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1. Introduction 

 
Nowadays,with the development in nano technology, 

beams, plates, rods, and shells in micro- or nano scale are 
frequently used as structure elements in micro- or nano 
electromechanical machines (Lavrik et al. 2004, Ekinci and 
Roukes 2005). In order to achieve the new advanced 
materials, the atomic or molecular characteristic length of 
material has a significant role. So, size effects are important 
in the mechanical performance of these structures in which 
sizes are small and analogous to molecular distances. 
Consequently, size dependent models of continuum 
mechanics have obtained growing consideration in recent 
years because of the need to model and study very small 
sized mechanical structures and mechanisms in the fast 
progresses of micro- or nanotechnologies (Wang et al. 
2008, Sudak 2003, Wang and Hu 2005, Reddy 2007, 
Janghorban 2012, Saggam 2012). (McFarland and Colton 
2005) noticed a significant difference between the stiffness 
values anticipated by the classical beam theory and the 
stiffness values achieved during a bending test of polypro-
pylene micro-cantilever. These experiments expose that the 
size-dependent behavior is an inherent property of materials 
which appears for a beam when the characteristic size such 
as thickness or diameter is close to the internal material 
length scale parameter (Kong et al. 2008). The classical 
continuum mechanics models are not able to predict the 
precise responses of the size-dependent analyses, which 
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happen in micron- and nano-scale structures. So, some 
higher order continuum models such as the nonlocal 
elasticity theory, the higher- order gradient theory, and the 
couple stress theory have been suggested to reasonably 
interpret the size-dependencies of nanostructures. 

To clarify the effect of nonlocality on size-dependent 
analysis of micro/nano structures, some articles have been 
extended, for example an elastic buckling analysis of nano-
tubes on the basis of nonlocal Timoshenko beam theory by 
Wang et al. (2006). Also, a nonlocal Timoshenko beam 
model has been applied to derive the free vibration 
responses of micro/nanobeams by Wang et al. (2007). In 
addition, Wang et al. (2008) has investigated the bending 
solutions of nanobeams using the Timoshenko beam model 
and the nonlocal beam theory of Eringen for different 
boundary conditions. Based on nonlocal Timoshenko beam 
model, forced vibration of a SWCNT has been studied by 
Mesut (2011). Besides, the effect of the size-dependent, 
shear deformation, and shear stiffness of the free vibration 
analysis of microbeams with the simply-supported 
boundary conditions have been proposed by Duan et al. 
(2013). An analysis of microstructure beam buckling using 
the Timoshenko beam model and nonlocal elasticity theory 
has been studied by Zhang et al. (2013). Nguyen et al. 
(2014) has presented analytical solutions for bending of 
nanobeam based on the nonlocal Euler-Bernoulli beam 
model. Recently, Rahmani et al. has investigated on static 
and dynamic behavior of nanostructures based on nonlocal 
elasticity theory (Rahmani et al. 2015, 2016a, b, Hosseini et 
al. 2016). 

In recent years, improvements in the field of materials 
engineering lead to a new type of materials with smooth and 
continuous variation of the material properties called 
Functionally Graded Materials (FGMs). The mechanical 
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and thermal response of materials with spatial gradients in 
composition and microstructure is of notable interest in 
various technological areas such as optoelectronics, 
tribology, biomechanics, nanotechnology and high 
temperature technology. FGMs are made of two materials 
continuously which are often metal and ceramics. The 
properties of material in FGMs are assumed to vary 
smoothly from one surface of nanobeam to another. 
Regarding these benefits, numerous investigations, dealing 
with static, buckling and dynamic features of FG structures, 
were available in the scientific literature (Chakraborty et al. 
2003, Aydogdu and Taskin 2007, Benatta et al. 2008, Li 
2008, Ke et al. 2009, Sallai et al. 2009, Şimşek and 
Kocatürk 2009, Sina et al. 2009, Khalili et al. 2010, Şimşek 
2010, Fallah and Aghdam 2011, Kocatürk et al. 2011, 
Şimşek and Cansız 2012, Hosseini and Rahmani 2016a, b, 
c, Jandaghian and Rahmani 2016). 

