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1. Introduction 

 
Many steel bridge infrastructures in the world are 

getting older, and large number of these structures is in need 
of maintenance, rehabilitation or replacement. Most of them 
are subjected to corrosion due to the exposure to aggressive 
environmental conditions and inadequate maintenance 
(Kaita et al. 2012). Corrosion has a harmful consequence 
from the safety point of view and can lead to thickness 
penetration, fatigue cracks, brittle fracture and unstable 
failure (Khedmati et al. 2011). Evaluation of existing steel 
structures due to deterioration caused by corrosion, natural 
aging, increasing load spectra, increasing seismic demand, 
and other problems becomes vital (Ohga et al. 2011). 
Therefore, understanding the influence of damage on the 
remaining load-carrying capacities is required. 

Previously, several experimental studies and detailed 
investigations of corroded surface have been carried out by 
other researchers (Muranaka et al. 1998, Rahgozar et al. 
2010) and our research group (Appuhamy et al. 2011, 
2013), to evaluate new methods of estimating the residual 
strength capacities of corroded steel plates. Since the 
corroded surface differs from each other so does the 
complexity of their irregularities, previous experimental 
studies, and analytical studies fail to give highly accurate 

                                          

Corresponding author, Ph.D., Associate Professor, 
E-mail: chun@cee.ehime-u.ac.jp 

a Ph.D. Student 
b Associate Professor 
 

 
results as it is produced in this proposed method, artificial 
neural network (ANN), which is expected to be a simple, 
rapid, and inexpensive approach to predict tensile strength 
more accurately. 

The application of ANN in the field of pharmaceutical 
development and optimization of dosage forms has recently 
gained interest (Hussain et al. 1991, 1994, Murtoniemi et 
al. 1993, Richardson and Barlow 1996, Bozic 1996). In 
some of these papers the ANN modelling methodology 
successfully produced better results compared to other 
classical statistical learning methods. Thus, in this study, 
ANN is adopted within the scope of steel structures in order 
to obtain an accurate assessment method. The accuracy of 
the proposed method was then verified by the leave-one-out 
cross validation (LOOCV) method. 

 
 

2. Verification of validity of Finite Element Method 
(FEM) by a tensile experiment on 
corroded steel plates 
 
2.1 Corroded plate thickness measurement 
 
The test specimens were cut out from steel girders of 

Ananai River Bridge in Kochi Prefecture and Funakoshi 
Bridge in Ehime Prefecture in Japan. There were 30 
corroded steel specimens in total: 18 from Ananai Bridge, 
and 12 from Funakoshi Bridge. The specimens were named 
as ANT-1 to ANT-18, FUT-1 to FUT-12, corresponding to 
Ananai Bridge and Funakoshi Bridge respectively. The first 
two letters of the coding name rule are taken from the first 
two letters of the bridge name and the last letter T is taken  

 
 
 

Tensile strength prediction of corroded steel plates 
by using machine learning approach 

 
Cindy N.N. Karina a, Pang-jo Chun , and Kazuaki Okubo b 

 
Department of Civil and Environmental Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan 

 
 

(Received May 30, 2016, Revised May 15, 2017, Accepted May 17, 2017) 
 

Abstract.  Safety service improvement and development of efficient maintenance strategies for corroded steel structures are 
undeniably essential. Therefore, understanding the influence of damage caused by corrosion on the remaining load-carrying 
capacities such as tensile strength is required. In this study, artificial neural network (ANN) approach is proposed in order to 
produce a simple, accurate, and inexpensive method developed by using tensile test results, material properties and finite 
element method (FEM) results to train the ANN model. Initially in reproducing corroded model process, FEM was used to 
obtain tensile strength of artificial corroded plates, for which surface is developed by a spatial autocorrelation model. By using 
the corroded surface data and material properties as input data, with tensile strength as the output data, the ANN model could be 
trained. The accuracy of the ANN result was then verified by using leave-one-out cross-validation (LOOCV). As a result, it was 
confirmed that the accuracy of the ANN approach and the final output equation was developed for predicting tensile strength 
without tensile test results and FEM in further work. Though previous studies have been conducted, the accuracy results are still 
lower than the proposed ANN approach. Hence, the proposed ANN model now enables us to have a simple, rapid, and 
inexpensive method to predict residual tensile strength more accurately due to corrosion in steel structures. 
 

