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1. Introduction 
 

Long-span steel frames are often used in low-rise 

structures of commercial and industrial buildings (Kravanja 

and Žula 2010, Phan et al. 2013b). Due to the long span of 

such frames and tapered sections of the columns and beams, 

such portal frames are quite sensitive to wind loading. The 

wind loading and wind-induced response are the major 

factors to be considered during the structural design of 

portal frames (Hayalioglu and Degertekin 2005, Saka 

2003). 

To design such frames, it is important to optimize their 

structures and cost under wind loading, and therefore the 

modeling of wind loads should be as accurate as possible. 

Traditionally, wind loads have been considered in design of 

such structures by using simplified codes and standards 
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which include tables and plots for reduction factors. These 

standards are mostly based on experience (Camp et al. 

1998). 

Furthermore, although the wind environment is dynamic 

in real-life scenarios, the wind effects are generally 

considered as static loads in the structural optimization for 

simplicity. Compared to the static loading case, the wind 

resistant optimization of a portal frame under dynamic wind 

loading is significantly complicated and time-consuming 

(Kameshki and Saka 2003, Paya et al. 2008). As the time 

variable is involved in calculating the dynamic response, 

the objective function(s) and the constraint(s) in the 

optimization are time-dependent functions. Theoretically, 

the structural optimization process should be conducted at 

each time instant and the peak values of the responses 

should be adopted for wind resistant optimization. Besides, 

for any modification of frame dimensions, not only are the 

internal forces of the frame redistributed, but the external 

interaction between the wind and the portal frame will also 

change accordingly, resulting in different deformations of 

the frame (Li and Li 2004). Therefore, the displacements of 

portal frame at the critical locations (i.e., atop of the column 

and the mid-span of the rafter) under wind effects have to 

be calculated by re-analyzing the whole frame. At the same 

time, the constraints on strength, stability and flexibility 

have to be continually satisfied as well, which makes the 
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Abstract.  This paper presents optimization of a long-span portal steel frame under dynamic wind loads using a surrogate-

assisted evolutionary algorithm. Long-span portal steel frames are often used in low-rise industrial and commercial buildings. 

The structure needs be able to resist the wind loads, and at the same time it should be as light as possible in order to be cost-

effective. In this work, numerical model of a portal steel frame is constructed using structural analysis program (SAP2000), with 

the web-heights at five locations of I-sections of the columns and rafters as the decision variables. In order to evaluate the 

performance of a given design under dynamic wind loading, the equivalent static wind load (ESWL) is obtained from a database 

of wind pressures measured in wind tunnel tests. A modified formulation of the problem compared to the one available in the 

literature is also presented, considering additional design constraints for practicality. Evolutionary algorithms (EA) are often 

used to solve such non-linear, black-box problems, but when each design evaluation is computationally expensive (e.g., in this 

case a SAP2000 simulation), the time taken for optimization using EAs becomes untenable. To overcome this challenge, we 

employ a surrogate-assisted evolutionary algorithm (SAEA) to expedite the convergence towards the optimum design. The 

presented SAEA uses multiple spatially distributed surrogate models to approximate the simulations more accurately in lieu of 

commonly used single global surrogate models. Through rigorous numerical experiments, improvements in results and time 

savings obtained using SAEA over EA are demonstrated. 
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optimization of portal frame structures a complex task. 

Though a number of efforts have been made towards 

achieving this (Kameshki and Saka 2001, Kravanja et al. 

2013, Moss et al. 2009), there are no established methods 

for effectively optimizing such structures under dynamic 

wind loading. To address this, Wu et al. (2012) adopted 

optimality criteria (OC) method to obtain the minimum 

heights of cross sections for rafters and columns (therefore 

minimum total weight) of long-span portal frames while 

satisfying the stability constraints under dynamic wind 

environment. The weight of the portal frame was reported 

to have reduced from that of an initial baseline design by 

about 26%-28%. 

This paper presents a method for structural optimization 

for a long-span portal rigid steel frame with tapered sections 

under dynamic wind loading. Application of optimization 

algorithms in real-life engineering structure design has been 

a prominent research topic (Begg and Liu 1998, Park and 

Adeli 1997), and the two main type of methods that are 

prevalent for optimization are classical and evolutionary. 

The classical methods (e.g. the OC method used in Wu et 

al. (2012)) are quick, but are often limited in terms of the 

types of functions they can handle. They often require 

mathematical conditions on the problem to be optimized, 

such as linearity, continuity, convexity, differentiability etc. 

Moreover, they are typically suited to find a local optimum 

of the problem instead of global. Unfortunately, most of the 

practical problems do not adhere to the above strict 

conditions, and are highly nonlinear and often even black-

box (Adeli and Park 1996), i.e., the underlying function 

may not be explicitly formulated, or may be restricted for 

the user due to other reasons (e.g., trade secrets in 

commercial software). To solve such problems, evolu-

tionary algorithms (EA) (also referred to in literature as 

genetic algorithms or GA) have been a popular choice in 

recent years due to their ability to deal with non-linear, 

black-box functions. Further, they can also deal with 

discrete/mixed variables, multiple objectives and attempt to 

locate the global optimum of the problem being solved. EAs 

typically evolve a population of designs over a number of 

generations using principles of natural selection (Deb 

2001). Over the years, the approach has been used for 

optimization in a number of studies, including structural 

optimization. Hayalioglu and Degertekin (2005) employed 

a GA to obtain the minimum total cost of non-linear steel 

frames with semi-rigid connections and column bases. 

Camp et al. (1998) developed a design procedure incor-

porating a simple GA for discrete optimization of two-

dimensional structures. The objective function considered 

was total weight (or cost) of the structure, which was 

minimized subject to serviceability and strength require-

ments. A GA based design procedure was developed as a 

module in the finite element analysis (FEA) program. 