With the fast growth of technology, FGbeams and plates 
have been used in Micro/Nano ElectroMechanicalSystems 
(MEMS/NEMS), such as the constituents in the form of 
shape memory alloy thin films with a global thickness in 
micro- or nano- scale (Fu et al. 2003, Witvrouw and Mehta 
2005, Lü et al. 2009), electrically actuated MEMS mecha-
nisms (Hasanyan et al. 2008, Mohammadi-Alasti et al. 
2011, Zhang and Fu 2012), and Atomic Force Microscopes 
(AFMs) (Rahaeifard et al. 2009). As the dimension of these 
structural devices usually falls below micron- or nanoscale 
in at least one direction, a necessary feature triggered in 
these tools is that, their mechanical properties such as 
Young’s modulus and flexural rigidity are size-dependent. 
Up to now, only a few works have been proposed for FG 
nanobeams based on the nonlocal elasticity theory. 
(Janghorban and Zare 2011) studied nonlocal free vibration 
axially FG nanobeams using differential quadrature method. 
Free vibration analysis of FG nanobeam according to the 
nonlocal Euler–Bernoulli beam theory has been investigated 
by Eltaher et al. (2012). Mohanty et al. (2012) have studied 
the evaluation of static and dynamic behavior of FG beams 
based on the Timoshenko beam theory. Free vibration of 
axially FG tapered nanorods has been studied based on the 
nonlocal elasticity theory by Şimşek (2012). Jha et al. 
(2013) has proposed a free vibration analysis of FG plates 
based on a higher order shear theory. In another paper, 
based on the nonlocal Euler–Bernoulli and Timoshenko 
beam theory, (Şimşek and Yurtcu 2013) have studied 
analytical solutions for static bending and buckling of the 
FG nanobeam. Eltaher et al. (2014) has examined the static 
bending and the buckling of FG nanobeam by applying the 
nonlocal Timoshenko model. Refaeinejad et al. (2016b) has 
developed the vibrational analysis of nanostructures based 
on FG nonlocal higher order theory. Also, Refaeinejad et al. 
(2016a) has presented static and dynamic behavior of FG 
nanobeam lying on elastic foundation based on various 
nonlocal higher order theories. 

Lately, many theories have been developed to predict 
the mechanical behavior of beams. Among them Euler–
Bernoulli beam model is suitableto be usedfor predicting 
the mechanical behavior of slender beams. For moderately 
deep beams, it underestimates deflection and overestimates 
buckling load because of ignoring the shear deformation 

influence. The Timoshenko beam model accounts for the 
shear deformation influence by supposing a constant shear 
strain through the thickness of the beam. In this model, a 
shear correction factor is necessary to compensate for the 
existing difference between the actual stress state and the 
constant stress state. To avoid the use of shear correction 
factor and obtain a better prediction of the deep beam 
responses, many higher-order shear deformation theories 
have been developed, among them are the third-order 
theory of Reddy (1984), the sinusoidal theory of Touratier 
(1991), the hyperbolic theory of Soldatos (1992), the 
exponential theory of Karama et al. (2003), and general 
exponential shear deformation beam theory (ABT) of 
(Aydogdu). There are a limited number of studies using 
HSDTs to obtain the responses of the static and dynamic 
behavior of nanostructures, for example, Akgöz and Civalek 
(2014a) have studied the buckling of homogeneous 
microbeams based on the trigonometric modified strain 
gradient theory. In another study (Akgöz and Civalek 2013) 
developed a size-dependent sinusoidal shear deformation 
beam model in conjunction with modified strain gradient 
elasticity theory (MSGT). Recently, they have used 
trigonometric beam model on the basis of modified strain 
gradient elasticity theory to study the nonhomogeneous 
microbeams (Akgöz and Civalek 2014b). A nonlocal beam 
theory for bending, buckling and free vibration of 
nanobeams has been used by Thai (2012), Also in another 
study, Thai and Vo (2012a) have investigated a nonlocal 
sinusoidal shear deformation beam theory with application 
to bending, buckling, and vibration of nanobeams. Şimşek 
and Yurtcu (2013) have investigated the bending and 
buckling of functionally graded nanobeams based on the 
nonlocal Timoshenko beam theory. A size-dependent 
higher-order beam theory was presented for the static 
bending and free vibration of the FG microbeam based on 
the modified couple stress theory by Şimşek and Reddy 
(2013). Recently, Ahouel et al. (2016) has developed a 
nonlocal trigonometric shear deformation beam model to 
predict a size-dependent mechanical behavior of FG 
nanobeam. Hence, based on the aforementioned 
discussions, there is a strong motivation to understand the 
mechanical behavior of FG nanobeams in the design of 
nano structures like nanobeams and nanoplates as the 
structural elements of MEMS/NEMS. 