Keywords:  corrosion; tensile test; finite element analysis; artificial neural network 

 

635



 
Cindy N.N. Karina, Pang-jo Chun and Kazuaki Okubo 

Fig. 1 Corroded test specimens 
 
 

Table 1 Material properties 

Specimens 
Modulus of 

elasticity 
(GPa) 

Poisson’s 
ratio 

Yield 
stress 
(MPa) 

Tensile 
strength 
(MPa) 

Fracture 
elongation 

(%) 

Ananai 
Bridge 

197.4 0.272 281.6 431.3 40.2 

Funakoshi 
Bridge 

208 0.280 280.0 437.6 40.6 
 

 
 

(a) 3D laser measuring device 
 

 
(b) Thickness measurement by 3D measuring device 

Fig. 2 Measuring device and thickness measurement 
by 3D measuring device 

 
 

from the first letter of ‘Tensile test’. 
Before conducting the thickness measurement, all the 

rust over both surfaces was removed carefully by using 
electric wire brushes and punches. This step was then 
followed by welding the gripping part to corroded steel 
specimen. The center line of gripping part and specimen 

were aligned carefully using laser line marker in order to 
prevent angular distortion. The gripping parts, new 
SM490A plates, were jointed to both end surface sides of 
the specimen by butt full penetration welding, as shown in 
Fig. 1. In addition, six corrosion-free-specimens (JIS5 type) 
were made, three each from the Ananai Bridge and Bridge, 
and tensile tests were carried out to clarify the material 
properties of the test specimens. The material properties 
obtained from these tests are shown in Table 1. Since 
accuracy and convenience are highly demanded in the 
measurement of corroded surface irregularities, a portable 
three-dimensional (3D) scanning system was used in this 
surface measurement, as shown in Fig. 2(a). The 3D 
measuring device allows us to measure 3D coordinate 
values at any arbitrary point on a corroded surface directly 
and continuously (Kaita et al. 2005). The device can 
measure the coordinates of a point on a steel surface by 
using a non-contact scanning probe (laser line probe). 
Measurement of the corroded thickness is shown in Fig. 
2(b). Since this probe scans the steel surface with a laser 
beam, which is about 100 mm wide, a large amount of 3D 
coordinate data can be obtained quickly. With this 
measuring device, the 3D coordinate data are obtained as 
numerous in-line dots; the accuracy of the device is about 
0.1 mm. The thicknesses of all scratched specimens were 
measured by using this 3D laser scanning device, and the 
coordinate data were collected in a grid of 0.5mm intervals 
in both the x- and y- directions. From that measurement 
process, the average thickness and minimum thickness 
could be obtained for each interval. The minimum average 
thickness was calculated by taking the minimum value from 
all average thicknesses in each interval. The remaining 
statistical thickness parameters, such as the standard 
deviation of thickness were then also calculated from those 
thickness measurement results. 

 
2.2 Tensile test of corroded steel specimens 
 
Tensile tests were carried out under loading control at a 

constant velocity by using a hydraulic loading test machine 
(maximum load: 2940 kN) for all 30 specimens, with 
different levels of corrosion. The loading velocity was set to 
150 N/s to avoid dynamic failure. One of the prepared 
specimens with previously attached strain gauges on it can 
be seen in Fig. 3. 

 
 

Fig. 3 Specimen prepared for tensile test 
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(a) Comparison of tensile strength results 
 

(b) Load-displacement curves for ANT-8 

Fig. 4 Comparison results between FEM results and 
experimental results 

 
 
2.3 Verification of the validity of FEM 
 

Previously, another study on mechanical behavior of 
heat-corrected steel plates (Chun and Inoue 2009) had FEM 
model verification done with their experimental results. It 
was found that their FEM model was well validated. 
Likewise, in this study, FEM was examined by comparing 
them to the tensile test results, as shown in Fig. 4. Finite 
element analysis (FEA) has been used to reproduce many 
corroded surface shapes by using a spatial autocorrelation 
model in order to train the ANN model. 

As seen in Fig. 4(a), tensile strength values between 
FEM and experiment were almost equivalent and 
comparison results for specimen ANT-8 can be seen in Fig. 
4(b) which shows that the maximum load is quite similar 
between the FEM results and the experimental results. The 
load-displacement curve in Fig. 4(b) also indicates that the 
comparison results gave a very good agreement. Though 
there is discrepancy due to the slipping at the gripping part 
which was observed at the initial stage of experiment, these 
comparison results indicate that the FEM model is well 
validated, and the FEM model can be used for developing 
ANN model. 