Kameshki and Saka (2001) presented a GA based design 

method for nonlinear multi-story steel frames to achieve 

least weight while satisfying the serviceability and strength 

constraints. Senouci and Al-Ansari (2009) presented a GA 

model to perform cost optimization of composite beams 

based on load and resistance factor design specification. 

Sgambi et al. (2012) proposed a method based on a 

combined application of GA and finite element method 

(FEM) to conduct the serviceability assessment of a long-

span suspension bridge. In the context of composite steel 

frames, GA was employed in Artar and Daloglu (2015a, b) 

to optimize the weight of the structures. Cost minimization 

of pre-stressed steel trusses considering shape and size 

variables was investigated using a GA by Aydin and Cakir 

(2015). Phan et al. (2013a) used GA for cost minimization 

of cold-formed steel portal frames. GA was also used for 

optimization of pre-cast hollow core slabs by Sgambi et al. 

(2014). Use of some other nature-inspired methods has also 

been reported, such as colliding bodies optimization (Kaveh 

and Shokohi 2015) for laterally supported castellated beams 

and cuckoo search (Kaveh et al. 2014) for multi-span 

composite girder bridges. While most of the studies 

typically consider weight or cost (which are sometimes 

equivalent) as the objective, some studies have also 

consider other objectives such as frequency (Topal 2012). 

Though EAs are powerful tools for optimization, they 

typically require large numbers of design evaluations to 

converge near the optimum solution(s). If evaluation of 

each design is done using a computationally expensive 

simulation (e.g., in this study a SAP2000 simulation, or 

FEA in some of the above mentioned studies), then the 

overall time for optimization becomes impractical, 

especially if the optimization needs to be executed multiple 

times during design development. This remains the key 

drawback of EAs. In order to alleviate this difficulty, the 

use of “surrogate models” has been proposed in the 

literature. Surrogate models (also known as meta-models or 

approximation models) build an approximate function 

representing the true simulations based on available data. 

Thereafter, the responses (objectives/constraints) could be 

predicted instead of truly evaluated in order to guide the 

search. For an overview of some of the prominent 

approaches that use surrogate modeling, the interested 

readers are referred to the survey papers (Jin 2005, Wang 

and Shan 2007). 

Although the use of surrogates in engineering design is 

not new, to the authors’ knowledge, there are no reports of 

using surrogate-assisted optimization on long-span portal 

frames. In order to address this gap, we present a surrogate-

assisted evolutionary algorithm (SAEA) in this paper for the 

optimization of weight (correspondingly, the cost) of a 

portal frame, which satisfies strength and stability criteria to 

resist in-plane buckling under dynamic wind loads. In 

contrast with most of the surrogate-assisted approaches 

available in literature, which tend to use single global 

surrogate model, the presented algorithm uses multiple 

spatially distributed surrogates. This means that various 

areas of the search space are approximated locally using 

different types of surrogate models, which are also updated 

over time as more data becomes available. Such an 

approach has been demonstrated to offer more flexibility 

and accuracy on a number of benchmark optimization 

problems by Isaacs et al. (2009), Bhattacharjee et al. 

(2016). In this paper, we present the advantages of using 

SAEA over traditional EA in terms of the outputs as well as 

time taken for the portal frame optimization problem. 

Furthermore, we also present and solve a modified formula-
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tion of the problem to incorporate certain practical 

constraints. To deal with dynamic wind loads, equivalent 

static wind loads (ESLWs) (Sun et al. 2015) are used, 

incorporating an aerodynamic database of wind tunnel tests 

to generate equivalent static wind effects. 

Remainder of this paper is organized as follows. 

Mathematical formulation of the optimization problem is 

discussed in Section 2, followed by the proposed approach 

for solving it in Section 3. Numerical experiments are 

presented in Section 4. Summary and potential future 

research directions are presented in Section 5. 

 

2. Mathematical formulation 
 

2.1 Formulation of the optimization problem 
 

To formulate an optimization problem, the design 

variables (attributes that represent a design), objectives 

(functions that need to be minimized/maximized) and 

constraints (relations among variables that must be 

satisfied) need to be defined. The columns and beams of 

typical steel portal frames usually have I-sections and the 

flanges of the I-section typically have uniform width wF i 

and thickness tF i. The web of the I-section has a uniform 

thickness tw i and linearly varying height as shown in Fig. 

1. The 5 web heights {hi; i = 1, 2,…, 5} of sections 1-5 

shown in Fig. 1 are considered as the design variables. h1-h5 

are discrete variables since the web heights (in mm) should 

be integers in a realistic scenarios. 

The beams and columns are divided to elements, and the 

objective function is defined as minimization of the total 

weight (W) of all the elements in the steel frame, calculated 

as show in Eq. (1). 
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In the above expression, 𝜌  is the density of the steel, Li 

is the length of the ith element (i = 1, 2,..., N). For example, 

 

 

in the structure shown in Fig. 1(a), N = 12 elements are 

marked along the frame, and DW i1 and DW i2 are the web 

heights at the two ends of the tapered ith element. 

The constraints are defined by limiting two key wind-

induced displacements, the vertical displacement (δ1) at the 

mid-span of rafter and the horizontal displacement (δ2) at 

the top of the column, to comply with the technical 

specification for steel structure of light-weight building 

with gabled frame (China Association for Engineering 

Construction Standardization 2012). According to the 

specification, the wind-induced displacements δ1 and δ2 

should be less than 

𝐵

180
 (B is the span of the rafter) and  

𝐻

60
 

(H is the height of the column), respectively. The two 

resulting constraints are shown in Eq. (2). 
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 (2) 

 

The two wind-induced displacement constraints can be 

obtained by the virtual work principle (Chan et al. 1995) as 

shown in Eq. (3) 
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(3) 

 

where N is the number of total structural elements in the 

structure, E and G are the elastic and shear modulus of steel 

respectively, A, AY and AZ are the areas of cross section and 

the shear areas about two major axes (X and Y) of cross 

section, respectively. GIX, EIY, and EIZ are torsional stiffness 

and flexural stiffness of the design section, FXk, FYk, FZk, 

MXk, MYk and MZk are the internal forces resulting from the 

applied unit force in the direction at the specified 

displacement, while fX, fY, fZ, mX, mY and mZ are the internal 

force (axial force, shear force and bending moment in along 

the three major axes) induced from external wind loading. 