The present work is a comprehensive study on the 
bending and static buckling of FG nanobeams based on 
different nonlocal higher order shear deformation beam 
theories. This study considers the effect of mico/nanoscales, 
shear deformation, and material distribution parameter. The 
Hamilton’s principle is used to derive equation of motion 
and the Navier’s solution is applied to simply supported 
boundary conditions. Analytical solutions for the bending 
and buckling of FG nanobeams are presented and the 
effects of various parameters on the mechanical behavior of 
FG nanostructure are investigated, and also the obtained 
results are compared with those predicted by previous 
studies to verify the accuracy of the present solution. 

Summarily, the present study shows that the bending 
deflection, and static buckling behavior of FG nanobeam 
are extremely dependent on the gradient index, aspect ratio, 
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and nonlocal parameter. Also, it can be considered that 
using HSDTs theories can improve the responses of the 
static and stability behavior of FG nanobeam especially 
thick nanobeam. The obtained results of the present study 
might be useful to analyze the bending, and buckling 
behavior of FG nano-devices as a smart controller in reality. 

 
 

2. Nonlocal theory 
 
Based on the Eringen nonlocal elasticity theory 

(Eringen 1983, Eringen and Edelen 1972), stress at point x 
not only depends on the strain on that point, but also 
depends on all points of the continuum body. The 3-D 
structural nonlocal constitutive relation which has the 
integral form is written as follows 
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Cijkl denotes the elastic tensor for classical isotropic 

elasticity σij, εij and ui are stress tensor, strain tensor and 
displacement vector, respectively. The kernel α (|x ‒ x′|, τ) 
represents the nonlocal modulus or attenuation function and 
includes the nonlocal effect into the constitutive equation at 
reference point x  which is produced by the local strain at 
the point x′. (|x ‒ x′| is the Euclidean metric. τ is equal to 
e0α/l where α and l are internal and external characteristic 
length, respectively and e0 denotes a constant which varies 
in accordance with each material and can be obtained using 
atomistic simulation or the dispersive curve of the Born-
Karman model of lattice dynamics. Based on the Eringen 
nonlocal theory, when τ → 0, α is reverted to Dirac delta 
measure. Thus the internal characteristic length is omitted 
and consequently classical elasticity constitutive equation is 
governed. Besides, in small internal characteristic length 
when τ → 1, the atomic lattice dynamics should be 
determined by nonlocal elasticity theory. Therefore, by 
matching the dispersive curves of planes wave with 
molecular dynamics simulation or atomic lattice dynamics α 
is obtained. More convenient relations to find analytical 
solutionsfor static and dynamic problems in nanostructures 
mechanics are presented by (Eringen 1983) which is called 
the differential constitutive relation. 

 
2 2 2(1 l ) .Tτ σ− ∇ =  (2) 

 
Where T is the classical stress tensor at point x (Tij = 

Cijklεkl), and ∇2 is the Laplacian operator. The following 
equations represent the nonlocal constitutive equations in 
differential form, for one dimensional elastic body 
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E and G = E / [2 (1 + v)] are elastic and shear modulus 
of the beam, respectively (where v is the Poisson’s ratio). 
The nonlocal parameter is denoted by μ = (e0α)2(nm2) and 
σxx and σxz represent the normal and shear nonlocal stresses, 
respectively. Combining nonlocal elasticity theory and 
higher order beam theories results in obtaining the 
constitutive relation for nonlocal higher order nanobeam. 
For a specific material, the corresponding nonlocal 
parameter can be estimated by fitting the results of atomic 
lattice dynamic and experiment. When the nonlocal 
parameter is taken as (μ = 0), the constitutive relation of the 
local theory is obtained. 

 
 

3. The FG material properties 
 
The FG nanobeam is considered to have length L, 

thickness h and width b which consists of two different 
materials at the top and bottom surfaces. The FG nanobeam 
is subjected to the transverse distributed load q(x) and axial 
compressive force ,N as shown in Fig. 1. 

