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1. Introduction 

 
Separators which can be used commonly in oil and gas 

industry are a pressure vessel for separating the fluids into 
their constituent components of oil, gas and water. The 
separators can be divided into horizontal, vertical, or 
spherical separators. Usually, the inlet fluid of separators is 
pulsating and the dynamic stability analysis of them is 
essential. However, in this paper, the separator is simulated 
with a cylindrical shell conveying pulsating fluid. 

Mechanical analysis of cylindrical shells has been 
investigated by many authors. The mechanism of wind-
induced ovalling vibrations of cylindrical shells was 
numerically investigated by Uematsu et al. (2001) using a 
vortex method. Vibration and buckling analysis of 
composite cylindrical shells conveying hot fluid were 
studied by Kadoli and Ganesan (2003) using semi-
analytical finite element method. Patel et al. (2006) 
investigated static and dynamic instability behaviors of 
stiffened shell panels under the uniform in-plane harmonic 
edge loading based on Hill’s infinite determinant. Axial 
stability of cylindrical shell with an elastic core was 
investigated by Ghorbanpour Arani et al. (2007) using 
energy method. Nonlinear dynamics behaviours of pipes 
conveying pulsating fluid was investigated by Wang (2009) 
using Runge-Kutta scheme. Vibration analysis of CNTs 
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reinforced composites was presented by Formica et al. 
(2010) employing Eshelby-Mori-Tanaka approach. Donnell 
shell model in conjunction with the beam models, the 
transverse vibrations of single-and double-walled CNTs are 
investigated by Ghorbanpour Arani et al. (2010). De Bellis 
et al. (2010) considered the behaviour of a fluid conveying 
pipe on a partial elastic foundation based on Timoshenko 
beam model. Using the Amabili-Reddy higher-order shear 
deformation theory, Amabili (2011) presented nonlinear 
forced vibration of laminated circular cylindrical shells by 
Lagrange method. Buckling analysis of laminated 
composite plates reinforced by SWCNTs was carried out by 
Ghorbanpour Arani et al. (2011a) using an analytical 
approach as well as the finite element method. Mohammadi 
and Sedaghati (2012) presented vibration response and its 
optimization of viscoelastic sandwich cylindrical shell. A 
closed-form formulation based on 3D refined higher-order 
shear deformation theory was presented by Khalili et al. 
(2012) for free vibration analysis of laminated composite 
shell was investigated by Kumar et al. (2013b) using an 
efficient 2D finite element (FE) model based on higher 
order zigzag theory. Analyzing the vibration of circular 
cylindrical shells subjected to different boundary 
conditions. Influence of latitude wind pressure distribution 
on the responses of hyperbolodial cooling tower shell was 
presented by Zhang et al. (2013). In numerical modeling 
procedure, soil parameters were modeled by Srivastava and 
Sivakumar Babu (2011) as two-dimensional non-Gaussian 
homogeneous random field using Cholesky decomposition 
technique. Static analysis of laminated composite and 
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sandwich shell was presented by Kumar et al. (2013a) 
developing a C0 finite element (FE) formulation based on 
higher order zigzag theory (HOZT) using Sander’s 
approximations. An another work by Kumar et al. (2013b), 
free vibration analysis of laminated composite skew hypar 
shells were presented using a C0 FE formulation based on 
HSDT where the isoparametric FE used in the present 
model consists of nine nodes with seven nodal unknowns 
per node. Using Navier-type closed-form solution, Mantari 
and Guedes Soares (2014) presented the optimization of the 
sinusoidal higher order shear deformation theory (HSDT) 
for the bending analysis of functionally graded shells. 
Forced vibration response of laminated composite and 
sandwich shell was studied by Kumar et al. (2014) using a 
2D FE (finite element) model based on higher order zigzag 
theory (HOZT). Liew et al. (2014) studied postbuckling 
analysis of CNT-reinforced functionally graded cylindrical 
panels using a meshless approach. Lei et al. (2014) used the 
mesh-free kp-Ritz for dynamic stability analysis of CNT-
reinforced functionally graded cylindrical panels under 
static and periodic axial force. Nonlinear behaviour of CNT-
reinforced functionally graded cylindrical panels was 
addressed by Zhang et al. (2014a) based on the Eshelby-
Mori-Tanaka approach. Zhang et al. (2014b) employed 
mesh-free kp-Ritz for vibration analysis of CNT reinforced 
composite cylindrical panels based on FSDT. Nonlinear 
vibration and dynamic response of imperfect eccentrically 
stiffened functionally graded thick circular cylindrical shells 
were studied by Duc and Than (2015) using both the FSDT 
and stress function. Based on FSDT, Yang et al. (2015) 
studied free vibration and damping analysis of thick 
sandwich cylindrical shells with a viscoelastic core. 
Vibration analysis of cylindrical shells conveying fluid was 
studied by Seo et al. (2015) using FE method. Static 
stresses analysis of CNT reinforced composite cylinder was 
investigated by Ghorbanpour Arani et al. (2015a). A C0 FE 
formulation based on HSDT was developed by Kumar et al. 
(2013c) for free vibration analysis of composite skew 
cylindrical shells. A new reinforcing element including the 
elements (anchors) attached to the ordinary geogrid for 
increasing the pull-out resistance of the reinforcement, was 
used by Mahdi and Katebi (2015). Vibration analysis of 
embedded functionally graded (FG)-carbon nanotubes 
(CNT)-reinforced piezoelectric cylindrical shell subjected 
to uniform and non-uniform temperature distributions were 
presented by Madani et al. (2016). 

