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1. Introduction 

 
Functionally graded materials (FGMs) are microsco-

pically inhomogeneous composites often manufactured 
from a mixture of metals and ceramics. Material charac-
teristics of FGM vary along the material size depending on 
a function. The concept of FGM was first proposed in Japan 
in 1984 during a space plane project. Since its 
developments in the 1980s, FGMs are alternative materials 
widely employed in aerospace, nuclear reactor, energy 
sources, biomechanical, optical, civil, automotive, electro- 
nic, chemical, mechanical, and shipbuilding industries 
(Koizumi 1993, Tounsi et al. 2013, Hamidi et al. 2015, Al-
Basyouni et al. 2015, Tagrara et al. 2015, Bennai et al. 
2015, Larbi Chaht et al. 2015, Bouderba et al. 2016, 
Bousahla et al. 2016, Boukhari et al. 2016, Turan et al. 
2016, El-Hassar et al. 2016). 

Several works have been performed to investigate the 
vibration behavior of functionally graded (FG) plates. Vel 
and Batra (2004) proposed a three dimensional exact 
solution for free and forced vibrations of simply supported 
FG rectangular plates. Ferreira et al. (2006) investigated the 
vibrations of FG plates by employing a global collocation 
technique, the first and the third-order shear deformation 
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plate models. Qian et al. (2004) discussed bending, and free 
and forced vibrations of a thick rectangular FG plate by 
employing a higher order shear and normal deformable 
plate theory. Matsunaga (2008) studied natural frequencies 
and buckling stresses of FG plates by considering the 
effects of transverse shear and normal deformations and 
rotatory inertia. Lu et al. (2009) presented a free vibration 
analysis of FG thick plates resting on elastic foundation 
based on three-dimensional elasticity. Zhao et al. (2009) 
examined a free vibration of FG plates by employing the 
element-free kp-Ritz method. Chen et al. (2009) studied the 
dynamic and buckling of FG plates based on a higher-order 
deformation theory. Malekzadeh (2009) analyzed the free 
vibration response of thick FG plates on two-parameter 
elastic foundation based on the 3D elasticity theory. Ait 
Atmane et al. (2010) studied the free vibration response of 
FG plates resting on Winkler–Pasternak elastic foundations 
using a new shear deformation theory. Hosseini-Hashemi et 
al. (2010) investigated the free vibration of FG rectangular 
plates using first-order shear deformation plate theory. 
Neves et al. (2012a, b) proposed a sinusoidal shear 
deformation formulation and a hybrid quasi-3D hyperbolic 
shear deformation theory for static and dynamic analysis of 
FG plates. Akavci (2014) presented a free vibration analysis 
of FG plates resting on elastic foundation by using a 
hyperbolic shear deformation theory. Ait Amar Meziane et 
al. (2014) presented an efficient and simple refined theory 
for buckling and free vibration of exponentially graded 
sandwich plates under various boundary conditions. Hebali 
et al. (2014) developed a new quasi-3D hyperbolic shear 
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deformation theory for the static and free vibration analysis 
of FG plates. Belabed et al. (2014) developed an efficient 
and simple higher order shear and normal deformation 
theory for bending and free vibration of FG plates. Zidi et 
al. (2014) proposed a four variable refined plate theory for 
bending analysis of FG plates under hygro-thermo-
mechanical loading. Ait Yahia et al. (2015) discussed the 
wave propagation in functionally graded plates with 
porosities by employing various higher-order shear 
deformation plate theories. Bakora and Tounsi (2015) 
investigated the thermo-mechanical post-buckling behavior 
of thick FG plates resting on elastic foundations. By 
developing a new simple shear and normal deformations 
theory, Bourada et al. (2015) studied the bending and free 
vibration of FG thick beam. Tebboune et al. (2015) 
investigated the thermal buckling analysis of FG plates 
resting on elastic foundation based on an efficient and 
simple trigonometric shear deformation theory. Belkorissat 
et al. (2015) discussed the vibration properties of FG nano-
plate using a new nonlocal refined four variable model. Ait 
Atmane et al. (2015) proposed a computational shear 
displacement model for vibrational analysis of FG beams 
with porosities. Bousahla et al. (2014) presented a novel 
higher order shear and normal deformation theory based on 
neutral surface position for bending analysis of advanced 
composite plates. Attia et al. (2015) studied the free 
vibration analysis of FG plates with temperature-dependent 
properties using various four variable refined plate theories. 
Nguyen et al. (2015) developed a refined higher-order shear 
deformation theory for bending, vibration and buckling 
analysis of FG sandwich plates. Mahi et al. (2015) 
developed a new hyperbolic shear deformation theory for 
bending and free vibration analysis of isotropic, 
functionally graded, sandwich and laminated composite 
plates. The vibrational behavior of FG plates has been 
studied by Mantari and Granados (2015) using a novel first 
shear deformation theory. Bourada et al. (2016) discussed 
the buckling behavior of isotropic and orthotropic plates 
using a novel four variable refined plate theory. Bounouara 
et al. (2016) proposed a nonlocal zeroth-order shear 
deformation theory for free vibration of FG nanoscale plates 
resting on elastic foundation. Recently, Bennoun et al. 
(2016) proposed a novel five variable refined plate theory 
for vibration analysis of FG sandwich plates. Draiche et al. 
(2016) presented a refined theory with stretching effect for 
the flexure analysis of laminated composite plates. Tounsi et 
al. (2016) developed a new 3-unknowns non-polynomial 
plate theory for buckling and vibration of FG sandwich 
plate. In the same way, Houari et al. (2016) presented also a 
novel simple three–unknown sinusoidal shear deformation 
theory for FG plates. 

