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1. Introduction 

 
Cold-formed lipped channel columns (CFLCCs) have 

been widely used in light gauge steel constructions because 
of its excellent comprehensive performance (Dar and Yusuf 
et al. 2015). Under axial compression, these CFLCCs may 
buckle in one of the several modes, such as the local 
buckling, distortional buckling, and flexural-torsional 
buckling (Lau and Hancock 1987, Hancock et al. 1994, 
Teng et al. 2003, He and Zhou 2014), as shown in Fig. 1. 
The distortional buckling, also known as the “stiffener 
buckling” or “local torsional buckling”, is a mode 
characterized by the flexural-torsional buckling of the 
lipped flange elastically restrained by the web (Silvestre and 
Camotim 2010, Zhou et al. 2015b). Since the distortional 
buckling mode has been found to govern the strength of 
many cold-formed thin sections, it has received a great deal 
of attention and widespread concern from researchers over 
the last 20 years (He and Zhou 2014). During this period, 
many experimental and theoretical studies have been 
carried out on this mode of failure (Kwon and Hancock 
1992, Hancock 1997, Kesti and Davies 1999, Silvestre and 
Camotim 2004, Silvestre et al. 2009, Landesmann and 
Camotim 2013, Young et al. 2013, Kwon et al. 2014, Niu et 
al. 2014a, Zhou et al. 2015b, Landesmann and Camotim 

                                          

Corresponding author, Ph.D., 
E-mail: lzhjiang@csu.edu.cn 

a Ph.D., E-mail: zhouwangbao@163.com 
 

 
2016). 

In the earlier studies, the distortional buckling critical 
stress was usually determined by a spline finite strip elastic 
buckling analysis (Kwon and Hancock 1992, Hancock et al. 
1994). More recently, it was obtained using the user-
friendly computer programs, such as: THIN-WALL 
(Papangelis and Hancock 1998), GBT (Silvestre and 
Camotim 2004), and CUFSM (Schafer 2012), ANSYS (Niu 
et al. 2014b, Shenggang et al. 2014). Unfortunately, the 
user is also often not familiar with the essentials of 
distortion. The analytical formulae for the distortional 
buckling critical stress calculation can unveil the 
distortional kinematics and mechanics of CFLCCs and 
provide definitions of cross-section properties that 
characterize the distortional mode (Silvestre and Camotim 
2010). The design specifications (e.g., AS/NZS’s (NAS 
2007) and AISI’s (AS/NZS 1996)) still require the 
distortional buckling critical load to be manually calculated 
using the analytical formulae because these formulae are 
popular design aids as they are considered most efficient 
(Silvestre and Camotim 2004, Zhou et al. 2015b). The 
analytical formulae for determining the distortional 
buckling critical stress of CFLCCs subjected to axial 
compression was first derived by Lau and Hancock (1987). 
The Lau and Hancock’s solution has been included in the 
Australian/New Zealand standard (AS/NZS 1996) for the 
cold-formed steel structures because it is a simple method 
for determining the distortional buckling critical stress and 
is superior to the other methods. A modification to Lau and 
Hancock’s formulae was further presented in Hancock 
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(1997), which can be used to determine the distortional 
buckling strength of a flexural member. An extension of 
Lau and Hancock’s formula for beam-columns with biaxial 
bending was further presented in Teng et al. (2003). Li and 
Chen (2008) also presented a closed-form solution for the 
distortional buckling strength of the cold-formed steel 
sections using a similar model developed by Lau and 
Hancock (1987). Based on the generalised beam theory, 
Silvestre and Camotim (2004) derived a set of formula 
which can estimate the distortional buckling critical load of 
CFLCCs (Silvestre and Camotim 2004). The accuracy and 
range of validity for the derived formula was validated in 
(Silvestre and Camotim 2004). Lau and Hancock (1987) re-
derived the explicit expression for the rotational restraint 
stiffness provided by the web on the lipped flange, and the 
coupling effect between the applied forces and the torsional 
restraint stiffness of the lipped flange was shown in the 
expression. By carrying out a large number of numerical 
calculations of the rotational restraint stiffness, Teng and 
Yao et al. showed that the rotational restraint stiffness of the 
lipped flange varies approximately linearly with the 
compressive stress of the web (Teng et al. 2003). However, 
for the distortional critical buckling stress of CFLCCs, the 
Lau and Hancock’ formula (1987) and the Teng and Yao’ 
formula (Teng et al. 2003, Yao 2008) possess a number of 
limitations, namely: 

 

(1) Lau and Hancock’ formula (1987) requires the 
tedious repetitive iterations in order to obtain the 
distortional buckling critical load of CFLCCs 
because of using very complex formulae for the 
rotational restraint stiffness. 