Considering the immense advantages offered by 
piezoelectric structures, Tzou and Gadre (1989) proposed a 
multi-layered thin shell integrated with PVDF actuator 
layers based on Hamilton’s principle. Based on Hamilton’s 
principle, Maxwell equation and FSDT, Sheng and Wang 
(2010) studied free vibration and buckling of the 
functionally graded piezoelectric cylindrical shell. 
Alibeigloo and Kani (2010) focused on the vibration 
analysis of hybrid laminated shell with various boundary 
conditions based on an analytical solution for simply 
supported boundary condition and DQM for the other 
boundary conditions. Ghorbanpour Arani et al. (2011b) 
studied electro-thermo-mechanical stress analysis of 
rotating functionally graded piezoelectric cylinders. 

Ghorbanpour Arani et al. (2012) studied nonlinear vibration 
of embedded piezoelectric composite microtube conveying 
fluid based on Reddy beam theory. In another work by the 
same authors (2013), nonlinear vibration and instability of 
embedded double-walled boron nitride nanotubes based on 
nonlocal cylindrical shell theory were presented. 
Ghorbanpour Arani et al. (2013a) studied electro-thermo-
elastic stress analysis of piezoelectric polymeric thick-
walled cylinder reinforced by BNNT. Ghorbanpour Arani et 
al. (2015b) investigated electro-thermal nonlinear vibration 
and stability of a embedded smart composite micro-tube 
reinforced by Boron-Nitride nanotubes (BNNTs). Viscous 
fluid induced nonlinear free vibration and instability 
analysis of a functionally graded carbon nanotube-
reinforced composite (CNTRC) cylindrical shell integrated 
with two uniformly distributed piezoelectric layers on the 
top and bottom surfaces of the cylindrical shell were 
presented by Rabani Bidgoli et al. (2016). 

