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1. Introduction 

 
Structural optimization aims to design structures with 

minimum weight, or minimize an objective function 
corresponding to minimal cost of the structures, while the 
corresponding design constraints are satisfied. Optimization 
of steel frame structures having many design variables is a 
computationally difficult task and to tackle it an efficient 
optimization algorithm should be utilized. Many of 
gradient-based optimization algorithms have difficulties 
when dealing with such type of problems and they may 
converge to local optima. In the recent decades, a number of 
meta-heuristic algorithms have been developed based on 
natural phenomena. Meta-heuristics have impressive 
features that differs them from the existing gradient-based 
methods. This class of optimization techniques not only 
requires no gradient computations but also they are simple 
for computer programming and implementation. The 
efficiency of meta-heuristics derives from the fact that they 
are designed to imitate the best features in nature inspiring 
to different sources. Biological systems are the main source 
for proposing new nature-inspired meta-heuristics because 
the selection of the fittest in biological systems has evolved 
by natural selection over millions of years (Talatahari et al. 
2015). The meta-heuristics demonstrate their efficiency in 
tackling complex problems and this is why they have been 
widely employed in the field of structural optimization. 

Many researchers employed different meta-heuristic 
algorithms for optimal design of steel structures. 
Gholizadeh and Poorhoseini (2015) proposed a modified 
Dolphin echolocation (MDE) algorithm in which the step 
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locations are determined using one-dimensional chaotic 
maps. Artar and Daloğlu (2015) utilized a method based on 
genetic algorithm (GA) for minimum weight design of steel 
frames containing composite beams, semi-rigid connections 
and column bases. Aydin et al. (2015) presented an 
algorithm to attain the optimal distribution of steel diagonal 
bracings in planar steel frames using artificial bee colony 
(ABC) algorithm. Kaveh and Shokohi (2015) employed 
colliding bodies optimization (CBO) meta-heuristic to find 
optimal design of laterally-supported castellated steel 
beams. Kaveh and Bakhshpoori (2015) presented subspace 
search mechanism (SSM) to reduce the computational time 
for convergence of cuckoo search algorithm (CSA) for size 
optimization of truss structures. Gholizadeh and Barati 
(2014) applied a hybrid firefly algorithm (FA) and particle 
swarm optimization (PSO) for topology optimization of 
geometrically nonlinear single layer steel domes. Rafiee et 
al. (2013) developed the big bang-big crunch (BB-BC) 
meta-heuristic algorithm for optimal design of non-linear 
steel frames with semi-rigid beam-to-column connections. 

One of the popular structural optimization problems is 
frame structure design for minimum weight and to 
efficiently address the problem, application of new 
optimization algorithms or some modifications to the 
existing ones are often required. Therefore, researchers have 
attempted to solve frame structures as a real-world, 
discrete-variable and nonlinear optimization problem using 
different methods (Lamberti and Pappalettere 2011). In this 
field, GA (Pezeshk et al. 2000), ant colony optimization 
(ACO) (Camp et al. 2005), harmony search (HS) 
(Degertekin 2008), improved ant colony optimization 
(IACO) (Kaveh and Talatahri 2010), evolution strategy (ES) 
(Hasancebi et al. 2011), teaching–learning based optimiza-
tion (TLBO) (Togan 2012) and modified particle swarm 
optimization (MPSO) (Gholizadeh and Fattahi 2014) have 
been employed to design of steel frames. In this work, the 
newly developed moth-flame optimization (MFO) 
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algorithm (Mirjalili 2015) is employed to implement 
optimization of steel frame structures. MFO is designed 
based on the navigation method of natural moths termed as 
transverse orientation. Moths fly in night by maintaining a 
fixed angle with respect to the moon, a very effective 
mechanism for travelling in a straight line for long 
distances. However, these fancy insects are trapped in a 
useless spiral path around artificial lights. As compared to 
other robust design optimization methods, MFO is more 
efficient, requiring fewer number of function evaluations, 
while leading to better or the same quality of results 
(Mirjalili 2015). However, the numerical results of this 
study reveal that MFO is not suitable for solving the 
discrete optimization problems of steel frame structures 
with large design spaces. Therefore, an enhanced moth-
flame optimization (EMFO) algorithm is proposed in the 
present study to tackle this class of complex structural 
optimization problems. Three benchmark steel structure 
optimization problems including a ten-story and a twenty 
four-story planar steel frames and a twenty-story 3D steel 
braced frame are solved by MFO and EMFO algorithms 
and the obtained results are compared with those of the GA, 
ACO, HS, IACO, ES, TLBO and MPSO meta-heuristics. In 
these problems, the design variables are cross-sections of 
the structural elements and the design constraints are 
imposed on the nodal displacements and element stresses. 
The numerical results demonstrate the efficiency of the 
proposed EMFO in comparison with MFO and other meta-
heuristic algorithms. 

