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1. Introduction 
 

The practical importance of vibration analysis of conical 

shells, i.e. frequencies and mode shapes has been increased 

in structural, aerospace, chemical, submarine hulls, and 

mechanical applications. Thus, it is necessary for design 

engineers to evaluate the dynamic characteristics of this 

type shell structures effectively and accurately. A number of 

analytical and numerical studies have been conducted on 

the free vibration analysis of conical shells. For example the 

general dynamical behavior of conical shells has been 

investigated by Saunders et al. (1960) and Garnet and 

Kempner (1960). A transfer-matrix approach for free 

vibration of conical shells with constant and variable 

thickness developed by Irie et al. (1982, 1984). Using the 

finite element method Sivadas and Ganesan (1992) 

analyzed the free vibration of conical shells with uniform 

thickness. Yang (1974) adopted the integration method in 

the vibration analysis of orthotropic conical shells. Siu and 

Bert (1970) presented free vibration of conical shells by 

using the Ritz technique. Tong (1993a, b, 1994) examined 

the vibration analysis of isotropic, orthotropic and 

laminated conical shells by the power series expansion 

method. Recently, Liew and Lim (1995) and (Liew et al. 

1997) presented the differential quadrature method to study 

                                          

Corresponding author, Professor, 

E-mail: Khadem@modares.ac.ir 
a Ph.D. Student, E-mail: R.Nez.El@gmail.com 

 

 

the free vibration of orthotropic and laminated conical 

shells. Lim and Liew (1995) also studied the vibration 

behavior of shallow shells via Ritz method. Some selected 

works in this research topic includes those of Chang (1981), 

Shu (1996), Liew et al. (1995), Civalek (2006a, b, 2007, 

2008, 2013), Lim et al. (1998) and Liew et al. (2005), 

Sofiyev and Karaca (2009), Sofiev et al. (2009) and Sofiyev 

and Kuruoglu (2011). Bakshi and Chakravorty (2013) using 

Lagrange‟s equation of motion in conjunction with 

Hamilton‟s principle and a finite element code studied static 

bending, free and forced vibration responses of composite 

conoidal shells. Although, vibration analysis of orthotropic 

composite shell structures with different geometries like 

cylinders and cones have been investigated by many 

researchers, the subject of the vibrational behavior of 

composite lattice shells and specially conical ones has 

received very little attention in the scientific literature until 

recently. Lattice composite structures do not have any 

analogues in cost and weight efficiency so they could 

compete in the class of high-loaded structures. Considering 

industrial applications of lattice structures, the dynamical 

behavior of these structures very important and need to be 

investigated. Although lattice composite conical shells 

beside the cylindrical ones, due to their unique 

specifications are used in various structural applications as 

aerospace engineering such as fairings and payload adapters 

for spacecraft launchers as studied Vasiliev et al. (2001) and 

Vasiliev and Rasin (2006), most of these studies about 

lattice structures dedicated to static analysis and determine 

stress and stability or investigation of buckling and also 
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fabrication and testing of these shells and mainly related to 

composite lattice cylindrical shells. Gürdal and Gendron 

(1993) based on finite element method designed optimum 

geodesically grid-stiffened cylindrical shells respect to 

weight. Thickness of  plies and orientations of the skin 

laminate and stiffener heights were used as design 

variables. Kim (1999, 2000) investigated fabrication and 

testing of isogrid stiffened cylinder and composite stiffened 

panel, Slinchenko and Verijenko (2001) presented an 

analysis of cylindrical isogrid lattice shells, using an 

equivalent stiffness smearing method. Kidane et al. (2003) 

studied global buckling load for a generally cross and 

horizontal grid stiffened composite cylinder and developed 

an analytical model for determination of the equivalent 

stiffness parameters of a grid stiffened composite 

cylindrical shell. Wodesenbet et al. (2003) investigated the 

buckling problem of an isogrid stiffened composite cylinder 

developing an improved smeared method. Totaro and 

Gürdal (2005, 2009) studied optimal design of composite 

lattice structures for Aerospace application and developed 

an optimization method for composite lattice shell 

structures under axially compressive loads. Totaro (2012) 

investigated a refined analytical model for the local 

buckling failure modes of composite anisogrid lattice 

cylindrical shells made of a regular system of triangular 

cells. Totaro and De Nicola (2012) studied recent advance 

on design and manufacturing of composite anisogrid 

structures for space launchers. Also Totaro (2013b) and 

Totaro (2013a) theoretical studied local buckling modeling 

of isogrid and anisogrid lattice cylindrical shells with 

hexagonal cells and by experiment investigated the 

theoretical results. Buragohain and Velmurugan (2011) 

carried out axial compression tests for filament wound grid-

stiffened composite cylindrical structures and compared 

results with finite element analysis. Morozov et al. (2011a, 

b) investigates the buckling behaviour of anisogrid 

composite lattice cylindrical shells under axial compression 

using the finite-element software package COSMOS/M . 

Recently Shi et al. (2013) studied critical local and global 

buckling loads of grid-stiffened carbon-fiber conical shells. 