To the best of our knowledge, the mechanical analyses 
of separators however have not received enough attentions 
so far. Motivated by these considerations, in order to 
optimize the separators designing, our end is to investigate 
pulsating fluid induced dynamic stability of piezoelectric 
separators reinforced with SWCNTs. The elastic medium is 
simulated with nonlinear orthotropic visco-Pasternak 
medium. The Kelvin-Voigt model is assumed for 
incorporating the structural damping effects. CST, FSDT 
and SSDT are applied for obtaining the motion equations. 
The separator is subjected to 2D magnetic and 3D electric 
fields for smart dynamic stability control of structure. DQM 
in conjunction with Bolotin’s method is used for calculating 
DIR. The effects of external voltage, magnetic field, visco-
Pasternak foundation, structural damping and volume 
percent of SWCNTs on the dynamic stability of separator 
are shown. 

 
 

2. Mathematical modeling 
 

Consider a piezoelectric separator modeled with cylin-
drical shell as depicted in Fig. 1 in which geometrical 
parameters of length L, radius R and thickness h are 
indicated. The cylindrical coordinate is considered in the 
middle surface of shell in which x, θ and z represent the 
axial, circumferential and radial directions, respectively. 

 

2.1 CST 
 

Based on CST, the displacement components of an 
arbitrary point in three directions may be written as 
(Amabili 2008) 
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3( , , , ) ( , , ),u x z t w x t   (1c)
 

where u(x, θ, t), v(x, θ, t) and w(x, θ, t) are translations of a 

500



 
Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using... 

 
 
point at the middle-surface of the shell. Using Donnell’s 
theory, the nonlinear strain-displacement relations may be 
expressed as 
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2.2 FSDT 
 

Based on FSDT, the displacement field can be expressed 
as may be written as (Amabili 2008) 
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where ψx(x, θ, t) and ψθ(x, θ, t) are the rotations of the 
normal to the mid-plane about x- and θ- directions, 
respectively. However, the nonlinear strain-displacement 
relations associated with the above displacement field can 
be derived as 
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2.3 SSDT 
 

Based on SSDT, the displacement field can be obtained 
using Eq. (5) as (Thai and Vo 2013) 
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  wb(x, θ, t) and ws(x, θ, t) are the 

bending and shear components of transverse displacement. 
The nonlinear kinematic relations can be expressed as 
follows 
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Fig. 1 A schematic figure for piezoelectric nano-composite separator conveying pulsating fluid 
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3. Constitutive equations for 
piezoelectric separator 
 
As it is well known, applying an electric field and 

mechanical displacement to piezoelectric materials yield a 
mechanical displacement and voltage, respectively. 
However, the constitutive equation includes stresses σ and 
strains ε tensors on the mechanical side, as well as flux 
density D and field strength E tensors on the electrostatic 
side, which may be combined with each other as follows 
(Ghorbanpour Arani et al. 2013b) 

 
,mijmklijklij EeC    (7)
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where Cijkl, eijm, im are elastic constants, piezoelectric 
constants, dielectric constants, respectively, which can be 
determined for separator reinforced with SWCNT from 
Mixture’s rule. In addition, Em (m = x, θ, z) representing 
electric field which can be defined as a function of electric 
potential as (Ghorbanpour Arani et al. 2015c) 
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The above equations for CST may be simplified as 
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Eqs. (7) and (8) for FSDT and SSDT can be simplified 

as 
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The electric potential distribution in the thickness 

direction of the piezoelectric separator can be assumed as 
follows which satisfying the Maxwell equation 
(Ghorbanpour Arani et al. 2015b) 
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where  V0 is external electric voltage. Substituting Eq. (14) 
into Eq. (9) yields 
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Based on Kelvin-Voigt (Ghorbanpour Arani et al. 

2015b) model, the elastic constant of structure can be 
defined as 
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where g is structural damping parameter. In the above 
equations, the effect of viscoelasticity in mechanical form 
has been considered and electrical Hysteresis effect (Jalili 
2010) has been ignored. 