In the present work, in order to evaluate the necessary 
structural responses during the optimization process, 
ANSYS platform (2006) is employed. Furthermore, all of 
the required computer programs for implementation of 
optimization process by MFO and EMFO algorithms are 
coded in MATLAB (2006) platform. For computer 
implementation a system with Core™2 Duo 2.66 GHz CPU 
is employed. 

 
 

2. Optimization problem formulation 
 
The optimization problem of a steel frame including ne 

members collected in ng design groups can be formulated 
as follows 
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where xi is an integer value expressing the sequence 
numbers of steel sections assigned to ith group; f represents 
the weight of the frame, ρi and Ai are weight of unit volume 
and cross-sectional area of the ith group section, 
respectively; nm is the number of elements collected in the 
ith group; Lj is the length of the jth element in the ith group; 
gk is the kth constraint. 

The lateral displacement and inter-story drift constraints 

are usually taken as 
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where δ is the maximum lateral displacement; H is the 
height of the frame structure; R is the maximum drift index; 
dl is the inter-story drift; hl is the story height of the lth 
floor; ns is the total number of stories; and RI is the inter-
story drift index permitted by the code of practice. 

The demand-capacity ratio (DCR) constraints for 
structural elements subjected to axial and flexural stresses 
are computed as follows: 

If the code of practice is selected ASD-AISC (1989), 
Eqs. (6) and (7) should be used. For the flexural members 
under tension, the second part of Eq. (6) should be used 
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In which fa represents the computed axial stress; fbx and 
fby are the computed flexural stresses due to bending of the 
member about its major (x) and minor (y) principal axes, 
respectively. F′ex and F′ey are the Euler stresses about 
principal axes of the member; Fa represent the allowable 
axial stress under axial compression force alone, and is 
calculated depending on elastic or inelastic buckling failure 
mode of the member using ASD-AISC (1989). The 
allowable bending compressive stresses about major and 
minor axes are designated by Fbx and Fby; Cmx and Cmy are 
the reduction factors, introduced to counterbalance 
overestimation of the effect of secondary moments. Also, Fy 
is the material yield stress. 

If the code of practice is selected LRFD-AISC (2001), 
Eqs. (8) and (9) should be used 
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where Pu is the required strength (tension or compression); 
Pn is the nominal axial strength (tension or compression); 
Φc is the resistance factor; Mux and Muy are the required 
flexural strengths in the x and y directions; respectively; Mnx 
and Mny are the nominal flexural strengths in the x and y 
directions; and Φb is the flexural resistance reduction factor. 

In order to satisfy practical demands, geometric 
constraints should be considered in beam-column framing 
joints for 2D frames as follows 

 

01
fc

fb

n
B b

b
g  (10)

 













 0101
BC

TC

BC
f

TC
f

n
C d

d
,

b

b
g 

   
njn ,...,1  (11)

 

where bfb and bfc are the flange width of beam and column, 
respectively; 

TC
fb and 

BC
fb are the flange width of the top 

and bottom columns, respectively; dTC and dBC are the depth 
of the top and bottom columns, respectively; nj is the 
number of joints. 

In the present work, the exterior penalty function 
method (EPFM) is employed to handle the design 
constraints. The EPFM transforms the basic constrained 
optimization problem into the unconstrained formulation. In 
this case, the pseudo unconstrained objective function 
(PUOF) can be represented as follows 
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where ),Ψ( pX,r P(X) and rp are the PUOF, penalty function, 
and a penalty parameter, respectively. In this study, rp is 
linearly increased from 1.0 at the first iteration to 106 at the 
last one during the optimization process. 

For minimizing the above pseudo objective function, 
MFO algorithm and its enhanced version are employed in 
the present study. The theoretical backgrounds of these 
meta-heuristics are explained in the next sections. 

 
 

3. Moth-flame optimization algorithm 
 
Moths utilize special navigation methods, termed as 

transverse orientation (TO), to fly in night by maintaining a 
fixed angle with respect to the moon. In other words, the 
TO navigation method is only efficient for flying in straight 
line when the light source is very far. When moths are 
tricked by a human-made artificial light, they fly spirally 

around the light. In fact, they try to maintain a similar angle 
with the light to fly in straight line. Since such a light is 
extremely close compared to the moon, however, main-
taining a similar angle to the light source causes a deadly 
spiral fly path for moths. In this case, the moth eventually 
converges towards the light and this behavior has been 
modeled mathematically to propose moth-flame optimiza-
tion (MFO) algorithm by Mirjalili (2015). 