 

 

 

 

(a) (b) 

Fig. 1 Portal frame and the I shape cross-section: (a) distribution of 5 sections and 12 elements (figure taken from Wu 

et al. (2012)); (b) dimensions of I type cross-section 
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All these internal forces of the elements could be obtained 

from numerical simulations using Structural Analysis 

Program (SAP2000) (Computers and Structures 1997). 

Since the geometric properties could be expressed as a 

function of the design variables, the integration and 

derivation of the constraint conditions in Eq. (3) with 

respect to the design variables could be carried out using 

numerical methods, such as those available in Matlab 2014a 

(MathWorks 2014). The dynamic wind loads are 

incorporated using the equivalent static wind loads based on 

the aerodynamic database of wind tunnel tests, as described 

in the next subsection. 

 

2.2 Calculation of equivalent static wind loads 
 

For a long-span portal steel frame, the wind-induced 

displacements under dynamic wind loading are mainly 

caused by the background response. In the cases where the 

resonant response is negligible, the Load Response 

Correlation (LRC) method (Holmes 2002) can be used to 

obtain the equivalent static wind loads (ESWLs) from the 

mean and background components of the wind load as 

shown in Eq. (4). 
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where p̅ (z) and pB(z) are the mean and background wind 

loads respectively; ɡB is the peak factor, σP(z) is the standard 

deviation of the fluctuating wind loads, pr(z) is the 

correlation coefficient between the fluctuating wind load 

pꞌ(z) a and the specified wind-induced response (r), which 

could be expressed as shown in Eq. (5). 
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Here the subscript B denotes the background response, L 

denotes the length of structural element, Ir(z) is the 

influence coefficient, i.e., the value of wind-induced 

response when a unit load is applied at the position z. If the 

portal steel frame is divided into discrete elements, the 

expressions in Eq. (5) can be rewritten as shown in Eq. (6). 
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Subsequently, the ESWLs defined in Eq. (4) can also be 

written in the finite summation form as shown in Eq. (7) 
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where i and j are element numbers, N is total number of 

elements and i is the influence coefficient. Substitution of 

the aerodynamic databases from wind tunnel tests into Eq. 

(7) is used to obtain the equivalent static wind loads, which 

are then applied in the SAP2000 model to compute the 

internal forces, moments, and the wind-induced displace-

ments. 
 

 

3. Surrogate-assisted evolutionary algorithm 
 

Evolutionary algorithms have been a popular choice for 

solving design optimization problems. This is attributed to 

the fact that they do not require specific mathematical 

properties in the objective functions/constraints and can 

deal with discrete and black-box functions, such as those 

involved in the problem studied here. EAs work by evolving 

a population of designs towards the optimum through 

iterative process of selection, recombination, mutation and 

reduction. The fitter designs at each generation (those with 

better objective values) are more likely to survive in the 

ranking process and generate new child solutions for the 

next generation. The process is similar to natural selection 

in nature, and is expected to produce better (and eventually 

optimum) designs as the generations progress. 

However, EAs, though powerful, typically require large 

number of function evaluations to converge to the optimum, 

as a population of solutions are evolved over a number of 

generations. For the cases where a true evaluation requires a 

computationally expensive simulation (e.g., Computational 

Fluid Dynamics (CFD), Finite Element Modeling (FEM) 

etc.), the overall cost of optimization can thus become 

prohibitive. For the problem considered in this paper, the 

calculation of wind-induced displacements (δ1, δ2) requires 

an expensive simulation using SAP. In such cases, one of 

the approaches in the literature is to use a surrogate 

function in lieu of the true evaluation wherever possible to 

guide the search. Such functions are referred to by various 

terms, such as approximation models, metamodels, 

surrogate models or simply surrogates. Optimization 

methods that use these models to reduce the overall 

optimization time are referred to as surrogate-assisted 

optimization (SAO) methods. 

One of the key considerations in surrogate-assisted 

optimization is the choice of the model itself. It is 

reasonably well established in the literature that there isn’t a 

single type of metamodel that can approximate all types of 

data (Bhattacharjee et al. 2016). Furthermore, a surrogate 

model that is the best for an objective may not be the best 

for a constraint of the given problem, or a model that is best 

for one of the constraints may not be the best for another 

constraint, and so on. In fact, the same surrogate model may 

not be the best for a given function in all locations. Lastly, 

if/when more truly evaluated solutions become available 

during the search, the best model(s) to approximate a 

particular function may itself change over generations. 

Considering the above factors, we apply a surrogate-
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assisted evolutionary algorithm (SAEA) based on multiple 

spatially distributed surrogates (Isaacs 2009, Isaacs et al. 

2009) to solve this problem. The reasons for choosing this 

approach are straightforward: (a) the approach should be 

able to handle non-linear and black-box functions (given the 

nature of the problem); and (b) it should use small number 

of true function evaluations to obtain a good solution 

(ideally the optimum solution), given the computational 

complexity of calculating the wind-induced displacements. 

 

3.1 SAEA framework 
 

The main SAEA framework used in this study has been 

developed by Isaacs (2009), and summarized in Algorithm 

1. The underlying baseline algorithm in the framework is 

the real-valued evolutionary algorithm presented in Deb et 

al. (2002), which is enhanced through surrogates resulting 

in SAEA. The key components of the approach are outlined 

next. 

 

3.1.1 Initialization 
The algorithm begins by initializing a population of 

solutions randomly within the given variable bounds. These 

solutions are then evaluated (true evaluations through 

SAP2000), and added to the archive 𝓐 of truly evaluated 

solutions. 
 