The listed above scientific papers are associated with static 

study of composite lattice structures and mainly consider 

the cylindrical shells. In the field of dynamic studies of 

composite lattice structures, the number of scientific papers 

is insignificant. Golfman (2007) investigated dynamic 

stability of lattice cylindrical shell made of carbon fiber 

epoxy composites. Considering free and force vibration of 

lattice cylinder, He took into account damping properties of 

structure. Liang et al. (2011) numerically investigated the 

buckling and dynamic analysis of composite grid-stiffened 

cylindrical structure. Using a four node hybrid stress finite 

element Darilmaz (2012) studied stiffened orthotropic 

corner supported hypar shells and examined the influence of 

stiffener location, rise/span ratio and fiber orientation on 

vibration behavior of these shells. Hemmatnezhad et al. 

(2014) analytically investigated the vibrational behavior of 

grid-stiffened composite cylindrical shells and verified the 

obtained results by a 3-D finite element model using 

ABAQUS CAE software. Morozov et al. (Lopatin et al. 

2015, 2016), using the semi-membrane theory of ortho-

tropic cylindrical shells and finite element method studied 

free vibrations of a cantilever and clamped composite lattice 

cylindrical shell. The filament-wound lattice cylinders are 

modelled as a continuous shell characterized by the 

effective stiffness parameters. Recently Ansari and Torabi 

(2016), numerically studied the buckling and vibration of 

functionally graded carbon nanotube-reinforced composite 

conical shells under axial loading. He derived the governing 

equations using Hamilton‟s principle on the basis of the first 

order shear deformation theory. 

It is clear that the listed above studies about vibrational 

behavior of the lattice structures although small in quantity, 

mainly related to cylindrical lattice shells. So, investigation 

of the dynamical behavior of lattice composite conical 

shells is novel and can be used for further and future 

researches. 
 

 

2. Geometrical relationships for conical lattice 
shells 
 

Conical Anisogrid (anisotropic grid) composite 

structures are specific lattice shells which are made by 

geodesic winding, like the cylindrical shells. Nevertheless, 

because of the geometrical properties of the conical surface, 

the corresponding geodesic trajectories are more 

complicated than those that are typical for the cylindrical 

lattice structures. In the conical shells, the helical angle 

(with respect to the local meridian of the shell) is 

continuously changing from the top to the bottom of the 

structure. As a consequence, the equations for the structural 

mass, stiffness and stresses are more complicated than those 

for the cylindrical structure. The conical lattice shell is 

characterized by variable properties which changes along 

the axis (Totaro 2011). Supposing geometrical differences 

between conical and cylindrical lattice shells, it is implicit 

that despite of cylindrical shell in which filament angle of 

grids, radius of and distances between helical and hoop ribs 

are constant, in conical shells these parameters are non-

constant and variable with respect to variable radius of 

conical lattice shell. Since these parameters affect the 

coefficients of stiffness of lattice conical shell, one needs to 

consider them. Considering Fig. 1(a) and Fig. 2, these 

parameters are as follow (Totaro and Gürdal 2009) 
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where 𝛼 is the semi vertex angle of cone,  nh  is number of 

helical ribs, 𝑎ℎ  spacing helical ribs, 𝑅 general radius of 

conical shell,  𝑅1  and 𝑅2  are the cone radii at the small and 

the large cross-sections, respectively. Also, considering the 

geodesic path due to filament winding process assures a 

continuous variation of the helical angle from  𝜙1to 𝜙2 

according to Clairaut Equation and 𝜙 is variable helical 
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(a) (b) 

Fig. 1 Geometrical characteristics of (a) composite lattice 

conical shell; (b) auxiliary schematic 
 

 

 

(a) 

 

 

(b) 

Fig. 2 Acting forces and moments on generic macro-

element of conical lattice shell: (a) axial forces 

and in-plane bending moments; (b) shear forces 

on the edges 

 

 

angle that is continuously changing from the top to the 

bottom of the structure. 

 

 

3. Equivalent stiffness of composite lattice 
conical shell 
 

In order to consider dynamic behavior of shell and study 

the vibration, at first it is required to determine the 

equivalent stiffness parameters of the hole structure. The 

analytical modeling method, i.e., the smeared stiffener 

approach uses a mathematical model to smear the stiffeners 

into an equivalent laminate and determine the equivalent 

stiffness of the laminate. This engages determination of 

stiffness contribution of the grid (stiffeners) as well as that 

of the shell. In developing the analytical model, a unit cell 

of the stiffener structure has to be defined first. The unit cell 

is chosen such that the whole grid structure can be 

reproduced by repetition of this unit cell (Figs. 1 and 2). 

The procedure is similar to that used in (Kidane et al. 2003 

and Woldesenbet et al. 2003) but based on the following 

refined assumptions: 
 

(1) The transverse modulus of the unidirectional 

stiffeners is much lower than the longitudinal 

modulus, and the cross-sectional dimensions are 

also very small compared to the length dimension. 

(2) The stiffeners are modeled as beams and in 

addition to bear axial loads, considered to support 

shear loads and bending moments . 

(3) Uniform stress is assumed across the cross-

sectional area of the stiffeners. 

(4) Load is transferred through shear forces between 

the stiffeners and the shell. 

(5) The torsional stresses in the cross sections of the 

stiffeners are ignored. 
 