In the framework of MFO algorithm, there are two key 
components: moths (X) and flames (F). Both of them are 
solutions of the optimization problem at hand and the 
difference between them lays in their updating method 
employed during the optimization process. The moths are 
actual search agents that move around the search space, 
whereas flames are the best position of moths that obtains 
so far. Therefore, each moth searches around a flame and 
updates it in case of finding a better solution. With this 
mechanism, a moth never loses its best solution. The 
fundamental steps of the MFO algorithm are as follows 
(Mirjalili 2015): 

 

(1) A swarm including n moths is generated in an m-
dimensional design space. 

 























nmmm

n

n

xxx

xxx

xxx

X

,2,1,

,22,21,2

,12,11,1









 (14)

 

(2) The objective function (OF) is evaluated for all 
moths. 
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(3) The positions of flames are defined by simply 
sorting moths’ positions. So the dimensions of M 
and F arrays are equal at first. 
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(4) The distance between the moths and flames are 
calculated. 
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where Xi indicates the ith moth and Fj represents 
the jth flame. 

(5) The position of ith moth is updated with respect to 
the jth flame as follows 

 

j
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where b is a constant to define the shape of the 
logarithmic spiral, t is a random number in [r,1] 
and r is linearly decreased from -1 to -2 during the 
optimization process. 

 

Eq. (18) allows a moth to fly around a flame and not 
necessarily in the space between them. Therefore, the 
exploration and exploitation of the search space can be 
guaranteed. In the framework of MFO, exploration occurs 
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when the next position is outside the space between the 
moth and flam and exploitation happens when the next 
position lies inside the space between the moth and flame. 
In order to prevent the algorithm from being prematurely 
trapped in local optima, each moth is obliged to update its 
position using only one of the flames in Eq. (18). In each 
iteration and after updating the list of flames, the flames are 
sorted based on their fitness values. The moths then update 
their positions with respect to their corresponding flames. 
The first moth always updates its position with respect to 
the best flame, whereas the last moth updates its position 
with respect to the worst flame (Mirjalili 2015). This means 
that the first moth selects the first flame, the second moth 
selects the second flame and consequently the last moth 
selects the last flame. 

As updating the position of moths with respect to n 
different locations in design space may degrade the 
exploitation ability of the algorithm, in the framework of 
MFO an adaptive mechanism is utilized to determine the 
number of flames (NF) as follows 
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where itr and itrmax are the current and maximum numbers 
of iterations, respectively. 

 
 

4. Enhanced moth-flame optimization algorithm 
 
Computational experiences of the present study indicate 

that standard MFO is not able to efficiently tackle the 
optimization problem of steel frame structures with discrete 
design variables and the algorithm converges to local 
optima. In the present work, in order to improve the MFO 
to get more reliable solutions, a modified version of this 
algorithm, termed here as enhanced moth-flame (EMFO) 
meta-heuristic algorithm, is proposed. 

As the first modification, the best information derived 
by the swarm during the previous iterations, is effectively 
involved in the framework of the proposed EMFO to 
generate a new swarm. To achieve this goal, a new term 
containing the best position attained so far, is added to the 
position updating equation of moths as follows 
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where α is a scaling factor which its best value should be 
determined by performing sensitivity analysis, Xbest is the 
best position obtained up to current iteration, and r is a 
random number in interval [0, 1]. 

As the second modification, a mutation operator is 
utilized to escape from local optima. For this purpose, a 
parameter like β within (0, 1) is introduced and it is 
specified whether a component of each moth must be 
changed or not. For each moth, β is compared with rni (i = 
1,…,n) which is a random number uniformly distributed 
within (0, 1). If rni < β, one dimension of the ith moth is 
selected randomly and its value is regenerated in interval 
[lower bound, upper bound]. In order to preserve the 

Fig. 1 Flowchart of the proposed EMFO algorithm for 
optimization of steel frames 

 
 
structure of swarm, only one design variable is mutated for 
the selected moths. In the framework of EMFO, the value of 
β is determined by performing sensitivity analysis. 

Fig. 1 shows the flowchart of EMFO for solving the 
optimization problem of steel frames. 

 
 

5. Numerical results 
 
In order to investigate the computational performance of 

the proposed algorithm three benchmark steel frame 
optimization problems are presented and the results are 

Selecting an initial swarm on a random basis 
(Including n vectors of X) 

Yes

Calculating the distance between the moths 
and flames using Eqs. (16) and (17) 

Updating the position of each moths (X) 
using Eq. (20) 

Is the best solution of  
current swarm better than that of 

obtained so far? 

Calculating the structural responses of each X by 
performing static analysis 

Checking the design constraints of each X using 
Eqs. (4) to (11) 

Calculating the PUOF for each X 
using Eqs. (12) to (13) 

Updating the best solution obtained so far 
(Xbest) 

No

Calculating the number of flames (NF) 
using Eq. (19) 

Applying mutation operator to change one 
dimension of selected X vectors 

Is one of the termination 
criteria met? 