In the present research, a new displacement field is 
proposed by considering a hyperbolic variation of in-plane 
displacements through the plate thickness and the obtained 
displacement field is applied to study the free vibration 
behavior of FG plates resting on two-parameter elastic 
foundations. The addition of the integral term in the 
displacement field leads to a reduction in the number of 
unknowns and equations of motion. The governing 
equations of the plates are obtained by considering the 

Hamilton’s principle. These equations are then solved via 
Navier method. Comparison studies are performed to check 
the validity of the present results. 

 
 

2. Fundamental formulations 
 
In the present work, a FG simply supported rectangular 

plate having a uniform thickness h, the length a, and the 
width b is examined. The geometry of the plate and 
coordinate system are indicated in Fig. 1. The material 
characteristics of FG plate are considered to vary 
continuously across the thickness of the plate in according 
to the power law distribution as follows (Bouderba et al. 
2013, Meksi et al. 2015, Meradjah et al. 2015) 
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where P is the effective material properties like Young’s 
modulus E and mass density ρ, Pm and Pc represent the 
property of the top and the bottom faces of the plate, 
respectively; and p is the volume fraction exponent. The 
Poisson’s ratio v is considered to be constant (Sallai et al. 
2015, Bellifa et al. 2016). 

The displacement field of the novel theory is given as 
follows (Hebali et al. 2016, Merdaci et al. 2016) 
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where u0(x, y), v0(x, y), w0(x, y), and θ(x, y) are the four 
unknown displacement functions of middle surface of the 
plate. The last unknown is a mathematical term that allows 
obtaining the rotations of the normal to the midplate about 
the x and y axes (as in the ordinary HSDT). Note that the 
integrals do not have limits. In the present paper is 
considered only four unknown displacement functions 
instead of five terms in ordinary HSDT (Akavci 2014). The 
constants k1 and k2 depends on the geometry. f(z) represents 
the shape function for determining the distributions of the 
 
 

Fig. 1 Geometry and coordinates of the considered FG plate 
which is resting on elastic foundation 
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transverse shear strains and stresses along the thickness and 
given as (Nguyen et al. 2015) 
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Using the displacement field in Eq. (2) within the 

application of the linear, small-strain elasticity theory, 
normal and shear strains are obtained as 
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The integrals appearing in the above expressions shall 

be resolved by a Navier type solution and can be expressed 
as follows 

 

, 
2

yx
Adx

y 






    , 
2

yx
Bdy

x 






   

, 
x

Adx


    

y
Bdy



   

(6)

 
where the coefficients A′ and B′ are defined according to the 
type of solution adopted, in this case via Navier. Therefore, 
A′ and B′ are expressed as follows 
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where α and β are defined in expression (24). 

