anisotropic plates”, J. Appl. 
Mech.—T ASME, 57(1), 182-188. 

Reddy, J.N. (1990), “A review of refined theories of laminated 
composite plates”, Shock Vib. Dig., 22(7), 3-17. 

Reddy, J.N. (1997), Mechanics of Laminated Composite Plate: 
Theory and Analysis, CRC Press, New York, NY, USA. 

Ren, J.G. (1986), “A new theory of laminated plate”, Compos. Sci. 
Technol., 26(3), 225-239. 

Sayyad, A.S. and Ghugal, Y.M. (2015), “On the free vibration 
analysis of laminated composite and sandwich plates: A review 
of recent literature with some numerical results”, Compos. 
Struct., 129, 177-201. 

Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2001), “Natural 
frequencies of composite plates with random material properties 
using higher-order shear deformation theory”, Int. J. Mech. Sci., 
43(10), 2193-2214. 

Swaminathan, K. and Patil, S. (2008), “Analytical solutions using 
a higher order refined computational model with 12 degrees of 
freedom for the free vibration analysis of antisymmetric angle-
ply plates”, Compos. Struct., 82(2), 209-216. 

Taibi, F.Z., Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda 
Bedia, E.A. and Mahmoud, S.R. (2015), “A simple shear 
deformation theory for thermo-mechanical behaviour of 
functionally graded sandwich plates on elastic foundations”, J. 
Sandw. Struct. Mater., 17(2), 99-129. 

Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A, 
(2013), “A refined trigonometric shear deformation theory for 
thermoelastic bending of functionally graded sandwich plates”, 
Aero. Sci. Technol., 24(1), 209-220. 

Whitney, J.M. and Pagano, N.J. (1970), “Shear deformation in 
heterogeneous anisotropic plates”, J. Appl. Mech.—T ASME, 
37(4), 1031-1036. 

Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar 
Bég, O. (2014), “Bending analysis of FGM plates under hygro-
thermo-mechanical loading using a four variable refined plate 
theory”, Aerosp. Sci. Technol., 34, 24-34. 

 
 
CC 
 
 
 

613