Poisson’s ratio, bulk elastic modulus, and mass density 
change in the thickness direction (in the z direction) are 
based on the power-law distribution. According to the rule 
of mixture, the effective material properties Π can be 
expressed as 

 

m m c cν ν∏ =∏ +∏  (4) 
 
Where Πm, Πc are the effective material properties, vm, vc 

are the volume fractions of the first (metal) and second 
(ceramics) material related by 

 
1m cv v+ =  (5) 

 
The subscript m and c represent the metal and ceramics 

constituent. In this paper, the effective material properties of 
the FG nanobeam are defined by the power-law form. The 
volume fraction of the second material is supposed by 

 
1( )
2

p
m

zv
h

= +  (6) 

 
The variation profile of material properties through the 

FG nanobeam thickness is denoted by gradient index p. 
Gradient index p is dimensionless and has a range between 
p = 0 to p = ∞. When p = 0, the FG nanobeam becomes a 
homogeneous nanobeam made of pure ceramic and when p 
= ∞, it becomes homogeneous nanobeam made of pure 
metal. Using Eqs. (4)-(6), the effective material properties 
of the FG nanobeam can be given as 

 
 
 

 
Fig. 1 Geometry and boundary condition of a functionally 

graded nanobeam 
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1(z) ( )( )
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p
m c c

z
h

∏ = ∏ −∏ + +∏
 

(7) 

 
Eq. (7) can be expressed in the terms of Young’s 

modulus, density, shear modulus and Poisson’s ratio. 
 
 

4. Governing equations 
 
Imagine a nanobeam consisting of FG material with 

length L, width b and height h. The rectangular Cartesian 
coordinate system x, y, z is taken along the length, width, 
and height of the nanobeam, respectively, as shown in Fig. 
1. The displacement fields according to higher-order shear 
deformation beam theories state as 
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Where u, wb, and ws are the axial displacement, bending, 

and shear components of transverse displacement on the 
neutral axis of the nanobeam; and f(z) determines the 
transverse shear strain and shear stress distributions through 
the thickness of the nanobeam called a shape function. 
Because the shape function f(z) fulfils the traction free 
conditions on the both surfaces of the nanobeam, therefore 
there is no need to shear correction factor. Different shape 
functions f(z) which will be employed in the present study 
are given in Table 1. 

The nonzero strain fields are obtained as 
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Where g(z) = 1 ‒ df/dz is the shape function of transverse 

shear strains. The distribution of the transverse shear strain 
and hence the transverse shear stress, through the depth of 
the nanobeam are represented by these shape functions. 

 
 

5. Equations of motion 
 
Hamilton’s principle states as 
 

2

1
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Where the virtual strain energy δU, the virtual kinetic 

energy δK, and the virtual potential of external loading δV 
are 
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Where N, Mb, Ms and Q are the stress resultants define 

as 
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The variation of the potential energy of the applied can 

be written as follows 
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Where q and N0 are the transverse and axial loads, 

respectively. δK are set to zero in order to derive bending 
and buckling responses. By putting expression for δU and 
δV from Eqs. (11) and (13) in Eq. (10) and integrating by 
parts, and gathering the coefficients of δu, δwb and δws the 
following equations of motion of the functionally graded 
nanobeam are obtained as follows 
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The boundary conditions are given as below 
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Table 1 Different shape functions are used in the present study 

Model f (z) Abbreviation 
Reddy 

(Reddy 1984) 

3

2
4
3

z
h

 TBT 

Touratier 
(Touratier 1991) 

sin( )h zz
h
π

π
−  SBT 

Soldatos 
(Soldatos 1992) 

1sinh( ) zcosh( )
2

zz h
π

− +  HBT 

Karama 
(Karama et al. 2003) 

22(z/h)z ze −−  EBT 

Aydogdu 
(Aydogdu 2009) 

22 ( )
ln(3)3

z
hz z

−
×

− ×  ABT 

Euler-Bernoulli z CBT 
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By substituting Eq. (9) in Eq. (3) and the subsequent 
results into Eq. (12) the stress resultants are achieved as 
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By putting Eq. (16) in Eq. (14) the equations of motion 

can be written as follows 
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6. Analytical solutions 
 
In this section, analytical solutions of FG nanobeam 

have been proposed to solve governing equations for the 
bending and the static buckling of a simply-supported FG 
nanobeam. The Navier’s solution technic is used to figure 
out the closed-form solutions for the simply-supported 
boundary conditions. 

The solution is supposed to be of the form 
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Where (Un, Wbn, Wsn) are the unknown maximum 

displacement coefficients, α = nπ/L and .1−=i The applied 

transverse q is expanded in the Fourier series as follows 
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Where Qn are the Fourier coefficients, and are given 

below for some typical loads: 
Uniform loading 
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Point load 
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Where δ is the Dirac delta function, p0 is the magnitude 

of the point load, xk is the application position of the point 
load. 