 
 

4. Mixture method 
 
According to mixture rule, the effective Young and 

shear moduli of nano-composite structure can be expressed 
as (Zhang et al. 2014a) 
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where Er11, Er22 and Gr11 indicate the Young’s moduli and 
shear modulus of SWCNTs, respectively, E, and Gm 
represent the Young’s moduli and shear modulus the matrix; 
ηj (j = 1, 2, 3) is the SWCNTs efficiency parameter; VCNT 
and Vm are the volume fractions of the CNTs and matrix, 
respectively, which are 
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where wCNT, ρm and ρCNT are the mass fraction of the 
SWCNTs, the densities of the matrix and SWCNTs, 
respectively. Similarly, the density (ρ) of the structure can 
be obtained as follows 
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,,, mmrCNT VV    (19)
 

where vr12 and vm are Poisson’s ratios of the SWCNT and 
matrix, respectively. 

 
 

5. Energy method 
 
In this section, energy method and Hamilton’s principal 

are used for obtaining the motion equations. The total 
potential energy of the structure is the sum of potential 
energy, U, kinetic energy, K and the work done by the 
external forces, W which may be written generally as 
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.wdAqW   (22)

 
5.1 CST 
 
The potential energy of CST can be obtained by substi-

tuting Eqs. (10) and (11) into Eq. (20) as follows 
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The kinetic energy of CST can be obtained by substi-

tuting Eq. (1) into Eq. (21) as follows 
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The external works can be induced by nonlinear 

orthotropic visco-Pasternak medium, pulsating fluid in the 
separator and 2D magnetic fields due to the existence of 
SWCNTs. The force induced by nonlinear orthotropic 
visco-Pasternak foundation can be written as (Ghorbanpour 

Arani et al. 2015b) 
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where angle θ describes the local ξ direction of orthotropic 
foundation with respect to the global x-axis of the system; 
k1w, k2w, cd, kgξ and kgζ, respectively are linear spring, 
nonlinear spring, damper, ξ-shear and ζ-shear constants. 

The force induced by internal fluid may be described by 
the well-known Navier-Stokes equation as flowers 
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where V ≡ (vz, vθ, vx) is the flow velocity vector in polar 

coordinate; 
Dt

D
is the material or total derivative; P, μ and 

ρf are the pressure, viscosity and mass density of the fluid, 
respectively; Fbody represents the body forces. After some 
mathematical operations, the external work of the fluid can 
be expressed as 
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The pulsating internal flow is assumed harmonically as 
follows 

0 (1 cos( )) ,xV V t    (28)
 

where V0, β and ω are the mean flow velocity, the harmonic 
amplitude and pulsation frequency, respectively. The 
Lorentz force due to a steady magnetic field, H0 can be 
obtained as follows (Ghorbanpour Arani et al. 2015b) 
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where η, , u, h and J are the magnetic permeability of the 
SWCNTs, gradient operator, displacement field vector, 
disturbing vectors of magnetic field and current density, 
respectively. Noted that in this paper the magnetic field is 
assumed as θθθxxx eδHeδHH


 0 where δ is the 

Kronecker delta tensor. Using Eqs. (1a)-(1c), the Lorentz 
force per unit volume can be calculated as 
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The generated forces and the bending moment caused 
by Lorentz force may be calculated by 
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as a results 
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5.2 FSDT 
 

Combining of Eqs. (12), (13) and (20) yields the 
potential energy of FSDT as follows 
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The kinetic energy of FSDT can be obtained by 
substituting Eq. (3) into Eq. (21) as follows 
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Using Eq. (3), the Lorentz force per unit volume for 
FSDT can be expressed as 
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However, using Eqs. (31) and (32), the generated forces 

and the bending moment caused by Lorentz force may be 
calculated by  
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Noted that the induced forces due to the viscoelastic 

foundation and pulsating fluid are the same as Eqs. (25) and 
(27), respectively. 