Algorithm 1 Surrogate-assisted Evolutionary Algorithm 

(SAEA) 

Require:  N : Population size 

NG : Number of Generations 

FEmax : Maximum number of true function evaluations 

Itrain > 1: Periodic Surrogate Training Interval 

NRC > 1: Number of truly evaluated solutions retained 

1:  Set i = 1 {Generation counter} 

2: Set FE = 0 {True function evaluation counter} 

3: Initialize(popi) 

4: Evaluate(popi) {True evaluations of initial population} 

5: Rank(popi) 

6: Set 𝓐 = popi {Archive to store all truly evaluated 

solutions} 

7: for i = 2 to NG do 

8:  if i > Itrain and modulo(i, Itrain) = = 0 then 

9:     do_training = 1 

10:  end if 

11:  cpopi = Evolve(popi−1) 

12:  if do_training = 1 then 

13:      Evaluate(cpopi) 

14:  else 

15:      EvaluateSurrogate(cpopi ,S ) 

16:      Rank(cpopi) 

17:      for j = 1 to NRC do 

18:  if Solnrank=j (cpopi) is better than 

    Solnrank=j(popi−1) then 

19:    Evaluate(Solnrank=j (cpopi)) 

20:   end if 

21:      end for 

22:  end if 

23:  𝓐 = 𝓐 ∪ cpopi 

24:  Rank(popi−1 ∪ cpopi) 

25:  popi = Reduce(popi−1 ∪ cpopi) 

26:  if do_training = = 1 then 

27:      S = BuildSurrogate(𝓐) 

28:  end if 

29:  Update FE 

30:  if FE ≥ FEmax then 

31:      return; 

32:  end if 

33:  end for 

 
3.1.2 Ranking 
For a given set of solutions, the ranking is done using 

the feasibility first principles. The solutions are first 

separated into those that do not violate any constraints 

(“feasible”) and those that do violate the constraints 

(“infeasible”). The feasible solutions are ranked based on 

their objective value. Thus, for a minimization problem 

(like the one considered here), a solution with lower 

objective value gets a better rank. The infeasible solutions 

are ranked among themselves based on the amount of 

maximum constraint violation (CV). Thus a solution that 

has smaller value of CV compared to another will have a 

better rank. Thereafter, the feasible solutions are placed 

above the infeasible solutions in the ranked list. 

 
3.1.3 Parent selection and evolution 
In order to generate the child population from a parent 

population, fitter parents need to be selected and then 

evolution operators need to be applied on them. In SAEA, 

fitter parents are selected using tournament selection. This 

simply involves comparing a ranked population to a 

shuffled population. A pairwise comparison is done between 

each pair and the better ranked solution is chosen as a 

parent. For a population size of N this will result in N 

parents. From these, N/2 pairs are created for crossover. 

Thereafter, Simulated Binary Crossover (Deb et al. 2002) 

for crossover is performed to generate child solutions. Each 

pair of parent solutions generates a pair of child solutions in 

the process, and thus a total of N child solutions are 

generated. Thereafter, Polynomial Mutation (Deb et al. 

2002) is further applied to mutate some of the child 

solutions. The crossover and mutation are controlled using 

the parameters probability of crossover (usually set close to 

1) and probability of mutation (usually set close to 0), 

respectively. 

 
3.1.4 Surrogate training 
This is the key step of the SAEA. After every Itrain 

generations, a set of different surrogate models are trained 

based on the available archive 𝓐 of truly evaluated 

solutions. As mentioned above, it is known that a single 

surrogate may not be able to accurately approximate the 

whole objective space. Therefore a k-means clustering of 𝓐 

is performed in order to identify different spatial sets of 

solutions within 𝓐. The solutions in each cluster are 

divided into training (80%) and validation (20%) sets. For 

each cluster, multiple surrogates are built using the training 

set, and the one that has the least prediction error on the 

validation set is used for the final approximation of that 

cluster. In this study, we use three different type of 

231



 

Zhifang Zhang, Jingwen Pan, Jiyang Fu, Hemant Kumar Singh, Yong-Lin Pi, Jiurong Wu and Rui Rao 

surrogate models (RSM, RBF and Kriging), which are 

briefly discussed below. It is possible within the framework 

to use other type of surrogate models as well. 
 

(1) Response Surface Method (RSM): Response 

Surface Method is a linear or polynomial 

regression. RSM uses first or second degree 

polynomials to fit the data (Myers and Montgo-

mery 1995). A generic second order quadratic 

polynomial model, with m input variables {x1, 

x2,..., xm} can be written as shown in Eq. (8) 
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1 1
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0 1

m m

i i ii i
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ii ii j j
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where, 0,i, ii, ij are the unknown parameters of 

the model that are determined from the given data. 

In vector form, this can be written as y(x) = fT 
b. 

The vector f contains all the terms of x1, x2,..., xm 

and vector b contains all the unknown coefficients. 

The values of the unknown coefficients are 

determined using least squares method. The least 

squares estimate of b is given by Eq. (9). 
 

 
1

ˆ


 T T
b F F F Y  (9) 

 

where F is a matrix containing N rows, each row is 

a vector f
T evaluated at an observation and Y are 

the observed responses. 

(2) Radial Basis Function (RBF): Radial Basis Func-

tion is a type of Artificial Neural Network (ANN), 

which are known to be effective in modeling non-

linear relationships. A model for an RBF response 

is given by Eq. (10). 
 

   
1

k

i

i

y w


  i
x x x  (10) 

 

where ϕ(.) denote the radial basis functions, ‖.‖ is 

the Euclidean norm and wi are the unknown 

weights. An RBF is symmetric around its 

associated center, in this case xi. A common RBF is 

the Gaussian Function with Euclidean norm shown 

in Eq. (11). 
 

 
2 2r / e   

i
x x  (11) 

 

where r is the Euclidean distance between x and xi, 

and σ is the scale or width parameters. In the 

generalized RBF network, the number of centers 

(k) are usually less than the number of observations 

N. The unknown weights wi are determined using 

least squares estimates. 