 
 

3. Structure of training data set 
 

In order to train an ANN model, input data such as 
corroded surface data and material properties are required, 

as well as tensile strength as output data. Since the objective 
of this study is to find accurate results, it is vital to have 
large set of data. Therefore, in this study, a commercial 
software package Abaqus/standard was used to perform the 
FEM analysis. Thereby, many corroded surface shapes can 
be artificially produced by the spatial autocorrelation model 
proposed by Okumura et al. (2001) which can be used for 
developing an FEM model. A spatial autocorrelation model 
was made by taking into account the correlation between 
the corrosion depths of each node on the corrosion surface. 
By Eq. (1), the corrosion depth distribution was derived, 
where Vi’ is the corrosion depth at the i-th measurement 
point, Vi is the independent corrosion depth at the i-th 
measurement point, β is the distance attenuation coefficient, 
and dij is the distance between point i and point j. 
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By referring to Okumura et al. (2001) β values are 
between 0.28 to 0.4 and in this study β values were set 
randomly between those values. As for independent 
corrosion depth values Vi, a random number generated from 
Poisson distribution was used by referring to Okumura et al. 
(2001). As for the parameter range shown in Table 2 of 
average thickness, minimum average thickness, minimum 
thickness, standard deviation, Young’s modulus, yield 
strength and ultimate strength were set by referring to the 
experimental results and measurement data. As for the 
range of initial plate thicknesses, width, and length were set 
by using truncanted random variables. 

By using all these aforementioned parameters, 1000 
plates were successfully generated in this study. Further-
more, 3D 8-node hexadral elements (C3D8) were used in 
the FEM model to represent the complexity of actual 
corroded steel specimens. Ahmmad and Sumi (2010) 
previously investigated the deformability of corroded steel 
plates under quasistatic uniaxial tension caused by pitting 
corrosion and general corrosion. In this study, a pitting 
corrosion case was also generated by creating oval- shaped 

 
 

Table 2 Parameters taken from measurement and experimental 
results 

Parameter Range 

Initial thickness [mm] 10.0~40.0 

Width [mm] 20.0~150.0 

Length [mm] 202.0~1500.0 

Average thickness [mm] 4.6~36.6 

Minimum average thickness [mm] 1.6~33.5 

Minimum thickness [mm] 0.003~27.9 

Standard deviation [mm] 0.172~5.307 

Young’s modulus [GPa] 180.0~219.8 

Yield strength [MPa] 200.0~290.0 

Ultimate strength [MPa] 390.0~520.0 
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(a) Pitting corrosion case 
 

(b) Average corrosion case 

Fig. 5 Artificial corroded models reproduced by spatial 
autocorrelation model 

 
 
corrosion and general corrosion case on the plate surface 
randomly using autocorrelation model as shown in Fig. 5. A 
2-mm regular mesh pattern was adopted for all the 
analytical models. One edge of the member's translation in 
the x-, y-, and z- directions was fixed and only the y-, and z- 
direction translations of the other edge (loading edge) were 
fixed, to simulate the actual experimental conditions. 
Uniform incremental displacement was then applied to the 
loading edge. FEA validation was confirmed as mentioned 
in the previous section. 

 
 

4. Framework of artificial neural network 
 
4.1 Overview of artificial neural network 
 
The tensile strength prediction method has been 

developed by using a multilayer perceptron feed-forward 
artificial neural network as depicted in Fig. 6. ANN consists 
of multiple layers including an input layer, hidden layer(s), 
and an output layer. These layers have nodes interconnected 
with the nodes of adjoining layers by synapses. Figure S in 
the Fig. 6 is the activation function which is chosen as the 
sigmoidal function as formulated in Eq. (2). 

 
 

Fig. 6 Typical feed-forward artificial neural network 

 

  2
1

1 exp( 2 )
S a

a
 

 
 (2)

 

where a is the input of the activation function. Oriented 
synapses which connect the nodes and the strength of a 
connection between two nodes are respectively called 
synaptic neurons and synaptic weight. The synaptic weight 
is updated in order to increase the accuracy of neural 
network by minimizing the sum-squared error norm E(w) as 
shown in Eq. (3). 