For the FG plates, the stress–strain relationships for 
plane-stress state can be expressed as 
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where (σx, σy, τxy, τyz, τxz) and (εx, εy, γxy, γyz, γxz) are the stress 
and strain components, respectively. Using the material 
properties defined in Eq. (1), stiffness coefficients, Cij, can 
be given as 
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3. Equations of motion 

 

Hamilton’s principle is employed herein to obtain the 
equations of motion appropriate to the displacement field 
and the constitutive equations. The principle can be stated 
in analytical form as 
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where δU is the variation of strain energy; δVe is the 
variation of the potential energy of elastic foundation; and 
δK is the variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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where A is the top surface and the stress resultants N, M, 
and S are defined by 
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The variation of the potential energy of elastic 
foundation can be expressed by 
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where fe is the density of reaction force of foundation. For 
the Pasternak foundation model 
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in which Kw and Ks are the Winkler foundation stiffness and 
the shear stiffness of the elastic foundation. 

The variation of kinetic energy of the plate can be 
written as 
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where dot-superscript convention indicates the differen-
tiation with respect to the time variable t; ρ(z) is the mass 
density given by Eq. (1); and (Ii, Ji, Ki) are mass inertias 
expressed by 
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Using the generalized displacement–strain relations (4) 
and stress–strain relations (8), and the fundamentals of 
calculus of variations and collecting the coefficients of δu0, 
δv0, δw0 and δθ in Eq. (10), the equations of motion are 
obtained as 
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where stress and moment resultants are defined as 
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and stiffness components are given as 
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Introducing Eq. (18) into Eq. (17), the equations of 
motion can be expressed in terms of displacements (u0, v0, 
w0, θ) and the appropriate equations take the form 

 

 
    
  ,'

''2

   

111011001212111

122216601226612

01111101266120226601111




 dkAJwdIuIdkBkB

dBkAkBwdBB

wdBvdAAudAudA

ss

s







(21a)

 
 

    
  ,'

''2

   

221021002112222

112216601126612

02222201266120116602222




 dkBJwdIvIdkBkB

dBkAkBwdBB

wdBudAAvdAvdA

ss

s







(21b)

 
   

 
 

    
   

 









2221112

02201120201100

2222211211222166

112121110222222

0112266120111111022222

0112661201226612011111

''

''2

22

22   

dBkdAkJ

wdwdIvdudIwIf

dkDkDdBkAkD

dkDkDwdD

wdDDwdDvdB

vdBBudBBudB

e

sss

ss











 (21c)

 

    
    

    
 

  
   
   
    











22
2

211
2

12

0222011120220111

11
2

15522
2

244

112266
2

212112

2
222

2
111022222112

011222166011212111

0222211201122166

0122216601212111

''

''''

''

''2

''2

''

''

dBkdAkK

wdBkwdAkJvdBkudAkJ

dAkAdBkA

dHBkAkkkH

kHkHwdkDkD

wdBkAkDwdkDkD

vdkBkBvdBkAkB

udBkAkBudkBkB

ss

ss

ssss

sss

sss

sss
















(21d)

 

where dij, dijl and dijlm are the following differential 
operators 
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4. Analytical solution for 
simply-supported FG plates 
 
For the analytical solution of the partial differential Eq. 

(21), the Navier technique, based on double Fourier series, 
is employed under the specified boundary conditions. Using 
Navier’s procedure, the solution of the displacement 
variables satisfying the above boundary conditions can be 
expressed in the following Fourier series 
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where Umn, Vmn, Wmn, Xmn are arbitrary parameters to be 
determined and ω is the natural frequency. α and β are 
expressed as 
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Substituting Eq. (23) into equations of motion (21) we 

get below eigenvalue equation for any fixed value of m and 
n, for free vibration problem 
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The natural frequencies of FG plate can be found from 
the nontrivial solution of Eq. (25). 
 