(2) Teng et al. (2003) showed that the rotational restraint 
stiffness of the lipped flange varies approximately 
linearly with the compressive stress of the web by 
carrying out a large number of numerical 
calculations, but fail to develop the explicit 
expression of rotational restraint stiffness of the 
lipped flange, which makes calculation of 
distortional critical buckling stress very difficult and 
complicated. 

 

This paper presents a simplified closed-form solution for 
the rotational restraint stiffness of the lipped flange of 
CFLCC subjected to axial compression. The solution is an 
extension of the Lau and Hancock’s solution (Lau and 
Hancock 1987). The solution also shows that the theoretical 

 
 
relationship between the applied forces and the torsional 
restraint stiffness of the lipped flange is linear, i.e. the 
rotational restraint stiffness of the lipped flange can be 
determined not only from the geometry and material 
characteristics of a CFLCC but also from the applied forces. 
Based on the closed-form solution of the rotational restraint 
stiffness developed in this study, a simplified analytical 
formula is further presented for the determination of the 
elastic distortional buckling critical stress of the CFLCCs 
subjected to axial compression. The validity of the 
simplified analytical formula has been verified numerically 
by comparing the results with the buckling analysis using 
the ANSYS finite element software. At the end of this 
paper, there is a simple design example showing the 
application of the analytical expression. 

 
 

2. Basic assumptions 
 
Since the distortional buckling mode mainly involves 

the lateral bending and rotation of the lipped flange about 
the web-flange junction, by assuming that they are rigid 
bodies, an approximate expression can be derived by 
considering the lipped flanges only (Lau and Hancock 
1987, Hancock 1997, Schafer and Peköz 1999, Teng et al. 
2003, Yu and Schafer 2006, Tong et al. 2015, Zhou et al. 
2015b). Hence, the top lipped flange of the CFLCC in Fig. 
2(a) have been isolated as shown in Fig. 2(b). The effects of 
the web on the top lipped flange have been modeled with a 
rotational spring, a lateral spring and a vertical spring, 
which restrain the deformation of the lipped flange. The 
stiffnesses of the three elastic springs are given by kφf, kx 
and ky, respectively. The coordinate axes have been chosen 
such that the x-axis is parallel to the flange, and the origin is 
at the centroid of the lipped flange. To simplify the 
calculation, the following assumptions have been made 
(Lau and Hancock 1987, Teng et al. 2003). 

(a) (b)  (c) 

Fig. 1 Buckling modes (a) local buckling; (b) distortional 
buckling; (c) flexural-torsional buckling 

h

d

b

d

 
(a) 

 

ky=∞

kφf

kx=0

x
C

y

b

S(xs,ys)
J(hx,hx)

Shear Center

Centroid

(b) 

Fig. 2 Theoretical model for distortional buckling: 
(a) original section; (b) theoretical model 
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(1) Since the web is stiff in its own plane, it has been 
assumed that its in-plane stiffness ky = ∞. 

(2) Since the web’s out of plane flexural rigidity is low, 
it has been assumed that its out-of-plane stiffness kx = 0. 

 
 

3. Simplified closed-form solution for rotational 
restraint stiffness 

 
Fig. 3 shows a simplified theoretical model of a CFLCC 

web, in which the four edges of the web are simply 
supported. The two transversal edges of the web are 
subjected to uniform compressive stresses, in which if the 
stress is positive, it is compressive. Generated by the lipped 
flanges, the two longitudinal edges are subjected to 
distributed bending moments. Then, the boundary 
conditions of the web can be written as 
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where D = Et3/[12(1 ‒ μ2)] is the plate flexural stiffness per 
unit width, μ is the Poisson’s ratio, E is the elasticity 
modulus, t is the thickness of the web, w is the out-of-plane 
buckling deformation function of the web, h is the height of 
the web, kφf is the rotational restrain stiffness provided by 
the web on the lipped flange, λ is the distortional buckling 
half-wavelength, which is equal to the CFLCC length 
divided by the number of buckling half-waves. 