 

   
2

1

1
,

2

N

n n
n

E


 w y x w t  (3)

 

w is the synaptic weight vector, xn is a set of input 
vectors, y(xn, w) is the vector of output variables, tn is a 
corresponding set of target vectors, N is the number of data 
set (input-output). Though the Back-propagation algorithm 
is a well-known algorithm to minimize E(w) in Eq. (3), the 
formula still lacks computation speed. Therefore, in this 
study, the Levenberg-Marquardt optimization algorithm has 
been used because it performed better than other algorithms 
in terms of convergence rate (El-Bakyr 2003). In the 
Levenberg-Marquardt algorithm, the weight vector can be 
adjusted iteratively as given in Eq. (4). 

 
1( 1) ( )r r T T
     w w J J I J e  (4)

 

e is the error vector, J is the Jacobian matrix which 
contains the first derivatives of the error e in the network by 
means at weights w and bias, I is the identity matrix, r is the 
number of iterations, μ is the Marquardt parameter, and in 
this study, 0.001 was used as an initial value. 

The number of nodes in input layer is the amount of 
input data; there are ten nodes in this study. The nodes 
represent initial thickness, plate width, plate length, Young's 
modulus, yield strength, ultimate strength, average 
thickness, minimum average thickness, standard deviation 
of thickness, and minimum thickness. On the other hand, 
the output value in this ANN system is only tensile strength, 
thus the number of nodes in output layer is one. In order to 
obtain positive values in the ANN system, instead of using 
the tensile strength result directly as output data, a log 
logarithm of tensile strength was applied in this study. As 
for hidden layer(s), the number of nodes was obtained by 
doing trial and error to achieve an optimal number, and was 
set to eight. Furthermore, the bagging method is known as 
an effective way to achieve high accuracy by taking the 
average value from each output in order that a new and 
more accurate output result can be obtained (Hastie et al. 
2014). Since it is desirable to improve the accuracy of the 
output result, the bagging method was applied in this study. 
Here, specifically in this study, ten generated neural 
network models were evaluated by the bagging method and 
the average output value was then used as the final result, 
which was more accurate than the previous output. The 
number of neural network models literally influences the 
accuracy of the result, and yet there is still no numerical 
method to determine the optimum number of the ANN 
model. Therefore, by trial and error, it was found that, with 
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ten generated values, the accuracy was already converged. 
 

4.2 Accuracy verification 
 

Verification of the validity of the neural network model 
generated in the previous section will be performed by 
LOOCV method in this section. LOOCV is a validation 
method that will train all the data except for one datum and 
the prediction will be made for that one datum (Bishop 
2007). This process was repeated until the rest of the overall 
data set had been trained. As discussed previously, in this 
study, 1000 data set (input-output) was prepared. ANN was 
trained primarily by using only 999 data due to the one 
datum was taken out from the data set to be analyzed. This 
process was repeated 1000 times until all data sets had been 
evaluated in order to verify the accuracy of ANN results. 
Moreover, the mean absolute error percentage was also 
derived by using the following Eq. (5) to evaluate the 
performance quantitatively. In the equation below, N is the 
number of data set (input-output), yt is the target data, and 
yp is the predicted result. 

 

1

Mean absolute error percentage
1

 
N

t p

i t

y y

N y


   (5)

 

In this study, it is necessary to investigate the relation- 
ship of all ten parameters mentioned in the previous section 
to analyze the result by considering five different cases as 

 
 

Fig. 7 Comparison predicted results of FEM and ANN 
for case 1 

 
 

Fig. 8 Comparison predicted results of FEM and ANN 
for case 2 

shown in the following list, and the validation results can be 
seen in Figs. 7 to 11 for cases 1 to 5 respectively. 
Experiment shows that the accuracy increases with the 
number of parameter which is because the ANN is stronger 
against the multicollinearity than other statistical method 
(Zhang 2003). The error percentages derived from Eq. (5) 
are summarized in Table 3. 