(3) Kriging: Kriging, also known as Design and 

Analysis of Computer Experiments (DACE) 

(Sacks et al. 1989, Queipo et al. 2002) is among 

the most popular methods to approximate non-

linear functions. It attempts to approximate the 

function as a combination of a global regression 

model and a deviation term (with zero mean) as 

shown in Eq. (12). 

     y  x x xò  (12) 
 

The regression model is typically polynomial, for 

example the one shown in Eq. (8). The covariance 

function is given using the Eq. (13). 
 

𝑐𝑜𝑣  𝜖 𝐱𝒊 , 𝜖 𝐱𝒋  =  𝜎2 𝑅(𝐱𝑖 , 𝐱𝑗 ) (13) 

 

Here, σ2 is the process variance and R(xi, xj) is a 

spatial correlation function, typically modeled as 

shown in Eq. (14). 
 

 
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exp
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R , x x
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 
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i j

x x  (14) 

 

Here, θk and p are hyper-parameters that are 

determined using the maximum likelihood 

estimation in order to obtain the Kriging model. 

For more detailed description of the model, the 

readers are referred to Sacks et al. (1989). 
 

Once the surrogate model S (which is in fact a set of 

spatially distributed surrogates) has been updated, the 

algorithm evaluates the objectives and constraints using S 

(thereby bypassing the time consuming true function 

evaluations) until the next update. 
 

 

4. Numerical experiments: Case study 
 

Case study on a long-span low-rise building (shown in 

Fig. 2(a)) is presented, which has dimensions of 24 m 

(depth D) ×  16 m (span B) ×  4 m (height H) with an incline 

angle β of the rafter equal to 9.4°. There are total 5 portal 

frames for constructing the low-rise building, with the 

frame-to-frame distance along the building depth being 6 m. 

The middle long-span portal frame (located in the middle of 

the building depth) is selected for the case study presented 

here. The length of the rafter varies along its span with a 

ratio of d1 : d2 : d3 = 0.2 : 0.6 : 0.2 (refer to Fig. 1 for d1–d3). 

For I shaped cross-section rafters, the width and thickness 

of flange are 0.25 m and 0.01 m, respectively, and the 

thickness of its web is 0.006 m. For the I shaped columns, 

the corresponding dimensions are 0.28 m, 0.01 m and 0.008 

m respectively. The dynamic wind loading for this case was 

extracted from the aerodynamic database of wind tunnel 

tests for a low-rise building of the same dimensions. The 

database was compiled by the Tokyo Polytechnic 

University, Japan and is accessible online (Tokyo 

Polytechnic University 2011). In the database, the mean 

wind speed is 28 m/s at a height of 10 m and the 

measurement of wind pressure was performed at multiple 

points as shown in Fig. 2(b). The time history of pressure 

taken points (points no. 141, 134, 7,…, 117 along the 

middle part of the building shown in Fig. 2(b)) under the 

wind angle of 45° were extracted from the aerodynamic 

database. By multiplying the load covering areas, the time 

history of wind loading acting on the element nodes (No. 1# 

-12# shown in Fig. 1(a)) can be obtained. With the 

corresponding mean, background, and standard deviation 

components of wind loads at these nodes, the equivalent 
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Fig. 3 SAP2000 model of long-span portal frame 

 

 

static wind loads can be obtained using Eqs. (4)-(7). 

ESWLs were then applied on numerical model built in 

SAP2000, a commercial software developed by American 

Computers and Structures Inc. for structural design and 

analysis (http://www.csiamerica.com/products/sap2000), to 

generate the internal forces and moments in portal frame 

(Fig. 3). The internal force and moment values are input 

into Eq. (3) to obtain the two wind-induced displacements 

(δ1, δ2) by virtual work principle. 

 

4.1 Numerical experiment setup 
 

For all numerical experiments in the section, we 

maintain a consistent framework and settings for EA and 

SAEA so that the effect of using surrogate models on the 

search behavior could be clearly observed. Both algorithms 

use a population size of N = 12. In the context of solving 

computationally expensive problems, the total number of 

true evaluations (SAP2000 simulations) are restricted to a 

small number FEmax = 240. The crossover and mutation 

probabilities (pc and pm) are set to 0.9 and 0.1 respectively, 

 

 

while the index of crossover and mutation (ηc and ηm) are 

set to 10 and 20 respectively. For the SAEA, the frequency 

of updating surrogates (Itrain) is set to 5 generations, and 

retain count NRC is set to 1. Since the EAs are stochastic in 

nature, it is important to observe the performance across 

multiple instantiations in order to establish the reliability of 

the algorithm. Therefore, multiple (11) independent runs are 

done for each algorithm and the resulting statistics are 

reported. 

In the experiments that follow, we present two studies. 

First is based on the formulation presented in Wu et al. 

(2012), whereas the second one is on a proposed modified 

formulation that includes additional design constraints for 

practicality. 

 

4.2 Formulation 1 
 

In the first experiment, the formulation of the problem 

given in Wu et al. (2012) is studied. In this formulation 

(referred to as formulation 1), the lower and upper limits of 

the variables are considered as shown in Table 1. In Wu et 

al. (2012), a classical technique, known as the optimality 

criteria method, was applied to solve the problem. Starting 

from a base design of (0.88, 0.53, 0.83, 0.38, 0.88) with a 

weight of 1.766 t, the optimization resulted in a final design 

weighing 1.2715 t. 