Substituting the expansions of u, wb, ws, and q from Eqs. 
(20)-(21) in Eq. (19), the analytical solutions can be 
obtained from the following equations 
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7. Results and discussion 
 
In this section, new numerical examples are presented 

and discussed to verify the accuracy of the nonlocal beam 
model in predicting the bending and buckling responses of 
FG nanobeam. For numerical results, an Al/Al2O3 
nanobeam composed of aluminum (as metal; Em = 70 GPa, 
ρm = 2700 kG.m3) and alumina (as ceramic; Ec 380 GPa, ρc 
= 3800 Kg/m3) is considered. For convenience, the 
following dimensionless quantities are defined as follows 
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In order to illustrate the efficiency and accuracy of the 
presented model the obtained results are compared with the 
existing databased on local TBT, SBT, EBT, ABT (μ = (e0-
a)2 = 0) (Thai and Vo 2012b) and TBT homogenous beam 
theory (P = 0) (Thai 2012) subjected to uniformly 
distributed load. In Table 2, results are given to various 
values of the aspect ratios (L/h = 5,20) and the gradient 
indexes (P = 0, 0.5, 1, 2, 5, 10). Also, In Table 3, results are 
given to various values of the aspect ratios (L/h = 5, 10, 50) 
and the nonlocal parameters (μ = 0, 1, 2, 3, 4 (nm2)). Tables 
2, and 3 clearly shows that the presented dimensionless 
transverse deflections )(w of FG nanobeam for uniform 
load agree very well with the solution of (Thai 2012, Thai 
and Vo 2012b). 

Figs. 2-3 demonstrate the effect of gradient index p and 
aspect ratio L/h on the dimensionless transverse deflection 
and dimensionless buckling load, respectively, for different 
nonlocal parameter as the gradient index varies from p = 0 
to p = 10, the results are compared for the different aspect 
ratio (L/h = 5, 10, and 20). Since there is no difference 
among the results of shear deformation beam theories, TBT 
is used only in Figs. 2-5. According to Fig. 2, it can be 
observed that as the length-to-thickness ration L/h increases 
(by decreasing the thickness of nanobeam), the dimension-
less transverse deflection increases. Also, as the gradient 
index increases, the dimensionless transverse deflection 
decreases. It is notable that the effect of the shear 
deformation decreases as the gradient index decreases (i.e., 

 
 

 
 

p < 2) especially in the lower value of the nonlocal 
parameter. In addition, it is seen that the influence of the 
shear deformation is more significant for the thick 
nanobeams (i.e., L/h = 5). On the other hand, all beam 
theories used in this study produce similar results with some 
small differences for (L/h < 10). It means that the shear 
deformation loses its effect on the transverse deflections for 
the slender nanobeams (i.e., L/h > 50). It should be noted 
that the transverse deflections of all higher order beam 
theories (HSDTs) are almost the same, and also the results 
of ABT and EBT are identical. 

In Table 3 non-dimensional transverse deflection with 
respect to aspect ratios, the nonlocal parameter, and the 
gradient index, are investigated. It can be seen that for all 
higher order theories with the increase in the value of L/h, 
non-dimensional deflection decreases. It is seen from this 
table, as nonlocal parameter increases, the dimensionless 
deflections increases as well, however by increasing length-
to-thickness ratio the divergence between results by 
classical theory (μ = 0) and higher-order models (μ ≠ 0) 
decreases. It means that the nonlocal parameter loses its 
effect on the transverse deflections for the slender nano-
beams (i.e., L/h > 100). Furthermore, It is clear from Table 
3 that the transverse deflections predicted by the local beam 
models (μ = 0) are always larger than those predicted by the 
nonlocal beam models (μ ≠ 0), i.e., that inclusion of 
nonlocal model stiffens the nanobeam. Also, the difference 
between the deflections of the classical and non-classical 
models is significant for thick nanobeams (i.e., L/h < 20). 
 
 

 

Table 2 Comparison of the dimensionless transverse deflections of FG nanobeam for the uniform load (𝜇𝜇 = 0) 

L/h p 
Method 

TBT SBT EBT ABT 
Present Thai Present Thai Present Thai Present Thai 

5 

0 3.16537 3.1654 3.16489 3.1649 3.16532 3.1635 3.16532 - 
0.5 4.82854 4.8285 4.82785 4.8278 4.82600 4.8260 4.82600 - 
1 6.25944 6.2594 6.25863 6.2586 6.25632 6.2563 6.25632 - 
2 8.0677 8.0677 8.06831 8.0683 8.06665 8.0667 8.06664 - 
5 9.82805 9.8281 9.83675 9.8367 9.84143 9.8414 9.84143 - 