Xbest is the final solution of the algorithm 

Yes 

No
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compared with those of reported in literature. 
For all presented design examples, the cross-sections of 

all members are selected from the standard W-shaped 
profile list. 

In order to find the best setting of internal parameters α 
and β for EMFO algorithm, a set of sensitivity analysis is 
conducted for each example considering the values of 0.25, 
0.50, 0.75, 1.00, and 1.50 for α and 0.2, 0.3, 0.4, and 0.5 for 
β. For each combination of α and β parameters 20 
independent optimization runs are implemented by EMFO 
algorithm and the combination leading to the best weight is 
considered as the optimal setting of the parameters. 

 
5.1 One-bay ten-story planar steel frame 
 
Fig. 2 shows the topology and the loading conditions for 

a ten-story steel frame. The effective length factors of the 
members are calculated as Kx ≥ 1.0 for a sway-permitted 
frame and the out-of-plane effective length factor is 
specified as Ky = 1. In this example, E = 200 GPa and Fy = 
248.2 MPa. In Fig. 2, w1 and w2 are 87.56 and 43.78 
KN/m, respectively. 

Each column is considered un-braced along its length, 
and the un-braced length for each beam member is specified 
as one-fifth of the span length. Fabrication conditions are 
imposed on the construction of the elements of frame 
requiring the same beam section to be used for three 
consecutive stories, beginning at the foundation, and that 
the same column section is used every two consecutive 
stories. The element grouping results in four beam sections 
and five column sections for a total of nine design variables. 
The cross-section of the all beam element groups are chosen 
from all 267 W-shaped sections, while the column sections 

Table 1 The results of sensitivity analysis for ten-story planar 
steel frame 

No. α β Best weight (kN) 

1 0.25 0.2 315.67 

2 0.50 0.2 296.15 

3 0.75 0.2 299.16 

4 1.00 0.2 308.31 

5 1.50 0.2 320.38 

6 0.25 0.3 291.33 

7 0.50 0.3 275.43 

8 0.75 0.3 277.04 

9 1.00 0.3 280.73 

10 1.50 0.3 298.92 

11 0.25 0.4 285.36 

12 0.50 0.4 271.74 

13 0.75 0.4 276.16 

14 1.00 0.4 280.95 

15 1.50 0.4 292.84 

16 0.25 0.5 306.64 

17 0.50 0.5 292.74 

18 0.75 0.5 294.63 

19 1.00 0.5 302.79 

20 1.50 0.5 309.40 

 
 

are limited to W14 and W12 sections (Camp et al. 2005). In 
this example, the swarm size and the maximum number of 
iterations for MFO and EMFO algorithms are 20 and 150, 
respectively. In the optimization process, only the 
constraints given by Eqs. (4), (8) and (9) are checked. The 
results of sensitivity analysis are given in Table 1 indicating 
that the optimal setting of the internal parameters is α = 0.5 
and β = 0.4. 

In this study, the best results obtained by MFO and 
EMFO meta-heuristics are compared with those of found by 
GA (Pezeshk et al. 2000), ACO (Camp et al. 2005) and 
IACO (Kaveh and Talatahari 2010) in Table 2. The 
convergence histories of MFO and EMFO algorithms are 
compared in Fig. 3. 

 
 

Fig. 3 Convergence histories of MFO and EMFO for 
ten-story planar steel frame 

Fig. 2 Ten-story planar steel frame 
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The results indicate that the best solution found by 

EMFO is 6.15%, 2.37%, 1.13% and 3.17% lighter than 
those of obtained by GA, ACO, IACO and MFO, 
respectively. The proposed EMFO algorithm requires 3000 
structural analyses to find an optimal solution which is less 
than the number of analyses required by GA and ACO and 
slightly more than the IACO. Furthermore, it can be 
observed from Fig. 3 that the EMFO has better convergence 
rate in comparison with MFO. 

For the optimum design found by EMFO, the maximum 
DCR in element groups of the frame are depicted in Fig. 4. 
It can be observed that all DCRs are less than 1.0. 
Moreover, the maximum displacement of frame is 10.08 cm 
which is less than its limit of 12.47 cm. This means that the 
optimum solution is feasible and the DCR constraints 
dominate the design. 