 

(1) All parameters were included 
(2) Average thickness, plate width, plate length, initial 

thickness, young modulus, ultimate strength, yield 
strength were included 

 
 

Fig. 9 Comparison predicted results of FEM and ANN 
for case 3 

 
 

Fig. 10 Comparison predicted results of FEM and ANN 
for case 4 

 
 

Fig. 11 Comparison predicted results of FEM and ANN 
for case 5 
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Table 3 The percentage of mean absolute error percentage 
for each case 

 Mean absolute error percentage % 

Case 1 3.7% 

Case 2 15.4% 

Case 3 23.4% 

Case 4 4.6% 

Case 5 23.9% 
 

 
 

(3) Parameters in case 2 and standard deviation were 
included 

(4) Parameters in case 2 and minimum average 
thickness were included 

(5) Parameters in case 2 and minimum thickness were 
included 

 

The comparison of predicted results between FEM and 
ANN for each case show that the error percentage increased 
significantly when the information on minimum average 
thickness was taken away from input data, as seen in case 2, 
case 3 and case 5 stated in Table 3. Since case 1 and case 4 
have minimum average thickness data, the error percentages 
are small. This shows that the information on minimum 
average thickness is crucial in order to achieve an accurate 
result. Though the fact that the minimum average thickness 
is important is already described by other researcher 
including Appuhamy et al. (2011), the present results 
proves that other parameters also contribute to improve the 
accuracy, and the accuracy of case 1 and 4 is validated. 
Note that the case 4 is still meaningful result though the 
accuracy is not better than the case 1, because the work to 
measure parameters of case 4 is easier than that of case 1. 
Therefore, ANN approach now enables us to replace 
previous approaches such as experimental studies and 
costly analytical study. Time-consuming and expensive cost 
problems are solved by the ANN approach. 

 
4.3 Final model 
 
The validity of ANN model was already confirmed in 

the previous section by LOOCV. In this section, each 1000 
data set (input-output) of ten neural network models 
averaged by the Bagging method in Section 4.1 were 

 
 

already prepared with a combination of WI, bI, WL and the 
final output of the ten neural network models can be 
estimated by using the following Eq. (6). 

 

  Loutput S b  L I IW W v b  (6)
 

In the above equation, WI is the synaptic weight 
connecting the input layer and hidden layer with the matrix 
size 8×10, v is the input vector with matrix size 10×1, bI is 
the bias vector which was given to the hidden layer with 
matrix size 1×8, S is the sigmoid function expressed in Eq. 
(2), WL is the synaptic weight connecting the hidden layer 
and the output layer with matrix size 8×1, bL is the bias 
vector which was given to the output layer with matrix size 
1×1. 

In this paper, only one matrix output result from the ten 
ANN model can be given in Fig. 12. The whole matrix size 
of all ten ANN output results cannot be presented in this 
paper due to space limitation (in particular WI). Therefore, 
the rest of the networks can be downloaded from the 
website (http://www.cee.ehime-u.ac.jp/~i_management/sup 
plementdata/ANN_tensile_strength_of_corroded_steel_plat
es.xlsx) in Microsoft Excel format. 

As for Eq. (6), the calculation only employed a simple 
matrix calculation and exponential functions. Though the 
computation cost is very low, the proposed neural network 
model results had good agreement with finite element 
analysis results. By this simple and inexpensive approach, 
tensile strength evaluation with high accuracy can be 
predicted rapidly. 

 
 

5. Conclusions 
 

In this study, corroded surface data, material properties 
and FEM results were used to train the ANN model and the 
accuracy of the model was verified by leave-one-out cross-
validation. Initially, in order to verify the FEM, FEM results 
were compared to experimental results. It was confirmed 
that the FEM results were accurate. Thereby, the finite 
element method could then be used to import corroded 
surface data developed by the spatial autocorrelation model 
and the artificial corroded models were then analyzed by 
FEA to obtain tensile strength information. By using the 
information from corroded surface data, material properties 
and tensile strength, the ANN model could then be trained. 

 
 

 

Fig. 12 Sample of final output of generated network 
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The ANN results were then compared to FEM results by 
considering five different cases applied in this study. Cases 
2, 3 and 5 have a large mean absolute error percentage due 
to lack of minimum average thickness information, while 
cases 1 and 4 have a very small mean absolute error 
percentage with minimum average thickness information 
included in the ANN model. This shows that minimum 
average thickness information is crucial in determining the 
accuracy of ANN results. It is suggested to always include 
minimum average thickness information in this proposed 
approach. With this information, cases 1 and 4 could 
produce a mean absolute error percentage below 5%. 
Therefore, in this study, case 1 is selected to confirm the 
accuracy of the ANN approach. The final output equation in 
Eq. (6) was also developed for predicting tensile strength in 
further work where FEM and tensile test are not required to 
do. Therefore, the ANN approach can be considered as a 
simple, rapid, and inexpensive method to predict residual 
tensile strength more accurately. 
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