3.1 Force analysis 
 

The mid-plane strains and curvatures of the shell are 

given by 𝜀𝑥
0, 𝜀𝜃

0, 𝜀𝑥𝜃
0 , and 𝜒𝑥 , 𝜒𝜃 , 𝜒𝑥𝜃  respectively. Based 

on laminated plate theory, the strains on the interface of the 

stiffener and the shell are given by Eq. (2) (Woldesenbet et 

al. 2003). 
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where 𝑡 is the thickness of the outer laminate shell. The 

transformation matrix (Hemmatnezhad et al. 2014) is used 

to resolve these strains along the stiffener direction (𝛼), and 

normal to the stiffener directions (𝛽), and corresponding 

shear strain (𝛼𝛽) 
 

2 2

2 2

2 2

0 0

0 0

0 0 0

0 0 0

2 2 0 0

x

z

xz

x

c s cs

s c cs

c s

s c

cs cs c s



 

 



 

 

 

 

 

 

     
     

     
     
     

     
           

 
(3) 

 

where 𝑐 = cos⁡(𝜙), 𝑠 = sin⁡(𝜙) and 𝜙  is the orientation 

of the ribs with respect to the axial direction. Applying 

assumptions (2) and (3), the forces corresponding to these 

strains are calculated according to Eq. (4). 
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(4) 

 

Where 𝐸𝛼  and 𝐺𝛼𝛽  are the longitudinal and shear 

modulus of the ribs, respectively. Summing up the axial and 

circumferential forces on the sides of the unit cell, one can 

251



 

Reza Nezamoleslami and Siamak E. Khadem 

obtain 
 

1 2 1 2

1 2 2 1

( )cos( ) ( )sin( )

( )sin( ) ( )cos( )

xF F F F F

F F F F F

   

    

 

 

   

   

 
1 2 1 2

1 2 2 1

( )cos( ) ( )sin( )

( )sin( ) ( )cos( )

xF F F F F

F F F F F

   

    

 

 

   

   
 

(5) 

 

The shear force is obtained by summing the forces along 

each sides of the unit cell as 
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Using Eqs. (1)-(6) and dividing the force expressions by 

the corresponding edge width of the unit cell, one can write 

the corresponding forces per unit length as 
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3.2 Moment analysis 
 

The reaction moment due to the ribs is caused by the 

shear forces on the interface of the rib and the shell. The 

shear forces on the surface of the shell. Fig. 2(a), shows the 

different moments created by these forces. The moment 

caused by these forces on the mid-plane of the shell equals 

to the forces multiplied by one half the shell thickness. So, 

𝑀𝛾1  and 𝑀𝛾2  are the moments resulting from forces 𝐹𝛼1  
and 𝐹𝛼2, respectively (Kidane et al. 2003). Following the 

same procedure as the force analysis on a unit cell, the 

resultant moments on the horizontal and vertical sides of the 

unit cell are derived and depicted in Eq. (8) 
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(8) 

3.3 Shear force analysis 
 

For determining shear forces on macro-element of 

composite lattice conical shell, the strain component εαγ  

can be written as (Hemmatnezhad et al. 2014) 
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Considering shear strain (8), the resulting shear forces 

are given as) 
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Considering Fig. 2(b), the shear forces in the x and θ 

directions and then summing up the forces on the proper 

latter sides of the unit cell can be written as 
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Using (10) one can rewrite (11) 

And the resultant shear forces per unit length can be 

obtained by dividing the above forces by the corresponding 
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Considering geometrical characteristics of lattice part of 

the composite conical shell in Fig. 2(a), one can deduces 
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So relations (13) can be arranged in matrix form as 
 

2 0

0

2
cos 0

2
sin( )cos( )(tan( ) tan( )) 0

lat
h zx xz

h

lat
h z z

h

A GQ
a

A GQ
a



 

 

    

 
    
       

        
 

 
(15) 

 

3.4 The equivalent stiffness matrix 
 

Eqs. (7) and (8) are, respectively, the force and moment 

contribution of the ribs or lattice part of conical shell, 

hence, denoted by the superscript “lat”. Taking into account 

the assumptions in Section 3, these equations are rewritten 

in a matrix form in Eq. (16) 
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Where in (16) 
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It is clear that despite of cylindrical shells, the 

coefficients of stiffness of lattice composite conical shell 

i.e. the equivalent Stiffness matrix of conical shells is not 

constant and changes along the length of the cone. For 

checking the accuracy of coefficients of stiffness in (16) and 

(17), one can suppose 𝛾 = 0 , i.e., cylindrical shell and the 

coefficients of stiffness for cylindrical composite lattice 

shell could be obtained (Kidan et al. 2003). Also, the 

resultant force and moments due to the outer shell in terms 

of the strain components of the mid-plane surface of the 

shell are obtained. For orthotropic symmetrical laminated 

outer skin, the physical relations i.e., hook law, have 

following forms 

 

11 12 11 12 0

21 22 21 22

33 33

11 12 11 12

21 22 21 22

33 33

77

88

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

sh
xx

sh

sh

x

sh

x

sh

sh

x

sh

x

sh

b b c cN

b b c cN

b cN

c c d dM

c c d dM

c dM

bQ

bQ











   
   
   
   
   
      
   
   
      
     

0

0

0

0

x

x

x

xz

z

























 
 
 
 
 
 
 
 
 
 
 
 
 

 

(18) 

 

in which 𝑏′77 = 𝐾𝑏77 , 𝑏′88 = 𝐾𝑏88  and K is known as a 

shear correction factor (Qatu 2004). In relations (16), (18) 

the superscripts „lat‟ stands for the ribs and „sh‟ for outer 

skin. Moreover, the mentioned coefficients of stiffness of 

the shell are given as 
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where 𝑄𝑖𝑗  are the plane stress-reduced stiffness, and 𝑡 is 

the uniform thickness of the shell with the reference middle 

surface. The total force and moment on the panel is the 

superposition of the force and moment due to the ribs and 

the shell as shown by Eq. (20) 
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So the resultant stiffness parameters obtained from 

above equations are the equivalent stiffness parameters of 

the whole conical shell and constitutive equations have the 

following general form 
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(21) 

 

Here 𝑁 and 𝜀 are membrane stress resultants and strains 

of the reference surface, 𝑀  and 𝜒  are moments and the 

corresponding bending deformations, 𝑄  and 𝛾 are 

transverse forces and shear strains. 𝐵 - membrane, 𝐶 -

coupling and 𝐷 - bending stiffness coefficients. These 

coefficients could be defined as following relations. 