Given the above-mentioned boundary conditions, the 
buckling displacement function of the web can be 
approximated by a combination of two trigonometric 
functions with one unknown coefficients as follows 

 

sin sin
y z

w f
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(3)

 
where f is the general coordinate representing the amplitude 
of the distortional buckling deformation. 

Using the finite strip buckling analysis program, Yao 
(2008) carried out a number of parametric studies in terms 
of the distortional buckling half-wavelength of the CFLCC 
(Yao 2008). He developed the following approximate 

 
 

expression for the distortional buckling half-wavelength 
 

0.15 0.2 0.7

3.48cr

h b d
b

b t t



           
       

(4)

 

where b and d are the widths of the flange and lip, 
respectively. 

According to the tiny deflection theory of thin plates 
(Timoshenko and Gere 1961, Jiang et al. 2013, Tong et al. 
2015), the bending strain energy of the web is 
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Substituting Eq. (3) into Eq. (5) gives 
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The deformation energy yielded by the rotational spring 
of the web is (Zhou et al. 2016a, b) 
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Substituting Eq. (3) into Eq. (7) gives 
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The external work of the web can be described by (Jiang 
et al. 2013) 
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Substituting Eq. (3) into Eq. (9) gives 
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The total potential energy of the web can be given by 
(Jiang et al. 2013, Magnucki et al. 2014) 

 

1 2U U W     (11)
 

Substituting Eqs. (6), (8) and (10) into Eq. (11) gives 
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Based on the principle of minimum potential energy 
(Jiang et al. 2013, Ye and Chen 2013, Benselama et al. 
2015), the equation for rotational restraint stiffness is 
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Fig. 3 Web subjected to compressive stresses and distri-
buted moments 
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When there is distortional buckling in the CFLCC, the 
general coordinate f cannot be zero. Hence, equating the 
determinant of Eq. (13) to zero gives the following 
equation, which can be used to determine the rotational 
restraint stiffness of the web 
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Solving Eq. (14) gives the following explicit expression 
for the rotational restraint stiffness of the web 
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where β1 = π2/h2, β2 = π2/λ2. 
To include the effects of flange distortion and shear, the 

term D in Eq. (15) has been modified to Dw (Yao 2008), as 
follows 
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The modified expression for the rotational restraint 
stiffness of web is 
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The modified expression for the rotational restraint 
stiffness of web is 
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Teng et al. (2003) carried out a number of parametric 
studies for the rotational restraint stiffness of the lipped 
flange. They showed that the rotational restraint stiffness of 
the lipped flange varied approximately linearly with the 
applied forces. Eq. (19) is an extension of the Teng et al.’s 
(2003) solution, which proves that the theoretical coupling 
relationship between the applied force and the torsional 
restraint stiffness of the lipped flange is linear, i.e. the 
rotational restraint stiffness of the lipped flange can be 
determined not only from the geometry and material 
characteristics of a CFLCC but also from the applied forces. 
The formula (Eq. (19)) developed in this study has been 
further developed to a simple analytical formula in Section 
4, which can be used in design to determine the distortional 
buckling critical stress of CFLCCs. 
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where σ0 is the critical stress that govern whether the 
torsional restraint stiffness of the lipped flange is positive, 
zero or negative. The torsional restraint stiffness of the 
lipped flange is (1) positive when the applied stress σ < σ0, 
(2) negative when the applied stress σ > σ0, and (3) zero 
when the applied stress σ = σ0. 

 
 

4. Simplified closed-form solution 
for distortional buckling critical stiffness 
 
4.1 Analytical formulations 
 
The deflections for the shear center of the lipped flange 

section in the x and y directions are u and v, respectively, 
and the rotation of the lipped flange section about the shear 
center is the angel φ. By considering the equilibrium of 
moments about the shear center axis and the equilibrium of 
forces in the x and y directions, the distortional buckling 
critical load is governed by the following three 
simultaneous differential equations (Timoshenko and Gere 
1961, Lau and Hancock 1987, Teng et al. 2003, Zhou et al. 
2015a, Zhou et al. 2016a). 
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where, as shown in Fig. 2, xs and ys are the x and y 
coordinates of the shear center of the lipped flange, 
respectively; hx and hy are the x and y coordinates of the 
web/flange junction, respectively; Ix, Iy and Ixy are the 
moment of inertias of the lipped flange section about the x 
and y axes and the product second moment of area, 
respectively; and J and Iω are the torsional constant and 
warping constant of the lipped flange section, respectively. 
P = σA where A is the cross-sectional area of the lipped 
flange. G is the shear module, and r2

s is the polar second 
moment of area about the shear center. 