10 10.9381 10.9381 10.942 10.9420 109404 10.9404 10.9404 - 

20 

0 2.89625 2.8962 2.89622 2.8962 2.89614 2.8961 2.89614 - 
0.5 4.46444 4.4644 4.46441 4.6444 4.4643 4.4643 4.46430 - 
1 5.80492 5.8049 5.80488 5.8049 5.80474 5.8047 5.80474 - 
2 7.44206 7.4421 7.44211 7.4421 7.44201 7.4420 7.44201 - 
5 8.8182 8.8182 8.81877 8.8188 8.81908 8.8191 8.81908 - 

10 9.69051 9.6905 9.69078 9.6908 9.69071 9.6907 9.69071 - 
 

Table 3 Comparison of dimensionless transverse deflection of homogenous nanobeam (p = 0) 

Method 

L / h = 5 L / h = 10 L / h = 50 

μ (nm2) 
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

Thai 1.4320 1.5673 1.7027 1.8381 1.9735 1.3346 1.4622 1.5898 1.7174 1.8450 1.3102 1.4359 1.5615 1.6872 1.8128 
Present 1.4319 1.5673 1.7027 1.8381 1.9735 1.3345 1.4621 1.5897 1.7173 1.8449 1.3034 1.4285 1.5540 1.6787 1.8038 
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(c) (d) 

Fig. 2 Effect of gradient index p on dimensionless deflection for uniform load and different aspect ratios: 
(a) μ = 0; (b) μ = 1; (c) μ = 2; (d) μ = 3 (nm2) 

Table 4 The variations of non-dimensional deflection w of FG nanobeam for different aspect ratios, nonlocal parameters, 
and gradient indexes 

L/h μ 
(nm2)  

p 

0 1 2 

CBT TBT SBT ABT EBT CBT TBT SBT ABT EBT CBT TBT SBT ABT EBT 

5 

0 3.11776 3.16537 3.16489 3.16532 3.16532 6.17903 6.25944 6.25863 6.25632 6.25632 7.92529 8.06769 8.06831 8.06665 8.06665 

1 4.29917 4.36255 4.36194 4.36016 4.36016 8.52507 8.63212 8.63109 8.62809 8.62809 10.9339 11.1231 11.124 11.1219 11.1219 

2 5.48058 5.55973 5.55899 5.55681 5.55681 10.8711 11.0048 11.0036 10.9998 10.9998 13.9426 14.1787 14.1797 14.1771 14.1771 

3 6.66198 6.7569 6.75605 6.75345 6.75345 13.21715 13.3775 13.376 13.3716 13.3716 16.9512 17.234 17.2354 17.2324 17.2324 

4 7.84339 7.95408 7.95309 7.95009 7.95009 15.56319 15.7501 15.7485 15.7434 15.7434 19.9599 20.2894 20.2911 20.2876 20.2876 

50 

0 2.88068 2.88116 2.88116 2.88115 2.88115 5.77863 5.77944 5.77944 5.77941 5.77941 7.40555 7.40698 7.40699 7.40697 7.40697 

1 2.89174 2.89222 2.89222 2.89221 2.89221 5.80082 5.80163 5.80163 5.8016 5.8016 7.43398 7.43542 7.43543 7.43541 7.43541 

2 2.9028 2.90329 2.90328 2.90327 2.90327 5.82301 5.82382 5.82382 5.82379 5.82379 7.46242 7.46386 7.46387 7.46385 7.46385 

3 2.91386 2.91435 2.91434 2.91433 2.91433 5.84519 5.84601 5.84601 5.84598 5.84598 7.49085 7.49229 7.4923 7.49229 7.49229 

4 2.92493 2.92541 2.92541 2.92539 2.92539 5.86728 5.8682 5.86819 5.86817 5.86817 7.51928 7.52073 7.52074 7.52073 7.52073 

100 

0 2.87889 2.87901 2.87901 2.879 2.879 5.7756 5.7758 5.7758 5.77579 5.77579 7.40161 7.40197 7.40197 7.40197 7.40197 

1 2.88165 2.88177 2.88177 2.88177 2.88177 5.78114 5.78135 5.78135 5.78134 5.78134 7.40872 7.40908 7.40908 7.40907 7.40907 

2 2.88442 2.88454 2.88453 2.88453 2.88453 5.78669 5.78689 5.78689 5.78688 5.78688 7.41582 7.41618 7.41618 7.41618 7.41618 