 

11 11 11 11 14 11 11 44 11

12 12 12 12 15 12 12 45 12

21 21 21 21 24 21 21 54 21

22 22 22 22 25 22 22 55 22

33 33 33 33 36 33 33 66 33

, , ,

, , ,

, , ,

, , ,

, , ,

B a b C a c D a d

B a b C a c D a d

B a b C a c D a d

B a b C a c D a d

B a b C a c D a d

     

     

     

     

     

 
(21) 

 

 

  

253



 

Reza Nezamoleslami and Siamak E. Khadem 

4. Basic equations of thick (shear deformation) 
conical shell 
 

4.1 Equations of motion 
 

A lattice composite conical shell is depicted in Fig. 3. 

The conical shell is referred to a coordinate system (𝑠, 

𝜃, 𝑧). Also for more explanation the auxiliary schematic, 

(Fig. 1(b)) is considered here. The equilibrium equations of 

motion for thick conical shells in terms of the resultant 

forces and moments including the transverse shear and 

rotary inertia terms are (Qatu 2004) 
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(23) 

 

Where  in (23) 𝑁𝑠, 𝑁𝜃 , 𝑀𝑠, 𝑀𝜃  represent the resultant 

forces and moments, 𝑁𝑠𝜃  and 𝑁𝜃𝑠  resultant membrane 

forces, 𝑄𝑠  and 𝑄𝜃  the resultant transverse shearing forces, 

𝑚𝑆 and 𝑚𝜃  represent possible body couples (moments per 

unit length), 𝑞𝑠   and 𝑞𝜃  are the distributed forces in the 𝑠 

and 𝜃 directions, respectively. For deriving the equations 

of motion of composite conical lattice shell, it is assumed 

that vibration of the shell is accompanied by a large number 

of relatively small waves, that such wave lengths which at 

least in one direction is small compared with the radius of 

curvature of the middle surface or dimensions of the shell. 

So, one can suppose that each small semi-waves of shell 

can be considered as a shallow shell, that permits to apply 

to it the basic principles of the theory of shallow shells. 

Finally, the equations of motion of shear deformable conical 

lattice shells can be rewritten as follow 
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(24) 

 

where 𝐼1, 𝐼2, 𝐼3  are the inertia terms obtained as 

 

Fig. 3 A 3D-model of the composite lattice conical shell 

with outer laminated skin 
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4.2 Kinematic relations 
 

The components of the deformation of the conical shell 

with references to this given coordinate system are denoted 

by u, v, w in the s, 𝜃 and z directions, respectively. Based 

on the first-order shear deformation theory and Applying 

the shallow shell assumption in Section 4.1, the strains and 

curvatures on the mid-plane surface of the thick conical 

shell can be written as (Qatu 2004) 
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It is assumed that there are no stretching-shearing, 

twisting-shearing, bending-shearing, and bending-twisting 

couplings, so stress resultant-strain relations (the constitu-

tive relations) may be represented as (Tong 1994) 
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In conical shell, for convenience the independent 

variable is assumed as 𝑆 = 𝑆1𝑒
𝑥 . When changing 𝑆 from 

𝑆1  to 𝑆2 ,  the coordinate 𝑥  within the length of the 

truncated cone varies from zero to 𝑥0 = 𝑙𝑛 𝑆2 𝑆1 . Using 

Eq. (26) and taking into account the variable x instead of 

𝑆, equation of motions (24) can be expressed in terms of 

displacement fields 𝑢, 𝑣, 𝑤, 𝜓𝑥 , 𝜓𝜃  and its derivations as 

follows 
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(28) 

4.2 Analytical approach 
 

Defining displacements fields for circular composite 

lattice conical shell for any circumferential and axial wave 

numbers n and m respectively as 
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where ℜ𝑢 𝑥 , ℜ𝑣 𝑥 , ℜ𝑤 𝑥 , ℜ𝜓𝑥
 𝑥  and ℜ𝜓𝜃

 𝑥  are the 

axial modal functions and 𝜔 is the natural frequency. The 

most important and difficult part of this analysis engages to 

choosing desirable series forms for modal functions. An 

appropriate set of Fourier series which satisfies the 

boundary conditions of a shell with simply-supported ends 

with no axial constraint (SNA-SNA) term-by-term can be 

given as (Hemmatnezhad et al. 2014) 
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(30) 

 

where in (29) and (30) 
 

0

, ,
m

n
x


    

(31) 

 

Substituting displacement functions (29) and their 

derivatives into Eqs. (28) and after appropriate mathe-

matical calculation, the natural frequencies of SNA–SNA 

composite lattice conical shell would be derived. It is 

implicit that, these boundary conditions do not have 

generality, especially when the goal is to consider general 

cases of boundary conditions instead of particular ones. On 

the other hand, sine series have zero values at the end 

borders unless when necessary to specify affected boundary 

conditions as 
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0
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   