With the assumption of ky = ∞, at the support, there is no 
deformation in the y direction. Hence, the vertical 
deformation of the shear center is 

 

 = s xv x h 
 (26)

 

The term ky [v ‒ (xs ‒ hs) φ] in Eqs. (23) and (24) can be 
replaced by the reaction Ry, which is the intensity of the 
distributed reaction force in the y direction provided by the 
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support. Therefore, Eqs. (23) and (24) can be re-written as 
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With the assumption of kx = 0, Eqs. (22) and (28) can be 
re-written as 
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4.2 Simplified expressions 
 
The distortional buckling behavior of the lipped flange 

is now governed by Eqs. (29) and (30). Taking the solutions 
of Eqs. (29) and (30) in the form of 
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Substituting Eqs. (33) and (19) into Eqs. (29) and (31) 
gives 
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Equating the determinant of Eqs. (34) and (35) to zero 
gives the following quadratic equations 
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Equating the determinant of Eqs. (40) and (41) to zero 
gives the following quadratic equations 
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Then, the distortional buckling critical stress can be re-
written as 
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Fig. 4 Distortional buckling mode of a test member 
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Fig. 5 Comparison of critical stress ratios determined from 
simplified formula (Eq. (47)), Lau and Hancock’s 
(1987) formula, Silvestre and Camotim’ formula
(2010) and ANSYS finite elements analysis 
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5. Examples of analyses 

 
In order to assess the accuracy of the developed 

calculation formula (Eq. (47)), both the simplified 
calculation method introduced in this paper and the finite 
element method have been used to determine the 
distortional buckling critical stresses of 33 test members 
subjected to axial compression. The geometrical dimensions 
of the 33 test members are shown in Table 1. The ANSYS 
commercial software has been used to carry out the finite 

 
 
element analysis of the distortional buckling mode of the 33 
test members. 

Fig. 4 shows the results of one selected member. The 
Young’s modulus is 2.1 × 105 MPa, and the Poisson’s ratio 
is 0.3. The CFLCC has been modeled using the 4-node, 
quadrilateral, shell 181 elements. The uniform compressive 
stresses acting at the two ends of the CFLCC have been 
translated into equivalent concentrated node loads, which 
act on the corresponding element nodes in the finite element 
analysis. The size of the element mesh is 1.5 mm or less in 

Table 1 Comparison of distortional buckling loads 

Section nos. 
Section dimensions(mm) Critical stress (MPa) Critical stress ratios 