3 2.88718 2.88729 2.88729 2.88729 2.88729 5.79223 5.79244 5.79243 5.79243 5.79234 7.42293 7.42329 7.42329 7.42328 7.42328 

4 2.88994 2.89006 2.89006 2.89006 2.89006 5.79778 5.79798 5.79798 5.79797 5.79797 7.43003 7.43039 7.43039 7.43039 7.43039 
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(c) (d) 

Fig. 3 Effect of gradient index p on dimensionless buckling load for uniform load and different aspect 
ratios: (a) μ = 0; (b) μ = 1; (c) μ = 2; (d) μ = 3 (nm2) 

Table 5 The variations of non-dimensional buckling load N of FG nanobeam for different aspect ratios, nonlocal parameters, 
and gradient indexes 

L/h μ 
(nm2)  

p 

0 1 2 

CBT TBT SBT ABT EBT CBT TBT SBT ABT EBT CBT TBT SBT ABT EBT 

5 

0 9.54721 8.89229 8.77562 8.64566 8.64566 4.78343 4.50281 4.45219 4.39557 4.39557 3.78127 3.47268 3.42618 3.37423 3.37423 

1 6.84494 6.37539 6.29174 6.19856 6.19856 3.42952 3.22832 3.19203 3.15144 3.15144 2.67516 2.48976 2.45642 2.41917 2.41917 

2 5.33492 4.96896 4.90377 4.83114 4.83114 2.67295 2.51615 2.48786 2.45622 2.45622 2.08501 1.94051 1.91453 1.88549 1.88549 

3 4.37073 4.07091 4.01749 3.95799 3.95799 2.18986 2.06139 2.03822 2.0123 2.0123 1.70818 1.58979 1.56851 1.54473 1.54473 

4 3.70171 3.44778 3.40254 3.35215 3.35215 1.85466 1.74586 1.72623 1.70482 1.70482 1.44671 1.34645 1.32842 1.30828 1.30828 

50 

0 9.86957 9.86851 9.86819 9.86781 9.86781 4.91941 4.91895 4.91882 4.91866 4.91866 3.8387 3.83827 3.83815 3.83799 3.83799 

1 9.83076 9.8297 9.82939 9.82901 9.82901 4.90005 4.89961 4.89948 4.89932 4.89932 3.8236 3.82318 3.82305 3.82289 3.82289 

2 9.79225 9.7912 9.79089 9.79051 9.79051 4.88086 4.88042 4.88029 4.88013 4.88013 3.80862 3.80821 3.80808 3.80792 3.80792 

3 9.75405 9.753 9.75269 9.75231 9.75231 4.86182 4.86138 4.86125 4.86109 4.86109 3.79376 3.79335 3.79322 3.79307 3.79307 

4 9.71614 9.71509 9.71479 9.71441 9.71441 4.84292 4.84248 4.84235 4.84219 4.84219 3.77902 3.7786 3.77848 3.77832 3.77832 

100 

0 9.8696 9.86939 9.86932 9.86924 9.86924 4.91941 4.91932 4.91929 4.91926 4.91926 3.83871 3.83862 3.83859 3.83856 3.83856 

1 9.85987 9.85966 9.85959 9.85951 9.85951 4.91456 4.91447 4.91444 4.91441 4.91441 3.83492 3.83484 3.83481 3.83478 3.83478 

2 9.85016 9.84995 9.84988 9.84979 9.84979 4.90972 4.90963 4.9096 4.90957 4.90957 3.83114 3.83106 3.83103 3.83099 3.83099 

3 9.84047 9.84026 9.84019 9.84011 9.84011 4.90489 4.90479 4.90477 4.90474 4.90474 3.82737 3.82729 3.82726 3.82723 3.82723 

4 9.83079 9.83058 9.83052 9.83043 9.83043 4.90007 4.89998 4.89995 4.89991 4.89991 3.82361 3.82353 3.82349 3.82347 3.82347 
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It is simple to understand from Fig. 3 that as the gradient 
index increases, the dimensionless buckling load decreases. 
Also, it decreasesas the aspect ratio increases. Besides, it 
can be observed that the non-dimensional buckling load 
decreases as gradient index (p) increases. As mentioned 
before, the FG nanobeam becomes a homogeneous 
nanobeam made of pure ceramic or pure metal for p = 0 or 

 

 
 
p = ∞, respectively. As a result, the volume fraction of the 
metal constituent becomes lower for smaller values of the 
gradient index. It is also notable that the FG nanobeam 
becomes stiffer for the smaller values of material property 
gradient index due to the elastic modulus of ceramic 
constituent. 