The results obtained using EA and SAEA are shown in 

Tables 2-3. It can be seen that SAEA is able to obtain a 

feasible design with each of the variables at their lower 

bound (300,200,300,100,300). Since the weight mono-

tonically increases with an increase in each of these 

 

 
Table 1 Lower and upper bounds of design variables 

for formulation 1 

Web height(mm) h1 h2 h3 h4 h5 

Lower bound 300 200 300 100 300 

 Upper bound 1500 1100 1400 800 1500 
 

 

 

 

(a) (b) 

Fig. 2 (a) The building configuration, (b) distribution of pressure taken points in the wind tunnel test. Figures taken 

from Wu et al. (2012) 
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Table 2 Results (weight in tonnes) obtained across multiple 

(11) runs for formulation 1 

Algorithm Mean Median Best Worst St. dev. 

EA 1.3336 1.3092 1.2656 1.5391 0.0813 

SAEA 1.2603 1.2593 1.2593 1.2648 0.0018 
 

 
 

Table 3 Designs obtained by EA and SAEA for 

formulation 1. All web-heights are in mm 

 h1 h2 h3 h4 h5 

  EA    

Median 533 225 350 127 320 

Best 325 203 329 101 300 

Worst 427 414 306 564 388 

  SAEA    

Median 300 200 300 100 300 

Best 300 200 300 100 300 

Worst 309 201 344 101 302 
 

 

 

variables (heights of the sections), it is evident that the 

lowest bound of each variable being feasible is the true 

optimum of the problem. The median weight obtained using 

SAEA is 1.2593 t, which corresponds to the true optimum. 

At the same time, it can be observed that EA was not able to 

converge to the true values within the given budget of 240 

evaluations in any of the runs, since the best value obtained 

by it is 1.2656 t. This clearly shows the efficacy of SAEA in 

delivering superior results on a limited computational 

budget. It is also worth noting that in the optimized solution 

reported in Wu et al. (2012), the variables are not at their 

lower bound, and thus the OC method appears to have 

converged to a local optimum instead of global. Thus, given 

the nature of the problem, it is beneficial to use 

evolutionary approach to solve it. 

The performance is further evidenced through a 

comparison of convergence rates (all, mean and median 

runs) using EA and SAEA in Fig. 4. It can be clearly seen 

from the figures that SAEA is able to converge much faster 

than EA, and is able to achieve the true optimum in most of 

the runs (which is also reflected in its low standard 

deviation values). From Fig. 4(b), it can also be seen that to 
 

 

  
(a) (b) 

 

 

 

 

(c) (d) 

Fig. 4 Convergence for original formulation over 11 runs: (a) all; (b) average; (c) median; (d) average improvement 

in weight value obtained by SAEA over EA 
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Table 4 Lower and upper bounds of design variables for 

formulation 2 

Web height(mm) h1 h2 h3 h4 h5 

Lower bound 100 100 100 100 100 

Upper bound 1500 1100 1400 800 1500 
 

 

 

obtain the same average result as EA (1.336 t), SAEA 

required only about half the evaluations, which amounts in 

a saving of about 50% computational time. Note that the 

costs of surrogate building and other algorithm operators 

are negligible compared to the true function evaluations, 

and hence computationally effort is largely determined by 

the number of true function evaluations. 

The average improvement obtained by SAEA compared 

to EA over different number of evaluations is shown in Fig. 

4(d). This is calculated as (fEA − fSAEA) / fEA ×  100, where fEA 

and fSAEA are average weight values (across multiple runs) 

obtained by EA and SAEA respectively, as shown in Fig. 

4(b). The difference is 0 until 60 evaluations since the 

surrogate is first invoked after 5 generations, i.e., N ×  Itrain = 

60 evaluations. Significant improvements can be observed 

thereafter. 

 

4.3 Formulation 2 
 

Next, a modified formulation of the study presented 

above, referred to as formulation 2, is proposed and studied. 

Given that the optimum design for the formulation 1 

occurs at the lower bound of each variables, it indicates that 

there is a further scope for the reduction of weight. 

Therefore, we shift the lower bounds to the lowest value of 

practically allowable height in Table 1, i.e., 100 mm. The 

resulting bounds are presented in Table 4. This extension in 

the range of variables would typically make the problem 

harder to solve since the search space has now expanded. 

Further, two constraints were added to the problem for 

the practicality of the design: 
 

 First additional constraint results from the fact that 

the joint connecting Sections 3 and 5 is constructed 

sing a plate. For manufacturability of the design 

of the joint, the two heights should be equal. Thus, 

h3 = h5. 

 The second constraint results from the fact that 

for effective load bearing, the height of Section 1 

must be equal or larger than that of Section 2. 

Thus, a constraint h1 ≥ h2 is added to reflect this. 
 

The results using EA and SAEA are presented in Tables 

5-6. Once again, it is seen that SAEA is able to achieve 

much lighter designs compared to EA within the given 

computational budget of 240 evaluations. On an average, 

the weight obtained using SAEA was 6.82% lower (1.1484 t 

vs. 1.2324 t) than that obtained using EA. The consistency 

of SAEA is also reflected in its lower standard deviation 

values. All reported designs satisfy the wind-induced 

constraints mentioned in Section 2. 

The convergence rates corresponding to the multiple 

runs are shown in Fig. 5. It is evident that SAEA is able to 

Table 5 Results (weight in tonnes) obtained across 

multiple (11) runs for the modified formulation 

Algorithm Mean Median Best Worst St.dev. 

EA 1.2324 1.1816 1.1363 1.4458 0.0975 

SAEA 1.1484 1.1397 1.1227 1.1911 0.0265 
 

 

 

Table 6 Designs obtained by EA and SAEA for 

modified formulation. All web-heights are in mm 

 h1 h2 h3 h4 h5 

  EA    

Median 531 140 103 118 103 

Best 335 100 102 101 102 

Worst 886 101 588 492 588 

  SAEA    

Median 387 100 100 100 100 

Best 106 100 100 122 100 

Worst 683 101 100 209 100 
 

 

 

converge towards a better solution faster than EA. From 

Fig. 5(b), it can also be seen that to obtain the same average 

result as the EA (1.816 t), SAEA required only about half 

the evaluations, which amounts in a saving of 50% 

computational time. 