 

 
 

 
 

5. Numerical examples and discussions 
 

In this section various numerical examples are presented 
and discussed to verify the accuracy of the present model in 
predicting the dynamic responses of simply supported FG 
plates. Two types of FG plates of Al/Al2O3 and Al/ZrO2 are 
employed in this work. The material properties of FG plates 
are listed in Table 1. 
Unless otherwise has been stated, the following expre-
ssions have been employed for presentations of non-
dimensional natural frequencies and non-dimensional 
coefficients of foundation: 
 
 

 
 

Table 1 Material properties used in the FG plates 

Material 

Properties 

Young’s 
modulus (GPa) 

Poisson’s ratio 
Mass density 

kg/m3 

Aluminium (Al) 70 0.3 2702 

Alumina (Al2O3) 380 0.3 3800 

Zirconia (ZrO2) 200 0.3 5700 
 

Table 2 Non-dimensional natural frequencies 0
2 / ˆ Dha   for simply supported isotropic square plate 

h/a Theory 
Mode 

(1,1) (1,2) (2,1) (2,2) (3,1) (1,3) (3,2) (2,3) 

0.001 

Leissa (1973) 19.7392 49.3480 49.3480 78.9568 98.6960 98.6960 128.3021 128.3021

Zhou et al. (2002) 19.7115 49.3470 49.3470 78.9528 98.6911 98.6911 128.3048 128.3048

Akavci (2014) 19.7391 49.3476 49.3476 78.9557 98.6943 98.6943 128.3019 128.3019

Present 19.7391 49.3476 49.3476 78.9557 98.6943 98.6943 128.3019 128.3019

0.01 

Leissa (1973) 19.7319 49.3027 49.3027 78.8410 98.5150 98.5150 127.9993 127.9993

Zhou et al. (2002) 19.7320 49.3050 49.3050 78.8460 98.5250 98.5250 128.0100 128.0100

Akavci (2014) 19.7322 49.3045 49.3045 78.8456 98.5223 98.5223 128.0115 128.0115

Present 19.7321 49.3040 49.3040 78.8442 98.5202 98.5202 128.0080 128.0080

0.1 

Leissa (1973) 19.0584 45.4478 45.4478 69.7167 84.9264 84.9264 106.5154 106.5154

Zhou et al. (2002) 19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.7350 106.7350

Akavci (2014) 19.0850 45.5957 45.5957 70.0595 85.4315 85.4315 107.3037 107.3037

Present 19.0775 45.5548 45.5548 69.9664 85.2958 85.2958 107.0953 107.0953

0.2 

Leissa (1973) 17.4524 38.1884 55.2539 65.313 65.313 65.3130 78.9864 78.9864 

Zhou et al. (2002) 17.4523 38.1883 55.2543 65.3135 65.3135 65.3135 78.9865 78.9865 

Akavci (2014) 17.5149 38.4722 38.4722 55.8358 66.1207 66.1207 80.1637 80.1637 

Present 17.4916 38.3701 38.3701 55.6322 65.8425 65.8425 79.7662 79.7662 
 

Table 3 Non-dimensional natural frequencies 0
2 / ˆ Dha   for simply supported square plate resting on elastic foundation (h/b = 0.2)

)(a
wk  )(a

sk  
11ŵ  12ŵ  13ŵ  

Matsunaga 
(2000) 

Akavci 
(2014) 

Present 
Matsunaga 

(2000) 
Akavci 
(2014) 

Present 
Matsunaga 

(2000) 
Akavci 
(2014) 