 
5.2 Three-bay twenty four-story planar steel frame 
 
A twenty four-story frame and its element grouping 

details are shown in Fig. 5. The grouping results in 4 beam 
and 16 column sections for a total of 20 design variables. In 
this example, E = 205 GPa, Fy = 230.3 MPa, Kx ≥ 1.0 and 
Ky = 1.0. In this example the applied external loads are as: 
W = 25.628 kN, w1 = 4.378 kN/m, w2 = 6.362 kN/m, w3 = 
6.917 kN/m and w4 = 5.954 kN/m. The beams’ sections are 
chosen from all W-shaped sections, while the section of 

 

Fig. 5 Twenty four-story planar steel frame 

Table 2 Optimal designs of ten-story planar steel frame 

Element groups 
GA 

(Pezeshk et al. 2000) 
ACO 

(Camp et al. 2005)
IACO 

(Kaveh and Talatahari 2010)

Present work 

MFO EMFO 

Beam 1-3S W33×118 W30×108 W33×118 W30×108 W33×118 

Beam 4-6S W30×90 W30×90 W30×90 W30×90 W30×90 

Beam 7-9S W27×84 W27×54 W24×76 W24×84 W24×84 

Beam 10S W24×55 W21×44 W14×30 W21×62 W21×62 

Column 1-2S W14×233 W14×233 W14×233 W14×233 W14×211 

Column 3-4S W14×176 W14×176 W14×176 W14×159 W14×159 

Column 5-6S W14×159 W14×145 W14×145 W14×145 W14×145 

Column 7-8S W14×99 W14×99 W14×90 W14×90 W14×90 

Column 9-10S W12×79 W12×65 W12×65 W12×65 W12×58 

Weight (kN) 289.72 278.48 274.99 280.78 271.89 

Number of analyses 3690 8300 2500 3000 3000 
 

Fig. 4 Maximum DCR for each element group of optimal
ten-story planar steel frame found by EMFO 
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columns is limited to W14 sections. The maximum lateral 
displacement and maximum inter-story drift are limited to 
29.2 and 1.217 cm, respectively. The size of swarm and the 
maximum number of iterations are 30 and 200, respectively. 
For the EMFO algorithm, the results of sensitivity analysis 
reported in Table 3 indicate that α = 0.5 and β = 0.4 is the 
best setting of the internal parameters. 

Table 4 compares the best designs found by MFO and 
EMFO with the solutions attained by HS (Degertekin 
2010), TLBO (Togan 2012), DE (Kaveh and Farhodi 2013) 
and ES-DE (Talatahari et al. 2015). The results of Table 4 
demonstrate that EMFO converges to an optimal solution 
which its weight is 5.69%, 0.15%, 1.16%, 4.60% and 2.45% 
less than those of HS, TLBO, DE, ES-DE and MFO, 
respectively. 

In the framework of EMFO algorithm the optimum 
solution is obtained by conducting 6000 structural analyses 
which is considerably less than those of required by HS, 
TLBO and ES-DE algorithms. It is clear that the proposed 
EMFO meta-heuristic algorithm outperforms all the 
mentioned algorithms. 

Fig. 6 shows the convergence histories of MFO and 
EMFO meta-heuristic algorithms indicating that the EMFO 
algorithm possesses better convergence behavior than the 
MFO. 

The inter-story drifts and maximum DCR of each 
element group are respectively shown in Figs. 7 and 8 for 
the optimum design found by EMFO. 

The results represented in Figs. 7 and 8 confirm the 
feasibility of the optimal design found by EMFO algorithm 
and reveal that the inter-story drift constraint is active in 

Fig. 6 Convergence histories of MFO and EMFO for 
twenty four-story planar steel frame 

 
 

Fig. 7 Inter-story drifts for the optimal twenty four-
story planar steel frame found by EMFO 

 
 

Fig. 8 Maximum DCR for each element group of optimal 
twenty four-story planar steel frame found by EMFO

 
 
this example. 
 

5.3 Twenty-story 3D steel braced frame 
 
The 3D and plan view of a twenty-story 3D steel braced 

Table 3 The results of sensitivity analysis fortwenty four-story 
planar steel frame 

No. α β Best weight (kN) 