The average improvement obtained by SAEA compared 

EA over different number of evaluations (different stages of 

the search) is shown in Fig. 5(d). The difference is 0 until 

60 evaluations since the surrogate is first invoked after 5 

generations, i.e., N ×  Itrain = 60 evaluations. 

Overall, the above numerical experiments show the 

advantage of the surrogate-assisted evolutionary algorithm 

for the structural optimization of long-span portal frame. 

For both the formulations, SAEA was able to show 

significant reduction in weight values for the same amount 

of computational budget. At the same time, it was able to 

match the performance of EA with merely half the number 

of evaluations. 

 

 

5. Summary and future work 
 

A surrogate-assisted evolutionary algorithm was 

proposed to optimize the design of a long-span portal-rigid 

frame for weight, subject to the stability and strength 

requirements under dynamic wind loading. The web heights 

of I shape cross-sections were treated as discrete variables 

in the study. The computation of wind-induced displace-

ments through simulation on SAP2000 is expensive, and 

hence to reduce the optimization time, surrogate modeling 

was utilized. Based on recent developments in the field of 

surrogate based techniques, multiple spatially distributed 

surrogate-assisted evolutionary algorithm (SAEA) was 

employed to solve the problems. Consequently, the SAEA 

uses not one but multiple (in this case three) different 

models that locally approximate the objective and constraint 

functions to the best accuracy in different regions of the  
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design space. In recent studies, such techniques have been 

demonstrated to offer more flexibility and accuracy in 

representation of complex functions. Numerical experi-

ments were performed on two different formulations of the 

problem; the second one comprising different variable 

bounds and two additional constraints for practical design 

compared to the first. The results indicate that the SAEA 

was able to find designs with significantly reduced weight 

compared to EA within the fixed computational budget. At 

the same time, it reduced the time required to obtain the 

performance similar to EA by almost half. The standard 

deviations of SAEA results were also very low, reflecting 

on its consistency, and hence the confidence on it while 

using it for practical structural optimization problems. Thus, 

the proposed approach shows significant potential for 

application in optimization of structures for realistic 

scenarios. 

A number of future directions can be identified from the 

study. While the study used a surrogate based EA, similar 

mechanisms could be implemented in other forms of 

population based algorithms, such as differential evolution, 

particle swarm optimization, etc. A combination of global 

 

 

and local search techniques could also be investigated to 

expedite the convergence further. Robustness considerations 

could be further added as objectives/constraints in the 

formulation to make the design more resistant to uncer- 

tainties in design and operating environment. One more 

direction to greatly enhance the application confidence of 

these optimization algorithms in real structures will be 

doing experiment to validate those numerical calculations. 

These are currently being investi-gated by the authors. 
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(c) (d) 

Fig. 5 Convergence for modified formulation over 11 runs: (a) all; (b) average; (c) median; (d) average improvement 

in weight value obtained by SAEA over EA 

236



 

Optimization of long span portal frames using spatially distributed surrogates 

References 
 
Adeli, H. and Park, H.S. (1996), “Hybrid CPN–neural dynamics 

model for discrete optimization of steel structures”, Comput.-
Aided Civil Infra. Eng., 11(5), 355-366. 

Artar, M. and Daloglu, A.T. (2015a), “Optimum design of 
composite steel frames with semi-rigid connections and column 
bases via genetic algorithm”, Steel Compos. Struct., Int. J., 
19(4), 1035– 1053. 

Artar, M. and Daloglu, A.T. (2015b), “Optimum design of steel 
space frames with composite beams using genetic algorithm”, 
Steel Compos. Struct., Int. J., 19(2), 503-519. 

Aydin, Z. and Cakir, E. (2015), “Cost minimization of prestressed 
steel trusses considering shape and size variables”, Steel 
Compos. Struct., Int. J., 19(1), 43-58. 

Begg, D.W. and Liu, X. (1998), “Algorithms for optimal design of 
smart structural systems”, Comput.-Aided Civil Infra. Eng., 
13(6), 415-423. 

Bhattacharjee, K.S., Singh, H.K. and Ray, T. (2016), “Multi-
objective optimization with multiple spatially distributed 
surrogates”, J. Mech. Des., 138(9), 091401. 

Camp, C., Pezeshk, S. and Cao, G. (1998), “Optimized design of 
two-dimensional structures using a genetic algorithm”, J. Struct. 
Eng., 124(5), 551-559. 

Chan, C.M., Grierson, D.E. and Sherbourne, A.N. (1995), 
“Automatic optimal design of tall steel building frameworks”, J. 
Struct. Eng., 121(5), 838-847. 

China Association for Engineering Construction Standardization 
(2012), Technical specification for steel structure of light-weight 
building with gabled frame (CECS102:2012). 

Computers and Structures, Inc. Berkeley, C. (1997), SAP2000; 
Integrated Finite Element Analysis and Design of Structures. 
URL: https://www.csiamerica.com/products/sap2000 

Deb, K. (2001), Multi-Objective Optimization using Evolutionary 
Algorithms, Volume 16, John Wiley & Sons. 

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), “A fast 
and elitist multiobjective genetic algorithm: NSGA-II”, IEEE 
Trans. Evol. Computat., 6(2), 182-197. 

Hayalioglu, M. and Degertekin, S. (2005), “Minimum cost design 
of steel frames with semi-rigid connections and column bases 
via genetic optimization”, Comput. Struct., 83(21), 1849-1863. 

Holmes, J. (2002), “Effective static load distributions in wind 
engineering”, J. Wind Eng. Ind. Aerodyn., 90(2), 91-109. 

Isaacs, A. (2009), “Development of optimization methods to solve 
computationally expensive problems”, Ph.D. Thesis; The 
University of New South Wales, Australian Defence Force 
Academy, Canberra, Australia. 

Isaacs, A., Ray, T. and Smith, W. (2009), “Multi-objective design 
optimisation using multiple adap- tive spatially distributed 
surrogates”, Int. J. Product Develop., 9(1-3), 188-217. 