Present 

0 

0 

17.5260 17.5149 17.4916 38.4827 38.4722 38.3701 65.9961 66.1207 65.8425 

10 17.7847 17.7859 17.7630 38.5929 38.5929 38.4912 66.0569 66.1899 65.9120 

10² 19.9528 20.0603 20.0405 39.5669 39.6620 39.5640 66.5995 66.8087 66.5346 

103 34.3395 35.5261 35.5178 47.8667 49.0757 49.0040 71.5577 72.6997 72.4588 

104 45.5260 45.5260 45.5260 71.9829 71.9829 71.9829 97.4964 101.799 101.7992

105 45.5260 45.5260 45.5260 71.9829 71.9829 71.9829 101.7992 101.799 101.7992

 

10 

22.0429 22.2607 22.2435 43.4816 44.0294 43.9447 71.4914 72.6178 72.3765 

 22.2453 22.4745 22.4574 43.5747 44.1347 44.0503 71.5423 72.6806 72.4396 

 23.9830 24.3133 24.2980 44.3994 45.0711 44.9893 71.9964 73.2430 73.0050 

 36.6276 38.0839 38.0767 51.6029 53.5296 53.4675 76.1848 78.6389 78.4273 

 45.5260 45.5260 45.5260 71.9829 71.9829 71.9829 99.0187 101.799 101.799 

 45.5260 45.5260 45.5260 71.9829 71.9829 71.9829 101.7992 101.799 101.799 
 

* ,/ 0
4)( DaKk w

a
w   0

2)( / DaKk s
a

s   
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 For isotropic plate 
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5.1 Isotropic plates 
 

As the first example, simply supported isotropic square 
plates are examined for the convergence study of the 
present non-polynomial four variable refined plate theory. 
The first eight non-dimensional natural frequencies for 
different thickness ratios are calculated and compared with 
other published results in Table 2. The results given by 
Leissa (1973) were based on 3D exact solution, Zhou et al. 
(2002) were based on a 3D Ritz method with Chebyshev 
polynomials, Liu and Liew (1999) were based on a 
differential quadrature element method, Nagino et al. 
(2008) were based on a 3D B-spline Ritz method, Hosseini-
Hashemi et al. (2011) based on a exact closed form Levy-
type solution, and Shufrin and Eisenberger (2005) and 
Akavci (2014) based on two dimensional HSDTs. It can be 
observed from this table that, not only for thin plates but 
also thick plates, the natural frequencies are predicted as 
accurately by the present theory. 

The second example is carried out for an isotropic 
square plate resting on elastic foundation. The first three 
dimensionless natural frequencies of a square plate on 
elastic foundation are reported in Table 3 and compared 
with the results of different HSDTs of Matsunaga (2000) 
and Akavci (2014). The results in Table 3 demonstrate good 
agreement in all cases. 

 

5.2 Functionally graded plates 
 

In this section, to check the accuracy of present work for 
FG plates, natural frequencies of the plates with simply 
supported edges are examined. 

The next two examples are established for Al/ZrO2 FG 
square plates. In Table 4, dimensionless fundamental 
 

Table 4 Comparison on of non-dimensional fundamental 
frequencies mm Eh /   of Al/ZrO2 functionally 
graded square plates (a/h = 5) 

Theory p = 2 p = 3 p = 5 

Vel and Batra (2004) 0.2197 0.2211 0.2225

Neves et al. (2012a) (εz = 0) 0.2189 0.2202 0.2215

Neves et al. (2012a) (εz ≠ 0) 0.2198 0.2212 0.2225

Neves et al. (2012b) (εz = 0) 0.2191 0.2205 0.2220

Neves et al. (2012b) (εz ≠ 0) 0.2201 0.2216 0.2230

Matsunaga (2008) 0.2264 0.2270 0.2280

Hosseini-Hashemi et al. (2011) 0.2264 0.2276 0.2291

Akavci (2014) 0.2264 0.2269 0.2278

Present 0.2261 0.2266 0.2275
 

Table 5 Comparison of non-dimensional fundamental frequencies mm Eha // 2   of Al/ZrO2 functionally graded 
square plates (m = n = 1) 

Mode 
no. 