 
5.3 SSDT 
 

Substituting Eqs. (12) and (13) into Eq. (20) yields the 
potential energy of SSDT as follows 
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The kinetic energy of SSDT can be obtained by 

substituting Eqs. (5) into Eq. (21) as follows 
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Using Eq. (5), the Lorentz force per unit volume for 

FSDT can be expressed as 
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However, using Eqs. (31) and (32), the generated forces 

and the bending moment caused by Lorentz force may be 
calculated by 
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Noted that the induced forces due to the viscoelastic 

foundation and pulsating fluid are the same as Eqs. (25) and 
(27), respectively. 

In above relations, the resultant force and moments may 
be calculated as 
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where k′ is shear correction factor which used in FSDT. 
Furthermore, the moment of inertia in kinetic energy of 
three theories can be defined as 
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6. Motion equations 
 
The motion equations can be derived based on 

Hamilton's principle as follows 
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6.1 CST 
 
Substituting Eqs. (23), (24), (25), (27), (33) and (34) 

into Eq. (50) yields the FSDT motion equations as follows 
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.0       :  ZX GGG   (51d)

6.2 FSDT 
 

Substituting Eqs. (35), (36), (25), (27), (38) and (39) 
into Eq. (50) yields the CST motion equations as follows 
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6.3 SSDT 
 

Substituting Eqs. (40), (41), (25), (27), (43) and (44) 
into Eq. (50) yields the CST motion equations as follows 
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In above relations 

f
xN and 

fN are combination of 
mechanical and electrical forces which can be expressed in 
dimensionless form as 
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However, combining Eqs. (10)-(13), (45)-(48), the 

motion equations may be obtained. 
 
 

7. Solution method 
 
DQM is used in this paper which approximates the 

partial derivative of a function with respect to a spatial 
variable at a given discrete. Hence, the nth-order and mth-
order of partial derivative of function F(x, θ) with respect to 
x and θ respectively, can be written at the point (xi, θi), as 
follows (Ghorbanpour Arani et al. 2015b) 
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where 

)(n
ikA and 

)(m
jlB are the weighting coefficients corres-

ponding to the nth-order and mth-order partial derivative of 
F(x, θ) with respect to x and θ respectively, which can be 
written for fist derivative as follows 
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where 
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Noted that for higher order derivative, the following 

formulas can be used 
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In addition, Nθ and Nθ are the number of grid points in x 

and θ directions respectively, which can be obtained by 
Chebyshev polynomials as follows 
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However, applying DQM to motion equations yields the 

following coupled matrix equations 
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(62)

 
where [K] and [KNL] are the linear and nonlinear stiffness 
matrixes, respectively; [CL] and [CNL] are the linear and 
nonlinear damp matrixes, respectively; [C]f and [K]f are the 
respectively, damping and stiffness matrixes related to 
pulsating fluid; [M] is the mass matrix; {Y} is the 
displacement vector (i.e., {Y} = {u, v, wb, ws, ψx, ψθ}; 
subscript b and d represent boundary and domain points. 
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For obtaining the DIR of system, the Bolotin method 
(Ghorbanpour Arani et al. 2015b) is used which, the 
displacement vector in the Fourier series with period 2T can 
be expressed as follows 
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Substituting Eq. (63) into Eq. (62), setting the 

coefficients of sine and equal to zero, yields 
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However, based on a direct iterative method, the 

variation of ω with respect to α as DIR of system can be 
obtained. 

 
 

8. Numerical result 
 
In this section, a PVDF separator modelled with 

cylindrical shell is considered with a/h = 40 and h/R = 0.04. 
The mechanical and electrical properties of PVDF are listed 
in Table 1 (Jalili 2010). 

 
 

Table 1 Mechanical and electrical properties of PVDF 

PVDF SWCNT 

C11 = 238.24 (GPa) E = 1 (TPa) 
C22 = 23.6 (GPa) υ = 0.34 
C12 = 3.98 (GPa) ρ = 2300 Kg/m3 
C66 = 6.43 (GPa)  

e11 = – 0.135 (C/m2)  
e12 = – 0.145 (C/m2)  

 = 1.1068×10-8 (F/m)  

ρ = 1780 Kg/m3  
 

 
 

Defining the dimensionless parameters as follows 
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and clamped-clamped mechanical and free electrical 
boundary conditions, the dimensionless pulsation frequency 
is obtained and the effects of different parameters are 
shown. 