h b d t σFE σPR σLH σSC σPR /σFE σLC /σFE σSC /σFE 

C1 60 40 5 1.0 193.9 198.0 195.7 202.2 1.021 1.009 1.043 

C2 60 30 5 1.5 477.1 489.0 499.2 478.3 1.025 1.046 1.002 

C3 60 30 6 1.5 527.3 541.3 551.5 538.2 1.026 1.046 1.021 

C4 60 60 6 1.0 116.2 121.4 118.7 129.6 1.044 1.021 1.115 

C5 60 50 6 1.0 158.1 164.3 159.5 172.2 1.039 1.008 1.089 

C6 60 40 6 1.0 222.9 228.1 223.6 229.5 1.024 1.003 1.030 

C7 70 60 6 1.0 109.8 113.7 111.0 119.3 1.035 1.011 1.087 

C8 70 50 6 1.0 147.6 150.8 147.9 156.5 1.022 1.002 1.060 

C9 70 40 6 1.0 201.7 202.4 203.9 208.9 1.004 1.011 1.036 

C10 70 40 6 1.5 337.8 344.9 346.0 344.2 1.021 1.024 1.019 

C11 70 50 6 1.5 245.5 255.9 251.7 256.3 1.042 1.025 1.044 

C12 80 40 6 1.5 304.9 305.4 314.9 305.9 1.002 1.033 1.003 

C13 80 50 6 1.5 229.6 234.9 234.1 234.4 1.023 1.020 1.021 

C14 80 50 8 1.5 281.5 287.8 284.3 278.4 1.023 1.010 0.989 

C15 80 60 8 1.5 215.7 223.7 218.0 230.8 1.037 1.010 1.070 

C16 90 40 7 2.0 436.7 442.9 464.9 437.7 1.014 1.065 1.002 

C17 90 50 7 1.5 236.9 237.5 240.9 241.0 1.003 1.017 1.017 

C18 90 60 7 1.5 184.0 188.0 186.3 190.8 1.022 1.013 1.037 

C19 90 70 7 1.5 144.2 149.5 147.1 152.5 1.037 1.020 1.058 

C20 100 70 7 1.5 137.5 140.9 139.5 142.9 1.024 1.015 1.039 

C21 100 50 6 2.0 292.0 296.5 304.3 285.0 1.015 1.042 0.976 

C22 100 60 8 2.0 276.4 282.5 282.3 282.0 1.022 1.021 1.020 

C23 120 50 5 1.5 142.7 140.4 151.3 138.6 0.984 1.060 0.971 

C24 120 60 5 1.5 120.2 119.3 123.9 115.5 0.993 1.031 0.961 

C25 120 80 8 2.0 164.1 168.7 167.7 167.9 1.028 1.022 1.023 

C26 140 60 8 2.0 200.2 200.9 215.7 203.7 1.003 1.077 1.017 

C27 140 70 8 2.0 177.5 175.0 182.0 175.5 0.986 1.025 0.989 

C28 140 50 8 2.5 305.7 314.5 342.8 311.8 1.029 1.121 1.020 

C29 160 60 8 2.5 231.7 233.4 254.1 231.2 1.007 1.096 0.998 

C30 160 60 8 3.0 304.4 312.9 338.3 299.2 1.028 1.111 0.983 

C31 160 70 8 3.0 276.0 280.4 294.8 265.0 1.016 1.068 0.960 

C32 180 70 8 3.0 236.8 241.1 259.7 229.3 1.018 1.097 0.969 

C33 180 90 8 3.0 190.8 194.6 199.5 180.6 1.020 1.046 0.946 

Mean 1.019 1.037 1.019 

SD 0.015 0.033 0.040 

Max 1.044 1.121 1.115 

Min 0.984 1.002 0.946 
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order to meet the equivalent relationship between the 
equivalent concentrated node loads and the uniform 
compressive stress. The two degrees of freedom at the two 
ends of the CFLCC in the x and y directions have been 
restrained. Hence, the torsion at the two ends of the CFLCC 
has also been restrained. The degree of freedom of one node 
at the right end in the z direction has been restrained in 
order to meet the static balance requirements 

To show the advantage of the proposed formula (Eq.  
(47)) in comparison with other available formulae and to 
assess the accuracy of the proposed formula, the Lau and 
Hancock’ formula (1987) and Silvestre and Camotim’ 
formulae (Silvestre and Camotim 2004, Silvestre and 
Camotim 2010) are compared with the formula (Eq. (47)) 
proposed in this study. Table 1 shows the critical 
distortional buckling stress obtained through (1) ANSYS 
commercial software, (2) the Lau and Hancock’ formula 
(1987), (3) the Silvestre and Camotim’ formulae (Silvestre 
and Camotim 2004, Silvestre and Camotim 2010), and (4) 
the proposed formula (Eq. (47)). Fig. 5 shows the variations 
of critical stress ratios σPR/σFE, σLH/σFE and σSC/σFE with the 
section numbers. The σPR, σLH, σSC and σFE are the stresses 
obtained from Eq. (47), Lau and Hancock’ formula, 
Silvestre and Camotim’ formulae and ANSYS finite 
element analysis, respectively. Observation of the results 
displayed in Fig. 5 and Table 1 led to the following 
conclusions assuming that the stresses determined by the 
ANSYS finite element method are accurate: 

 
(1) The estimates provided by the proposed formula (Eq. 