1 0.25 0.2 921.03 

2 0.50 0.2 910.08 

3 0.75 0.2 913.22 

4 1.00 0.2 918.17 

5 1.50 0.2 932.14 

6 0.25 0.3 914.71 

7 0.50 0.3 901.03 

8 0.75 0.3 905.69 

9 1.00 0.3 909.94 

10 1.50 0.3 916.23 

11 0.25 0.4 914.21 

12 0.50 0.4 899.73 

13 0.75 0.4 908.16 

14 1.00 0.4 913.84 

15 1.50 0.4 917.10 

16 0.25 0.5 922.20 

17 0.50 0.5 908.87 

18 0.75 0.5 911.90 

19 1.00 0.5 918.51 

20 1.50 0.5 926.43 
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frame with 960 elements are shown in Fig. 9. The columns 
in a story are divided into three member groups as corner, 
inner and outer columns. Also, beams are categorized into 
two groups as inner and outer beams. All the corner 
columns, inner columns, outer columns, inner beams, outer 
beams and bracings are grouped together as having the 
same section over two adjacent stories. Thus, there are 60 
design variables in this example. The 3D steel braced frame 
is optimized following the AISC-ASD (1989) specification. 
Moreover, the displacements of all the joints in x and y 
directions are limited to 18.29 cm, and the upper limit of 
inter-story drifts is set to 0.91 cm. The geometric constraints 
are also included. The modulus of elasticity and yield stress 
are 2.039×1010 kg/m2 and 2.531×107 kg/m2, respectively. 
The dead and live loads acting on the first to 19th floors are 
equal to 2.88 kN/m2 and 2.39 kN/m2, respectively. The roof 
is subjected to a dead load of 2.88 kN/m2 and snow load of 
1.20 kN/m2. The gravity loads are applied as uniformly 
distributed loads on the beams using distribution formulas 
developed for slabs by AISC-ASD (1989). The design wind 
loads are computed according to ASCE 7-05 (2005) using 
the following equation 

 

))(613.0( 2
pdztzw GCIVKKKp   (21)

 

where pw is the design wind pressure in kN/m2, Kz is the 
velocity exposure coefficient, Kzt is the topographic factor, 
Kd is the wind direction factor, V is the basic wind speed, G 

 
 

is the gust factor and Cp is the external pressure coefficient. 
As specified by Hasancebi et al. (2011) assuming that the 
buildings are located in a flat terrain with V = 46.94 m/s and 
exposure category B, the following values are used for these 
parameters: Kzt = 1.0, Kd = 0.85, I = 1.0, G = 0.85 and Cp = 
0.8 for windward face and 0.5 for leeward face. 

The wind loads are applied as uniformly distributed 
lateral loads on the external beams located on windward 
and leeward facades at every floor level. The gravity and 
wind forces are combined under two loading conditions. In 
the first one, the gravity loads are applied with the wind 
loads acting along the x-axis, whereas in the second one, 
they are applied with the wind forces acting along the y-
axis. 

In this example, in order to implement optimization 
process, the swarm size is chosen to be 40 and the 
maximum number of iterations is limited to 500. 

Table 5 represents the results obtained from the sensiti-
vity analysis for the present example. As well as the 
previous examples, the best setting of the algorithmic 
parameters is α = 0.5 and β = 0.4. 

The best optimal design found by MFO and EMFO are 
compared in Table 6 with the optimal designs obtained by 
ES (Hasancebi et al. 2011) and MPSO (Gholizadeh and 
Fattahi 2014). The results show that the optimum design 
attained by EMFO is 4.09%, 1.53% and 2.48% lighter than 
the designs obtained by ES, MPSO and MFO, respectively. 
It is clear that the computational demand of the EMFO, in 

Table 4 Optimal designs of twenty four-story planar steel frame 

Element 
groups 

HS 
(Degertekin 2010) 

TLBO 
(Togan 2012) 

DE (Kaveh and 
Farhodi 2013) 

ES-DE (Talatahari
et al. 2015) 

Present work 

MFO EMFO 

1 W30×90 W30×90 W30×90 W30×90 W30×90 W30×90 

2 W10×22 W8×18 W6×20 W21×55 W14×22 W14×22 

3 W18× 40 W24×62 W21×44 W21×48 W24×55 W21×48 

4 W12× 16 W6×9 W6×9 W10×45 W6×9 W6×9 

5 W14×176 W14×132 W14×159 W14×145 W14×159 W14×145 

6 W14×176 W14×120 W14×145 W14×109 W14×109 W14×120 

7 W14×132 W14×99 W14×132 W14×99 W14×120 W14×109 

8 W14×109 W14×82 W14×99 W14×145 W14×74 W14×74 

9 W14×82 W14×74 W14×68 W14×109 W14×68 W14×68 

10 W14×74 W14×53 W14×61 W14×48 W14×61 W14×61 

11 W14×34 W14×34 W14×43 W14×38 W14×38 W14×48 

12 W14×22 W14×22 W14×22 W14×30 W14×26 W14×22 

13 W14×145 W14×109 W14×109 W14×99 W14×109 W14×109 

14 W14×132 W14×99 W14×109 W14×132 W14×109 W14×109 

15 W14×109 W14×99 W14×90 W14×109 W14×109 W14×99 

16 W14×82 W14×90 W14×82 W14×68 W14×99 W14×99 

17 W14×61 W14×68 W14×74 W14×68 W14×82 W14×74 

18 W14×48 W14×53 W14×43 W14×68 W14×53 W14×53 

19 W14×30 W14×34 W14×30 W14×61 W14×43 W14×30 

20 W14×22 W14×22 W14×26 W14×22 W14×26 W14×22 

Weight (kN) 956.13 903.02 912.26 945.15 924.31 901.70 

Analyses 13924 12000 N/A 12000 6000 6000 
 

136



 
Design of steel frames by an enhanced moth-flame optimization algorithm 

Fig. 9 Twenty-story 3D steel braced frame 
 
 

Fig. 10 Convergence histories of MFO and EMFO for 
twenty-story 3D steel braced frame 

 
 

terms of required structural analyses, is equal to that of 
MPSO and significantly less than that of ES. 