 
8.1 Convergence of DQM 
 
The convergence and accuracy of the DQM in 

evaluating the DIR for CST, FSDT and SSDT are shown in 
Figs. 2(a)-(c). The results are illustrated for different values 
of grid points. Fast rate of convergence of the methods are 
quite evident and it can be found that 14 and 16 grid points 
can yield accurate results in CST and FSDT-SSDT, 
respectively. 

 
 

 
(a) (b) (c) 

Fig. 2 Convergence and accuracy of DQM 
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8.2 Validation 
 
To the best of our knowledge, dynamic stability of 

viscoelastic piezoelectric separators conveying pulsating 
fluid has not reported by researchers. However, neglecting 
fluid, structural damping, SWCNTs as reinforce, 
piezoelectric properties and elastic foundation, present 
results obtained by SSDT are compared with other 
published works for vibration analysis of cylindrical shell 
using 3D elasticity (Armenakas et al. 1969), refined higher-
order shear deformation theory (RHOST) (Khalili et al. 
2012) and parabolic shear distribution theory (PSDT) 
(Bhimaraddi 1984). Considering the material properties the 
same as (Armenakas et al. 1969), the first dimensionless 
frequency )//( Gh  for simply supported 
cylindrical shell is reported in Table 2. As can be seen, 
present results are in a good agreement with those reported 
by Armenakas et al. (1969) and Khalili et al. (2012). 

 
 

 
 

8.3 The effect of different parameters 
 
In order to show the dimensionless external electric 

voltage (V*) effect on the DIR of the structure is illustrated 
in Fig. 3(a)-(c), respectively for CST, FSDT and SSDT. As 
can be seen applying negative voltage increases the 
dimensionless pulsation frequency and consequently shifts 
the DIR of system to higher frequency zone. This 
phenomenon is vice versa for positive voltage. This is due 
to the fact that the imposed negative and positive voltages 
generate the axial tensile and compressive forces in the 
separator, respectively. However, external voltage is an 
effective parameter for controlling the DIR of system. 

In realizing the influence of SWCNT volume percent, 
the DIR of viscoelastic structure is shown in Figs. 4(a)-(c), 
respectively for CST, FSDT and SSDT. It can be found that 
with neglecting SWCNT as reinforcer, the resonance region 
will be happen in lower frequencies with respect to 

 
 

 
 

Table 2 Comparison of first dimensionless frequency for simply supported cylindrical shell 

L/R  
h/R

0.06 0.10 0.12 0.18 

2 

Armenakas et al. (1969) 0.01853 0.03100 0.03730 0.05652 

Khalili et al. (2012) 0.01853 0.03100 0.03729 0.05650 

Bhimaraddi (1984) 0.01853 0.03100 0.03730 0.05653 

SSDT, Present 0.01853 0.03100 0.03730 0.05654 

1 

Armenakas et al. (1969) 0.02781 0.04784 0.05853 0.09402 

Khalili et al. (2012) 0.02780 0.04779 0.05847 0.09385 

Bhimaraddi (1984) 0.02781 0.04785 0.05856 0.09409 

SSDT, Present 0.02781 0.04785 0.05855 0.09405 

0.5 

Armenakas et al. (1969) 0.03691 0.07618 0.10057 0.18894 

Khalili et al. (2012) 0.03688 0.07607 0.10042 0.18864 

Bhimaraddi (1984) 0.03692 0.07615 0.10047 0.18832 

SSDT, Present 0.03694 0.07620 0.10056 0.18898 

0.25 

Armenakas et al. (1969) 0.08639 0.20529 0.27491 0.50338 

Khalili et al. (2012) 0.08635 0.20525 0.27493 0.50406 

Bhimaraddi (1984) 0.08639 0.20478 0.27286 0.49818 

SSDT, Present 0.08642 0.20533 0.27499 0.50345 
 

 
(a) (b) (c) 