   

 
(32) 

 

For investigation of the general cases, it is necessary to 

maximize the generality of the formulation. For this, a shell 

with freely supported ends with no tangential constraint 

(FSNT) is chosen (Hemmatnezhad et al. 2014). The 

boundary conditions for such a shell is given by 
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00, ( 0, )x x x xu Q N M x x        (33) 
 

Each of the ten boundary conditions given in (33), on a 

term- by-term basis are satisfied by (32), so the Stokes‟ 

transformation is used to apply constrains to satisfy the 

boundary conditions. To differentiate the displacement 

functions, the border values (32) are required (the results 

depicted in Appendix A). The substitution of the set of 

displacement functions and their derivatives into Eqs. (28), 

gives two separated matrix equation, in which the 

coefficients of Fourier series are coupled as 
 

11 12 13 14 15 1

21 22 23 24 25 2

31 32 33 34 35 3

1

41 34 43 44 45 4

2

51 35 53 54 55 5

mn

mn

mn

mn

mn
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     
     
     
     
     

     
          

 
(34) 

 

and 
 

01 02 0 6

1

02 03 0 7

n

n

K K U C
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     
     

     

 (35) 

 

where in (28) and (29) due to applying the Stokes‟ 

transformation the values of 𝐶𝑖  (𝑖 = 1, … ,7) are in terms 

of unspecified border values, 𝑁𝑥
0, 𝑁𝑥

𝑥0 , 𝑀𝑥
0, 𝑀𝑥

𝑥0 , 𝑣0, 𝑣𝑥0 , 

𝑤0, 𝑤𝑥0 , 𝜓Ө
0 , 𝜓Ө

𝑥0  and coefficients 𝐾𝑖𝑗  (i, j = 1, ..., 5), 

𝐾01 , 𝐾02  and 𝐾03  depend upon the shell frequency, 

geometrical and physical parameters of composite lattice 

conical shell and wave numbers in the circumferential and 

axial directions. Obviously from Eqs. (30) and (31), Fourier 

coefficients 𝑈𝑚𝑛 ,   𝑈0𝑛 ,   𝑉𝑚𝑛 ,   𝑊𝑚𝑛 ,   𝛹𝑚𝑛
1 ,   𝛹𝑚𝑛

2
 and 𝛹0𝑛

1  

can be expressed explicitly in terms of the ten unspecified 

geometric and natural boundary values Nx
0  , Nx

x0 , Mx
0  , 

𝑀𝑥
𝑥0 ,  𝑣0,  𝑣𝑥0 ,  𝑤0,  𝑤𝑥0 ,  𝜓Ө

𝑥0 . Only, it is needed to apply 

the geometrical and natural boundary conditions in 

accordance with the selected general model. For further 

details, the reader is referred to Refs. (Ansari and Darvizeh 

2008, Kadoli and Ganesan 2003). As mentioned before, 

choosing at both ends the natural boundary conditions as 

𝑄𝑥 = 𝑁𝑥Ө = 𝑀𝑥Ө and the geometrical ones as 𝑢 = 𝛹𝑥 = 0 

, a general eigenvalue problem which can be used for any 

possible combination of boundary conditions, would be 

driven. After applying the constraints due to the geometrical 

and natural boundary conditions, one obtains the following 

homogeneous matrix equation 
 

 

0 0 0 0 00 0 0 0 0

0

T
x x x x x

ij x x x xN N M M v v w w         



 
(36) 

 

It is explicit that for non-trivial solution of (36), the 

determinant of the coefficients matrix must be equal to zero 
 

0 , ( , 1,....,10),ij i j    (37) 

 

Solving (37), a characteristic equation whose eigen-

values are the natural frequencies of the shell with freely 

supported ends with no tangential constraint will be driven. 

The corresponding eigenvectors, also, determine the mode 

shapes. It is clearly that the characteristic Eq. (37) required 

for any type of boundary conditions. To drive the 

appropriate characteristic equation for a specified boundary 

condition, its associated border conditions must be imposed. 

This can be performed (Kadoli and Ganesan 2003) by 

appropriately tailoring the general determinant of (37). 

 

 

5. Numerical results and discussion 
 

5.1 Calculation of the natural frequencies 
 

In this section some results and considerations for free 

vibrations of composite conical lattice shell are presented. 

In this section and in the successive sections and examples 

it is considered that 𝑚 = 1. The vibration characteristics 

have been performed for the filament wound composite 

lattice conical shell, whose schematic shown in Fig. 3. The 

dimensions of the shell under consideration are:𝐿 =
1.616 m, 𝑅1 = 0.3 m, 𝑅2 = 0.8 m and 𝛼 = 18°. The shell 

is made of unidirectional carbon-fiber reinforced plastic 

(CFRP) having the following properties: modulus of 

e las t ic i ty,𝐸𝛼 = 100 GPa,  shear  modul i  𝐺𝛼𝛽 = 𝐺𝛼𝛾 =

5.5 MPa,  𝐺𝛽𝛾 = 2.5 GPa, Poisson‟s ratio 𝜇𝛼𝛽 = 0.1, 𝜇𝛼𝛾 =

0.3,  𝜇𝛽𝛾 = 0.3, and density 𝜌 = 1450 kg/m3. The number 

of helical ribs of one helical direction (either + 𝜙, or − 𝜙) 

is  𝑛ℎ = 35. This is expected since the increase in helical 

angle for the shell composed of one and the same number of 

helical ribs leads to the increase in the number of their 

intersections. The outer laminated skin of conical shell is 

assumed to be layup with 90° with respect to x-direction 

with various thicknesses, while in the lattice structure, 

fibers are considered to be oriented in the ribs‟ directions. 