Comparison of convergence histories of MFO and 
EMFO algorithms in Fig. 10 demonstrates the better 
convergence rate of EMFO. 

For the optimum design found by EMFO, the maximum 

 
 
 

 
 
 

lateral displacement is 13.80 cm, which is less than its 
allowable value of 18.29 cm. As the largest inter-story drift 
of this structure occurs in y-direction, the inter-story drift 
profile of the structure in this direction is depicted in Fig. 
11. In addition, the maximum DCRs of the element groups 
are shown in Fig. 12. The results demonstrate the feasibility 
of the optimum design and show that both the inter-story 
drift and DCR constraints are active in this example. 

Table 5 The results of sensitivity analysis for twenty-story 
3D steel braced frame 

No. α β Best weight (kN) 

1 0.25 0.2 419.13 
2 0.50 0.2 407.52 
3 0.75 0.2 411.31 
4 1.00 0.2 414.75 
5 1.50 0.2 421.36 
6 0.25 0.3 406.63 
7 0.50 0.3 398.86 
8 0.75 0.3 401.23 
9 1.00 0.3 404.01 

10 1.50 0.3 409.49 
11 0.25 0.4 407.50 
12 0.50 0.4 396.03 
13 0.75 0.4 403.04 
14 1.00 0.4 404.47 
15 1.50 0.4 410.32 
16 0.25 0.5 417.82 
17 0.50 0.5 406.41 
18 0.75 0.5 410.22 
19 1.00 0.5 413.65 
20 1.50 0.5 420.68 

Fig. 11 Inter-story drifts for the optimal twenty four-story 
planar steel frame found by EMFO 
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6. Conclusions 
 

MFO is one of the most recently developed algorithms 
based on the navigation method of natural moths and the 

 
 

preliminary results demonstrate the efficiency of this 
algorithm compared to some existing algorithms for 
optimization of benchmark functions and a few benchmark 
truss structures. The popular optimization problem of steel 
 

 
Table 6 Optimal designs of twenty-story 3D steel braced frame 

Members 
Story 
No. 

Group 
No. 

ES 
(Hasancebi et al. 2011)

MPSO 
(Gholizadeh and Fattahi 2014)

Present work 

MFO EMFO 

Outer beam 

1- 2 1 W8×18 W10×22 W14×22 W10×22

3 - 4 2 W10×22 W10×19 W6×20 W10×22

5 - 6 3 W12×26 W10×19 W6×20 W10×22

7 - 8 4 W18×35 W21×50 W18×50 W18×35

9 -10 5 W21×44 W21×68 W16×67 W21×68

11-12 6 W12×26 W21×68 W16×67 W21×68

13-14 7 W18×35 W16×31 W16×31 W18×35

15-16 8 W16×36 W14×30 W12×30 W14×30

17-18 9 W16×36 W16×57 W16×57 W16×57

19-20 10 W10×33 W12×22 W10×22 W16×31

Inner beam 

1- 2 11 W24×62 W16×77 W16×77 W24×68

3 - 4 12 W16×40 W24×62 W21×62 W24×62

5 - 6 13 W30×108 W18×60 W18×60 W18×60

7 - 8 14 W16×50 W24×62 W21×62 W24×62

9 -10 15 W16×50 W21×62 W24×62 W21×62

11-12 16 W18×60 W16×40 W18×40 W18×35

13-14 17 W21×44 W16×36 W16×36 W18×35

15-16 18 W16×36 W16×26 W16×26 W16×31

17-18 19 W14×34 W12×22 W10×22 W12×22

19-20 20 W14×30 W12×22 W10×22 W14×22

Conner 
column 

1- 2 21 W12×106 W30×261 W44×262 W33×201

3 - 4 22 W30×90 W33×221 W33×221 W33×201

5 - 6 23 W18×97 W27×129 W27×129 W27×146

7 - 8 24 W14×90 W24×104 W18×106 W24×104

9 -10 25 W14×109 W14×145 W24×146 W24×104

11-12 26 W12×72 W14×145 W24×146 W21×132

13-14 27 W14×90 W18×97 W18×97 W12×96

15-16 28 W14×90 W18×97 W18×97 W12×96

17-18 29 W10×39 W12×72 W14×74 W12×65

19-20 30 W10×33 W8×31 W8×31 W10×33

Outer 
column 

1- 2 31 W14×233 W27×217 W33×221 W27×194

3 - 4 32 W14×211 W27×178 W27×178 W27×161

5 - 6 33 W14×211 W27×161 W24×162 W27×146

7 - 8 34 W21×166 W18×175 W18×175 W24×162

9 -10 35 W14×132 W14×145 W24×146 W24×162

11-12 36 W14×120 W27×94 W27×102 W18×97

13-14 37 W12×106 W14×74 W14×74 W14×74

15-16 38 W14×74 W14×68 W21×68 W14×68

17-18 39 W12×58 W14×53 W14×53 W14×53

19-20 40 W10×49 W6×20 W6×25 W8×31 
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frame structures is tackled in the present work and the 
numerical results demonstrate that the MFO could not show 
superior performance as compared to other algorithms. 
Therefore the main objective of this study is to enhance the 
performance of the MFO algorithm for solving the 
optimization problem of steel frame structures by proposing 
an enhanced MFO (EMFO) algorithm. 