Jin, Y. (2005), “A comprehensive survey of fitness approximation 
in evolutionary computation”, Soft Comput.-A Fusion Found. 
Methodol. Appl., 9(1), 3-12. 

Kameshki, E. and Saka, M. (2001), “Optimum design of nonlinear 
steel frames with semi-rigid connections using a genetic 
algorithm”, Comput. Struct., 79(17), 1593-1604. 

Kameshki, E. and Saka, M. (2003), “Genetic algorithm based 
optimum design of nonlinear planar steel frames with various 
semi-rigid connections”, J. Constr. Steel Res., 59(1), 109-134. 

Kaveh, A. and Shokohi, F. (2015), “Optimum design of laterally-
supported castellated beams using CBO algorithm”, Steel 
Compos. Struct., Int. J., 18(2), 305-324. 

Kaveh, A., Bakhshpoori, T. and Barkhori, M. (2014), “Optimum 
design of multi-span composite box girder bridges using 
Cuckoo Search algorithm”, Steel Compos. Struct., Int. J., 17(5), 
705-719. 

Kravanja, S. and Žula, T. (2010), “Cost optimization of industrial 
steel building structures”, Adv. Eng. Software, 41(3), 442-450. 

Kravanja, S., Turkalj, G., Šilih, S. and Žula, T. (2013), “Optimal 
design of single-story steel building structures based on 
parametric MINLP optimization”, J. Constr. Steel Res., 81, 86-
103. 

Li, J.J. and Li, G.Q. (2004), “Reliability-based integrated design of 
steel portal frames with tapered members”, Struct. Safety, 26(2), 
221-239. 

MathWorks (2014), Matlab 2014a. URL: www.mathworks.com 
Moss, P., Dhakal, R., Bong, M. and Buchanan, A. (2009), “Design 

of steel portal frame buildings for fire safety”, J. Constr. Steel 
Res., 65(5), 1216-1224. 

Myers, R.H. and Montgomery, D.C. (1995), Response Surface 
Methodology: Process and Product in Optimzation using 
Designed Experiments, John Wiley & Sons, Inc., NY, USA. 

Park, H.S. and Adeli, H. (1997), “Data parallel neural dynamics 
model for integrated design of large steel structures”, Comput.- 
Aided Civil Infra. Eng., 12(5), 311-326. 

Paya, I., Yepes, V., Gonázlez-Vidosa, F. and Hospitaler, A. (2008), 
“Multiobjective optimization of concrete frames by simulated 
annealing”, Comput.- Aided Civil Infra. Eng., 23(8), 596-610. 

Phan, D.T., Lim, J.B., Sha, W., Siew, C.Y., Tanyimboh, T.T., Issa, 
H.K. and Mohammad, F.A. (2013a), “Design optimization of 
cold-formed steel portal frames taking into account the effect of 
building topology”, Eng. Optimiz., 45(4), 415-433. 

Phan, D.T., Lim, J.B., Tanyimboh, T.T. and Sha, W. (2013b), “An 
efficient genetic algorithm for the design optimization of cold-
formed steel portal frame buildings”, Steel Compos. Struct., Int. 
J., 15(5), 519-538. 

Queipo, N.V., Goicochea, J.V. and Pintos, S. (2002), “Surrogate 
modeling-based optimization of SAGD processes”, J. Petrol. 
Sci. Eng., 35(1), 83-93. 

Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. (1989), 
“Design and analysis of computer experiments”, Statist. Sci., 
409-423. 

Saka, M. (2003), “Optimum design of pitched roof steel frames 
with haunched rafters by genetic algorithm”, Comput. Struct., 
81(18), 1967-1978. 

Senouci, A.B. and Al-Ansari, M.S. (2009), “Cost optimization of 
composite beams using genetic algorithms”, Adv. Eng. 
Software, 40(11), 1112-1118. 

Sgambi, L., Gkoumas, K. and Bontempi, F. (2012), “Genetic 
Algorithms for the Dependability Assurance in the Design of a 
Long-Span Suspension Bridge”, Comput.- Aided Civil Infra. 
Eng., 27(9), 655-675. 

Sgambi, L., Gkoumas, K. and Bontempi, F. (2014), “Genetic 
algorithm optimization of precast hollow core slabs”, Comput. 
Concrete, Int. J., 13(3), 389-409. 

Sun, W., Gu, M. and Zhou, X. (2015), “Universal Equivalent 
Static Wind Loads of Fluctuating Wind Loads on Large-Span 
Roofs Based on POD Compensation”, Adv. Struct. Eng., 18(9), 
1443-1459. 

Tokyo Polytechnic University (2011), “Aerodynamic database of 
low-rise buildings”, URL: http://www.wind.arch.t-kougei.ac.jp/ 
info center/windpres sure/lowrise/mainpage.html 

Topal, U. (2012), “Frequency optimization for laminated 
composite plates using extended layerwise approach”, Steel 
Compos. Struct., Int. J., 12(6), 541–548. 

Wang, G.G. and Shan, S. (2007), “Review of metamodeling 
techniques in support of engineering design optimization”, J. 
Mech. Des., 129(4), 370-380. 
URL: http://link.aip.org/link/?JMD/129/370/1 

Wu, J., Donga, C., Xua, A. and Fua, J. (2012), “Structural 
optimization of long span portal-rigid frames under wind 
action”, Proceedings of the 7th International Colloquium on 
Bluff Body Aerodynamics and Applications (BBAA7), Shanghai, 
China, September, pp. 1584-1593. 

 
CC 

237

https://www.csiamerica.com/products/sap2000
http://www.mathworks.com/
http://www.wind.arch.t-kougei.ac.jp/info%20center/windpressure/lowrise/mainpage.html
http://www.wind.arch.t-kougei.ac.jp/info%20center/windpressure/lowrise/mainpage.html
http://link.aip.org/link/?JMD/129/370/1