(47)) exhibit errors never exceeding 5.0% (the max 
is 1.044 and the min is 0.984), while the estimates 
provided by the Lau and Hancock’ formula(1987) 
and the Silvestre and Camotim’ formula (Silvestre 
and Camotim 2004, Silvestre and Camotim 2010) 
exhibit errors reaching 12% (the max is 1.121 and 
the min is 1.002) and exceeding 11% (the max is 
1.115 and the min is 0.946), respectively. This shows 
that more accurate estimates for the distortional 
buckling critical stress can be obtained by using the 
torsional restraint stiffness of the lipped flange 
developed in this study. 

(2) For the proposed formula, the average and standard 
deviation values of σPR/σFE were 1.019 and 0.015, 
respectively, whereas they were 1.037 and 0.033, 
respectively, for the Lau and Hancock’ formula 
(1987)  and were 1.019 and 0.040, respectively, for 
the Silvestre and Camotim’ formulae (Silvestre and 
Camotim 2004, Silvestre and Camotim 2010). This 
indicates that the proposed formula provides more 
accurate estimates for CFLCCs than the Lau and 
Hancock’ formula (1987) and has similar accuracy 
with the Silvestre and Camotim’ formulae (Silvestre 
and Camotim 2004, Silvestre and Camotim 2010). 

 
In order to demonstrate the application of the developed 

formula (Eq. (47)) for calculating the distortional buckling 
critical stress, Section C17 in Table 1 has been selected as 
an example. In the application, the Young’s modulus is 2.1 
× 105 MPa, and the Poisson’s ratio is 0.3. Using Eq. (47) to 

 
 

calculate the distortional buckling critical stress is shown in 
Table 2. The estimated distortional buckling critical stresses 
by the ANSYS finite element analysis, the proposed 
formula (Eq. (47)), the Lau and Hancock’ formula (1987) 
and the Silvestre and Camotim’ formula (Silvestre and 
Camotim 2004, Silvestre and Camotim 2010) are 236.9 
MPa, 237.5 MPa, 240.9 MPa and 241.0MPa respectively. A 
comparison with the estimated stress by the ANSYS finite 
element analysis shows that the error is 0.3% for Eq. (47), 
1.7% for Lau and Hancock’ formula, and 1.7% for Silvestre 
and Camotim’ formula. 

 
 

6. Conclusions 
 
By analyzing the elastic distortional buckling of the web 

subjected to uniform compressive stresses, this study has 
carried out a thorough investigation on the rotational 
restraint stiffness of the lipped flange. A simplified explicit 
expression for the rotational restraint stiffness of the lipped 
flange has then been derived. Based on the explicit 
expression of the rotational restraint stiffness developed in 
this study and the approximate distortional buckling model 
developed by Lau and Hancock (1987), a simplified 
analytical formula has been derived, which can determine 
the elastic distortional buckling critical stress of CFLCCs 
subjected to axial compression. Based on the numerical 
results obtained from both the analytical solutions and the 
ANSYS finite element analysis, the conclusions are as 
follows: 

 
(1) A linear coupling relationship exists between the 

applied forces and the torsional restraint stiffness of the 
lipped flange, i.e. the rotational restraint stiffness of the 
lipped flange can be determined not only from the geometry 
and material characteristics of a CFLCC but also from the 
applied forces. 

(2) The torsional restraint stiffness of the lipped flange 
is positive when the applied stress σ is less than the critical 
stress σ0. On the other hand, it is negative when the applied 
stress σ is greater than σ0, and equals to zero when the 
applied stress σ equals to σ0. 

(3) The developed analytical formula for the distortional 
buckling critical stress of the CFLCCs is easy to use with 
manual calculations, provides a more accurate estimate than 
the formulas developed by Lau and Hancock (1987). It can 
be directly used in practical design and incorporated into 
future design codes and guidelines. 

Table 2 Comparison of distortional buckling stresses under axial 
compression 

Parameters Results Parameters Results Parameters Results

α0/N 4870.0 α1/mm2 8.462 α2/mm2 -1087.6

α3 

/(N·mm2)
8.59
×108

α4 

/(N2·mm2) 
-3.39 
×1013 

η1 

/(N·mm)
1.61
×106

η2/N 
7.43
×105

η3 

/(N·mm2) 
4.91 
×107 

Η4 

/mm2 
1087.9

σPR/MPa 442.93  
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