In order to achieve this task, a new equation is employed 
for position updating based on the best information derived 
by the search agents during the optimization process. 
Furthermore, a mutation operator is added to the algorithm 

 
 

 
 
to decrease the probability of trapping into local optimal 
designs. 

The efficiency of the proposed EMFO algorithm is 
illustrated by presenting three benchmark size optimization 
problems of steel frame structures with discrete design 
variables. The results obtained by EMFO in all examples 
are compared with the optimum designs found by MFO and 
other algorithms. The first example of this study is a 2D 
one-bay ten-story steel frame with 9 design variables and 
the EMFO finds the best weight for this frame which is 
respectively 6.15%, 2.37%, 1.13% and 3.17% less than 

Table 6 Continued 

Members 
Story 
No. 

Group 
No. 

ES 
(Hasancebi et al. 2011)

MPSO 
(Gholizadeh and Fattahi 2014)

Present work 

MFO EMFO 

Inner 
column 

1- 2 41 W40×362 W30×235 W27×235 W33×221

3 - 4 42 W40×268 W33×221 W33×221 W33×221

5 - 6 43 W44×244 W27×217 W33×221 W27×217

7 - 8 44 W44×244 W27×129 W27×129 W27×178

9 -10 45 W40×221 W30×99 W30×99 W27×161

11-12 46 W40×149 W24×104 W24×104 W21×101

13-14 47 W18×106 W18×106 W18×106 W21×101

15-16 48 W30×99 W18×106 W18×106 W21×83

17-18 49 W24×62 W21×50 W21×50 W21×50

19-20 50 W16×36 W6×20 W6×25 W6×20 

Bracing 

1- 2 51 W12×40 W8×31 W8×31 W8×31 

3 - 4 52 W8×40 W8×31 W8×31 W8×31 

5 - 6 53 W8×31 W12×26 W8×31 W12×26

7 - 8 54 W12×26 W8×24 W8×24 W6×25 

9 -10 55 W6×20 W8×24 W8×24 W6×25 

11-12 56 W10×22 W8×18 W8×18 W8×18 

13-14 57 W6×15 W8×18 W5×19 W5×19 

15-16 58 W6×15 W8×18 W5×19 W8×18 

17-18 59 W4×13 W4×13 W5×19 W4×13 

19-20 60 W4×13 W4×13 W4×13 W4×13 

Weight (ton)   412.91 402.2 406.13 396.03 

Analyses   60000 20000 20000 20000 

 

Fig. 12 Maximum DCR for each element group of optimal twenty-story 3D steel braced frame found by EMFO 
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those of the GA, ACO, IACO and MFO algorithms at 
almost the same computational effort. As the second 
example, a three-bay twenty four-story planar steel frame 
with 20 design variables is optimized and the results show 
that the EMFO converges to an optimum design which its 
weight is 5.69%, 0.15%, 1.16%, 4.60% and 2.45% lighter 
than those of HS, TLBO, DE, ES-DE and MFO algorithm, 
respectively at less computational effort. Finally, the EMFO 
algorithm is employed to tackle the optimization problem of 
a twenty-story 3D steel braced frame structure with 60 
design variables. In this example, the optimum solution 
obtained by EMFO is 4.09%, 1.53% and 2.48% lighter in 
comparison with the ES, MPSO and MFO, respectively at 
less computational demand. 

As it can be seen in convergence curves of Figs. 3, 6, 
and 10, in the first half of the optimization process the 
mutation helps to increase the exploration ability of EMFO 
compared to standard MFO. On the other hand, elitism (via 
the proposed equation for position updating) makes that 
exploitation characterizes the last half of the optimization 
process and this helps the EMFO algorithm to not get stuck 
at local optima. 

The numerical results imply that the proposed EMFO 
meta-heuristic algorithm not only converges to better 
optimal solutions compared to the mentioned meta-heuristic 
algorithms but it also requires less structural analyses 
during its search process. Consequently, the proposed 
EMFO meta-heuristic can be efficiently utilized to tackle 
the discrete optimization problem of steel moment resisting 
frame and steel braced frame structures with large number 
of design variables. 
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