As mentioned before, in the conical shells despite of 

cylindrical ones, the helical angle is not constant and 

continuously changes, so as a consequence, the equations 

for the structural stiffness are more complicated than those 

for the cylindrical structure. In this section and successive 

sections, it is assumed that 𝑚 = 1, so only the effect of the 

circumferential wave numbers on the natural frequencies 

would be considered. In Table 1 is depicted the natural 

frequencies calculated via the present analytical approach 

for various circumferential wave numbers for a SNA–SNA 

boundary condition. Because of the geodesic angle of 

helical ribs (𝜙) is not constant and is changing along the 

generator of cone, for calculating the variable coefficients 

of stiffness of the conical lattice shell, conditionally the 

dimensionless length of lattice cone in eleven points is 

divided into 10 parts from 0 to 1 with a increment equal 0.1. 

Composite lattice conical shell is considered with and 

without outer laminated skin. Note that in Table 1, in 

comparison between conical shells with and without outer 

skin, the heights of helical ribs and obviously 𝐴ℎ  have 

different values. This is because of that the mass of two 

shells will be the same. The average values of the natural 

frequencies in Table 1 show that the application of the 

smear method for determining of the coefficients of 

stiffness of the conical shell without outer skin is not 

recommend. For more explanation, Fig. 4 shows the 
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Fig. 6 Effect of semi vertex angle on the natural 

frequency of SNA–SNA skinless composite 

lattice conical shell respect to dimensionless length 

(α = 30°,  45°, 𝐿 sin 𝛼 /𝑅2 = 0.625, 

 𝐴ℎ = 20 × 20  mm2, 𝑡 = 0 mm) 

 

 

variation of the natural frequencies respect to dimensionless 

length of conical shell for circumferential wave numbers 

from 5 to 7. From the results of Table 1 and Fig. 4, it is 

clear that the natural frequencies of composite lattice 

conical shell without outer laminated skin converge for all 

circumferential wave numbers greater than 5 and no 

sensitive to variation of circumferential wave numbers. On 

the other hand, the difference between the calculated natural 

frequencies of the conical lattice shell without outer 

laminated skin in comparison with those of conical shell 

with outer skin is significant. This behavior mainly is 

dependent on the applying the smear method for 

determining the coefficients of stiffness of lattice shell. 

 

 

While the conical composite lattice shell have not external 

skin, i.e., 𝑡 = 0, all coefficients of stiffness associated with 

the moments in relations (16) are zero and this causes the 

error in the calculations. Furthermore, in Fig. 5 is depicted 

the comparison of the natural frequencies versus circumfe-

rential wave numbers obtained via the present analytical 

approach and FEM software for a SNA–SNA conical 

composite lattice shell. The conical lattice structure is 

considered with and without outer laminated skin. Again, 

the difference between results, shows that the smear method 

is not suitable for determining the coefficients of stiffness of 

lattice shells without outer skin and leads to errors in 

determination of the natural frequencies. Fig. 6 illustrates 

the effect of semi vertex angle on the natural frequencies of 

the composite lattice conical shell. There is a comparison of 

the natural frequencies via the present analytical approach 

for various circumferential wave numbers with respect to 

the dimensionless length of composite lattice conical shell 

without outer skin for a SNA – SNA boundary condition 

and two different semi vertex angle of cone. 

It is obvious, that the semi vertex angle of cone has 

significant effect on the natural frequencies of the conical 

shell. When the mass of the conical shell does not change, 

increasing the semi vertex angle of cone, leads to an 

increase of the natural frequencies. This is mainly because 

of the fact that although 𝑅2 and the geometrical ratio 

𝐿 sin 𝛼 /𝑅2  for both shells does not change, increasing the 

semi vertex angle of shell leads to decreasing the length of 

conical lattice shell. The shorter length causes closer and 

more compact cells of the lattice structure and finally, while 

the mass of shells changes insignificantly, stiffness of lattice 

shell with the bigger semi vertex angle would be increased. 

Furthermore decreasing of the length of shell, increases the 

influence of edge effects. For, more interpretation, Fig. 7 

depicts the natural frequencies with respect to dimension-

less length of composite lattice conical shell for various 

Table 1 The natural frequencies via the present analytical approach for various circumferential wave numbers along the 

dimensionless length of composite lattice conical shell for a SNA–SNA boundary condition (𝛼 = 18°, 𝐿 sin 𝛼 /𝑅2 

= 0.625, for without skin shell: 𝐴ℎ = 20 × 20  mm2 and for shell with skin: 𝐴ℎ = 20 × 12.7  mm2, t = 1 mm) 