In Table 4, buckling loads are proposed with respect to 

  

Fig. 4 Effect of nonlocal parameter μ at constant gradient index p = 1 on: (a) dimensionless transverse deflection 
for different aspect ratios; (b) dimensionless buckling load for different aspect ratios 

  
(a) (b) 

 

 

 

 

(c) (d) 

Fig. 5 Effect of gradient index p on the dimensionless axial deflection for the uniform load and different aspect 
ratios: (a) μ = 0; (b) μ = 1; (c) μ = 2; (d) μ = 3 (nm2) 
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aspect ratios, nonlocal parameter, and gradient index. It can 
be seen that for all the higher order theories with increasing 
in value of L/h, non-dimensional buckling loads will 
increase, but by increasing the nonlocal parameter and 
gradient index, the non-dimensional buckling loads will 
decrease. Also, it can be concluded that the dimensionless 
buckling loads evaluated by HSDTs are almost equal to 
each other, but the difference between CBT and HSDTs is 
more considerable in the higher-order models for lower 
aspect ratios. Also, it can be said that the dimensionless 
buckling loads predicted by HBT and EBT are almost equal 
to each other for all cases. Moreover, It is notable when 
length -to-thickness ratio scale parameter increases (L/h > 
20) the divergence between results predicted by classical (μ 
= 0) and non-classical models (μ ≠ 0) decreases, also the 
effects of shear deformation are more significant for thick 
nanobeam (i.e., L/h < 20). Summarily, it can be said that the 
divergence between results predicted by HSDTs and classic 
theory (CBT) decreases as the aspect ratio, nonlocal 
parameter, and gradient index decrease. Also, it can be 
concluded that nanostructure effects may be overlooked 
because of the increase in the characteristic sizes of the 
nanobeam. Though, variations in the length -to-thickness 
ratio, the gradient index and the beam theories have 
opposite effects on dimensionless buckling load compared 
with those on dimensionless transverse deflection. 

Fig. 4 is plotted to show the dimensionless transverse 
deflection and the dimensionless buckling load respectively 
with respect to nonlocal parameter μ for constant gradient 
index p = 1 and different aspect ratios L/h = 5, 10, and 20. It 
is detected from Fig. 4 that an increase in slenderness ratio 
(by decreasing aspect ratio) leads to the reduction ofshear 
deformation effects. It is obviously seen that the differences 
between the dimensionless transverse deflection and the 
dimensionless buckling loads based on different aspect 
ratios are decreasing for lower value of the nonlocal 
parameter (i.e., μ < 1). 

To clarify the effect of gradient index p and nonlocal 
parameter μ on the bending response of FG nanobeams 
under uniform load, the axial displacement u, is plotted in 
Fig. 5. It can be realized that increasing the gradient index p 
will reduce the stiffness of the FG nanobeams and 
consequently leads to an increase in the axial deflections. In 
addition, it can be understood that the inclusion of size 
effect leads to an increase in the deflections. Moreover, it is 
notable that increasing the dimensionless axial deflection is 
smoother for p = 2and more. 

 
 

8. Conclusions 
 
The present work is a comprehensive study on the 

bending and buckling of simply-supported FG nanobeams 
which includes both different higher order shear 
deformation beam theories and nonlocal beam theory of 
Eringen. The present study considers the influence of 
material length, shear deformation after loading, and the 
material distribution parameter by applying the different 
nonlocal higher order shear deformation beam theories on 
the FG nanobeams The proposed theories fulfill the zero 
traction boundary conditions on the top and bottom surfaces 

of the nanobeam, thus a shear correction factor is not 
necessary to use. Numerical results show that the nonlocal 
effects play an important role on the static and buckling 
behavior of the FG nanobeam. The discussed nonlocal 
beam models produce larger deflection and smaller 
buckling load in comparison with the classical (local) beam 
model. Therefore, the small scale effects should be 
considered in the evaluation of mechanical behavior of 
nanostructures. Further, it is found that the gradient index 
has a great influence on the responses of FG nanobeam, and 
the responses can be controlled by selecting appropriate 
values of the gradient index. The results of all proposed 
beam theories are nearly identical to each other, particularly 
for higher value of aspect ratio and agree well with the 
existing solution. The classical beam theory underestimates 
the bending responses and overestimates the buckling 
responses. Moreover, it is noticed that the inclusion of shear 
deformation effects leads to an increase in the deflections 
and a reduction of the buckling loads of nanobeams. 
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