Fig. 3 The effects of external electric voltage on the dynamic stability of separator 
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Figs. 6(a)-(c) demonstrates the DIR of structure for 

CST, FSDT and SSDT, respectively for different structural 
damping parameters. It can be found that the DIR and 

 
 

 
 

 
 

 
 

natural frequency of viscoelastic separator are lower than 
those of non-visco one. This remarkable difference shows 
that considering the nature of separator as viscoelastic can 

 
(a) (b) (c) 

Fig. 4 The effects of SWCNT as reinforcer on the dynamic stability of separator 

 
(a) (b) (c) 

Fig. 5 The effects of magnetic field on the dynamic stability of separator 

 
(a) (b) (c) 

Fig. 6 The effects of structural damping on the dynamic stability of separator 

 
(a) (b) (c) 

Fig. 7 The effects of shear constant of viscoelastic medium on the dynamic stability of separator 
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Fig. 8 Comparison of DIR obtained by CST, FSDT 
and SSDT 

 
 

yields the accurate results with respect to non-visco ones. 
The reason is that assuming viscoelastic structure means 
induce of damping force which results in more absorption 
of energy by the system. 

Figs. 7(a)-(c) illustrates the influence of shear constant 
of elastic medium on the DIR of structure respectively for 
CST, FSDT and SSDT. As can be seen, the higher the shear 
constants for elastic medium, the higher are the DIR and 
dimensionless resonant frequency. This is perhaps because 
increasing Pasternak coefficient increases the structure 
stiffness.Final figure is related to comparison of DIR and 
pulsation frequency for three applied theories namely as 
CST, FSDT and SSDT. It can be seen that the DIR obtained 
by SSDT is happen in lower pulsation frequency with 
respect to two other theories. It is perhaps due to the fact 
that the flexibility of structure modeled by SSDT is lower 
that other theories. Furthermore, the displacement field in 
SSDT is close to the deflection of structure and it can be 
another reason for more accuracy of this theory. It can be 
also found that the results calculated by CST are much 
overestimated with respect to FSDT and SSDT. 

 
 

9. Conclusions 
 
Based on CST, FSDT and SSDT, a comparative study 

on the dynamic stability of piezo-visco-separators 
conveying pulsating fluid was presented in this work. In 
order to consider the nanotechnology effects on the 
dynamic stability of separator, it was reinforced with 
SWCNT. The separator was subjected to 3D electric and 2D 
magnetic fields and was surrounded by nonlinear 
orthotropic visco Pasternak foundation. Using DQM in 
conjunction with Bolotin’s method, the derived motion 
equations were discretized and solved to obtain the DIR and 
resonance frequency of system. The effects of different 
parameters such as external voltage, magnetic field, visco-
Pasternak foundation, structural damping and volume 
percent of SWCNTs were shown on the dynamic instability 
of structure. The most important findings of this paper are: 

 

 The DIR obtained by SSDT was happen in lower 
pulsation frequency with respect to two other 
theories. 

 Applying negative voltage increases the dimension-
less pulsation frequency and consequently shifts the 
DIR of system to higher frequency zone. 

 With increasing magnetic field intensity, the 
pulsation frequency increases and the DIR shifts to 
right. 

 With neglecting SWCNT as reinforcer, the resonance 
region will be happen in lower frequencies with 
respect to considering SWCNT. 

 Tthe DIR and natural frequency of viscoelastic 
separator were lower than those of non-visco one. 
The results of this study were validated by other 
works. 

 

Finally, it was hoped that the results of this paper would 
be beneficial for the design of separators used in oil and gas 
industries. 
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