𝑥∗ 
𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 

Skinless Skin Skinless Skin Skinless Skin Skinless Skin 

0 220.4014 209.5682 333.4727 249.5012 407.0905 353.4374 434.9248 408.9841 

0.1 189.3275 190.9113 333.0988 249.1933 393.7298 352.1169 431.8315 406.9554 

0.2 149.5023 172.4961 291.6497 248.7166 383.9115 351.8745 402.0674 404.8880 

0.3 104.5085 156.6589 214.5620 248.6841 318.7630 347.8115 394.3706 400.9109 

0.4 85.9347 144.2149 91.6489 248.2423 134.6493 347.3245 177.9584 392.1831 

0.5 85.1917 135.2761 42.0534 247.6428 32.6335 341.6053 29.1472 390.2960 

0.6 85.0328 129.5188 41.9969 246.7222 32.3419 337.9379 28.8336 379.3851 

0.7 81.6379 126.3281 41.2008 245.3091 32.1524 333.6525 28.7317 368.1107 

0.8 74.2449 125.1446 40.5336 244.0780 30.8771 321.7387 27.2238 366.4352 

0.9 59.6128 124.9686 36.7943 243.2857 27.5531 294.4287 24.0098 328.7728 

1 49.9410 124.7538 28.8833 229.6156 20.8616 247.8133 17.7491 260.2861 

A.fr 107.753 149.7601 108.7177 245.5446 164.9605 325.8354 181.5357 343.4940 

 

* A.fr: Average frequency 
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Fig. 7 Effect of semi vertex angle on the natural frequency 

of SNA–SNA composite lattice conical shell respect 

to dimensionless length of shell with outer skin 

(𝑡 =  1 mm, 𝐿 sin 𝛼 /𝑅2 = 0.625, 

for 𝛼 = 20°: 𝐴ℎ = 20 × 14  mm2
 and 

for 𝛼 = 30°: 𝐴ℎ = 20 × 15.5  mm2) 
 

 

semi vertex angles and circumferential wave numbers. 

Furthermore, Fig. 8 exhibits the variation of the natural 

frequencies respect to the thickness of outer skin of a SNA–

SNA composite conical lattice shell. The semi vertex angles 

equal to 18° and 30°. It could be seen, when the mass of 

lattice conical shell does not change, the increment of the 

semi vertex angle and thickness of the outer skin leads to 

increase of the natural frequencies. 
 

5.2 Validations 
 

To demonstrate the performance of the present study the 

numerical results are compared with the results of 

Hemmatnezhad et al. (2014) and a 3-D finite element 

models made by FEM software. 
 

5.2.1 Results for lattice composite cylindrical shells 
In order to check on the numerical accuracy of the 

present analysis, Table 4 is listed. The obtained results of 

the natural frequencies of composite lattice cylindrical shell 

via the present method are compared with those given by 

Hemmatnezhad et al. (2014). 

The results are performed for four different circumfe-

rential wave numbers and three thicknesses of outer skin. 

This table shows the comparison of the natural frequencies 

of SNA-SNA lattice composite cylindrical shell. The 

 

 
Table 2 Material properties of Hs-Graphite/epoxy 

Young‟s modulus (GPa) 𝐸11 ,   𝐸22 ,   𝐸33 181.0,   10.34,   10.34 

Shear modulus (Gpa) 𝐺12 ,   𝐺13 ,   𝐺23 7.7,   7.2,   7.2 

Poisson‟s ratio 𝜇12 ,   𝜇13 ,   𝜇23  0.28,   0.28,   0.28 

Density (kg/m3) 𝜌 1389.23 
 

 

 

Fig. 8 Variation of the natural frequency respect to the 

thickness of outer skin for a SNA–SNA conical 

lattice shell (𝐿sin 𝛼 / 𝑅2 = 0.625,   for 
𝛼 = 18°:  𝑡 = 1, 
𝐴ℎ = 20 × 12.7  mm2,  𝑡 = 2, 
𝐴ℎ = 20 × 6.5  mm2,     𝑡 = 3, 
𝐴ℎ = 20 × 2.7  mm2,     𝑡 = 4, 
𝐴ℎ = 20 × 0.5  mm2,  for 𝛼 = 30°:  𝑡 = 1, 
𝐴ℎ = 20 × 15.5  mm2

  and 𝑡 = 2, 
𝐴ℎ = 20 × 11.8  mm2,   𝑡 = 3, 
𝐴ℎ = 20 × 8  mm2, 𝑡 = 4, 
𝐴ℎ = 20 × 4  mm2) 

 

 

cylindrical composite lattice shell is considered to be made 

of Hs-Graphite/epoxy with material properties listed in 

Table 2. The cylindrical shell is assumed to be four-layered 

with [30/−30]S  stacking sequence, while in the lattice 

structure, fibers are considered to be oriented in the rib‟s‟ 

directions. The geometrical parameters associated with the 

cylindrical model are taken as those reported in Table 3. 

 

5.2.2 Results for lattice composite conical shells 
Since there are no enough results in open literature to 

illustrate the accuracy and application of present method, a 

finite element model is employed to build a 3-D finite 

element model of conical shell and as earlier mentioned is 

depicted in Fig. 3. The finite element analysis (FEA) is 

performed using ANSYS 14.0 software. The finite element 

model  consisting of eight  nodes  elements (Hex8) with six 

degrees of freedom at each node  and is  meshed  into 

 

 
Table 3 Geometrical parameters of the composite 

cylindrical lattice shell 

Shell height 125 mm 

Shell inner diameter 140 mm 

Shell thickness 0.4 mm 

Unit cell height 127 mm 

Unit cell circumferential length 73.3 mm 

Stiffener orientation ± 60° 

Stiffener cross-section 6 × 6 mm2 
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Fig. 9 Variation of the natural frequency respect to the 

circumferential wave number a SNA–SNA conical 

lattice shell (α = 18°, 𝐿 sin α /𝑅2 = 0.625, 

𝑡 = 2 , 4 mm, 𝐴ℎ = 24 × 24  mm2) 

 

 

three different meshes  in circumferential and axial 

direction,  which satisfies the  requirement  of  convergence. 

The calculated natural frequencies by FEM are compared 

with those via present method for a SNA–SNA composite 

lattice conical shell with outer skin. The natural frequencies 

via the present method are the average values in two points 

𝑥∗ = 0.8 and 𝑥
∗ = 0.9 (closer to the large diameter of 

conical shell) and those computed in eleven points along 

dimensionless length of conical lattice shell from 0 to 1 

with a increment equal 0.1. Table 5 illustrates a comparison 

 

 

 

 

of these natural frequencies. The results are given for four 

circumferential wave numbers from 1  to 4 and two 

different shell thicknesses. For more illustration, in Fig. 9 

the natural frequencies for composite conical lattice shell 

with the characteristics shown in Table 5 for circumferential 

wave numbers from 5 to 7 is depicted. The comparison of 

the resent results suggests that with increasing the 

circumferential wave number more than six and for 

thickness of outer skin equal to 4 mm, the natural frequen-

cies via present method and FEM started to converge. As 

can be seen from this figure, the influence of shell thickness 

variation on the frequency curve is significant, and the 

natural frequencies for this case increases by an increment 

in the shell thickness. This is because of the fact that an 

increase in the shell thickness increases the stiffness faster 

than the mass. 

Additionally, Table 6 shows a comparison between the 

natural frequencies of composite conical lattice shell with 

outer laminated skin via present analytical method and 

those calculated by FEM Software for seven values of 

circumferential mode numbers and different boundary 

conditions. The boundary conditions are SNA–SNA, 

clamped–clamped (C–C), and clamped–free (C–F). Clearly 

it would be seen, that the boundary conditions affects the 

natural frequencies of the composite conical lattice shell. As 

expected before, the fully clamped composite shell has the 

highest natural frequencies among the selected boundary 

conditions. In addition the natural frequencies computed via 

present method converge for circumferential wave numbers 

greater than six. However, from the comparison between 

the two analyses, it can be concluded that the present 

analytical procedure can be well used for realizing and 

determining the dynamical behavior of composite lattice 

conical shells. For more realization, Fig. 10 depicts the 

mode shapes of vibration of a lattice composite conical 

Table 4 Comparison of the natural frequencies of SNA-SNA composite lattice cylindrical shells 

𝑛 
𝑡 = 0.4 mm 𝑡 = 0.8 mm 𝑡 = 1 mm 

NF-1 NF-2 PM NF-1 NF-2 PM NF-1 NF-2 PM 

2 2057 2212 2257 2131 1908 1968 2136 1786 1852 

3 1654 1421 1536 1662 1457 1543 1663 1418 1478 

4 2371 2006 2198 2445 1978 2165 2462 1959 2264 

5 2947 2955 3050 3074 2817 2891 3228 2807 3112 
 

* NF-1:Hemmatnezhad et al. (2014) - FEM; NF-2: Hemmatnezhad et al.(2014) - Analytic; PM: Present Method 

Table 5 Comparison of the natural frequency for four values of circumferential mode numbers and different 

thicknesses of outer skin (α = 18°, 𝐿 sin α /𝑅2 = 0.625, 𝐴ℎ = 24 × 24  mm2) 

𝑛 

𝑡 = 2 mm 𝑡 = 4 mm 

PM FEM 

(ANSYS) 

PM FEM 

(ANSYS) Ave2 Ave11 Ave2 Ave11 

1 126.4258 154.2781 188.1049 176.2207 196.3995 196.0783 

2 253.1236 255.4210 206.4152 302.1164 310.2059 216.4567 

3 323.4134 348.4814 244.1326 369.9766 391.4711 262.5229 

4 368.0047 399.0656 292.2194 398.9260 424.9235 318.6125 
 

* PM: Present Method; Ave2: Average of 2 points; Ave11: Average of 11 points 
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shell associated with different boundary conditions. The 

shell is considered with and without outer laminated skin. 
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Appendix A 
 

 

In employment of the differentiating a Fourier series, it 

should be particularly attentive to border values at the ends. 

For example, the end values of the functions represented by 

sine series are forced to be zero, but using Stokes‟ 

transformation, the end values of the sine series are released 

by being defined separately. Consider a function f(x) 

represented by a Fourier sine series in the open range 0 < x 

< L and by values f0 and fL at the end points as 
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Since in doubt that the derivative f′(x) can be repre-

sented by term-by-term differentiation of the sine series, the 

derivative is instead represented by an independent cosine 

series as following form 
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Stokes‟ transformation consists of integrating by parts in 

the basic definitions of the coefficients to obtain the 

relationship between bn and an as follows 
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The similar care must be taken when finding the correct 

sine series corresponding to f″(x). Therefore, the complete 

set of derivative formulas for the sine series can be written 

as 
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Similar transformation formulas must be used to obtain 

the correct form of the successive derivatives of the cosine 

series. These formulae are used for the derivatives of 

displacement functions in the solution procedure of the 

present analysis. Some of the derivatives of displacement 

functions are given in the following 
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The successive derivatives with respect to θ and t are 

simply achieved. For example, the successive derivatives of 

u (x, θ, t) with respect to θ are as follows 
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