Theory 
p = 0 (a) p = 1 a / h = 5 

10/ ha  a / h = 5 a / h = 5 a / h = 10 a / h = 20 p = 2 p = 3 p = 5 

1 

Vel and Batra (2004) 4.6582 5.7769 5.4806 5.9609 6.1076 5.4923 5.5285 5.5632

Matsunaga (2008) 4.6582 5.7769 5.7123 6.1932 6.3390 5.6599 5.6757 5.7020

Akavci (2014) 4.6569 5.7754 5.7110 6.1924 6.3388 5.6593 5.6718 5.6941

Present 4.6445 5.7731 5.7039 6.1901 6.3381 5.6522 5.6647 5.6866

2 

Vel and Batra (2004) 8.7132 27.5540 14.5580 29.1230 58.2500 14.2780 14.1500 14.0260

Matsunaga (2008) 8.7132 27.5540 15.3390 30.6850 61.3740 14.9700 14.7420 14.4760

Akavci (2014) 8.7132 27.5536 15.3408 30.6861 61.3744 14.9718 14.7436 14.4772

Present 8.7132 27.5536 15.3438 30.6876 61.3751 14.9776 14.7502 14.4830

3 

Vel and Batra (2004) 14.4630 46.5030 24.3810 49.0130 98.1450 23.9090 23.6960 23.4940

Matsunaga (2008) 14.4630 46.5030 25.7760 51.7950 103.7100 25.1400 24.7410 24.2780

Akavci (2014) 14.7280 46.5741 25.9255 51.8664 103.7404 25.2966 24.9091 24.4606

Present 14.7280 46.5741 25.9253 51.8662 103.7404 25.2962 24.9087 24.4601

4 

Vel and Batra (2004) 24.8300 201.3400 57.6200 212.2200 828.7800 54.6850 53.1790 52.0680

Matsunaga (2008) 24.8300 201.3400 61.5090 227.2900 888.6000 57.5760 55.2370 53.2880

Akavci (2014) 25.4268 203.9805 62.8857 231.5235 904.2521 58.9929 56.3726 54.0672

Present 25.3381 202.9566 62.6150 230.3785 899.5930 58.7874 56.2176 53.9320
 

(a) cc Eha // 2    
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frequencies of plate are calculated for three different 
volume fraction exponent and compared with 3D exact 
solution of Vel and Batra (2004), quasi three-dimensional 
sinusoidal and hyperbolic shear deformation theories of 
Neves et al. (2012a, b) and two dimensional higher order 
shear deformation theories of Matsunaga (2008), Hosseini-
Hashemi et al. (2011) and Akavci (2014). It can be 
confirmed from the table that the results of the present 
model agree with the results of other two and three 
dimensional deformation theories. In Table 5, dimensionless 
natural frequencies, computed using the present model, are 
compared with the 3D theory of Vel and Batra (2004) and 
2D HSDTs of Matsunaga (2008) and Akavci (2014). It can 
be observed from this example that a good agreement is 
achieved between the results of present method and those of 
other theory. 

To check the higher order modes, the first eight and four 
frequencies of the Al/Al2O3 FG square and rectangular 
plates are calculated and illustrated in Tables 6 and 7. Table 
6 shows a comparison between the first eight dimensionless 
natural frequencies of FG square plates computed by the 
present theory and those given by Matsunaga (2008) and 
Akavci (2014) using another 2D higher order deformation 
theories. A good agreement between the results is confirmed 
from this comparison. In Table 7, the first four 
dimensionless natural frequencies of FG rectangular plates 

 
 
for different thickness ratios are presented as compared with 
2D higher order shear deformation theory of Akavci (2014) 
and exact closed-form Mindlin theory of Hosseini-Hashemi 
et al. (2010). It can be concluded from this example that 
there is an excellent agreement with the results of present 
method and those of the HSDT of Akavci (2014). 

In Fig. 2, the variations of dimensionless natural 
frequencies of simply supported Al/Al2O3 FG square plates 
with respect to volume fraction exponent are plotted and the 
results are also compared to those obtained using the HSDT 
proposed by Akavci (2014). It is seen from the figure that, 
increasing value of volume fraction exponent leads to the 
decrease in the natural frequency. 

 

5.3 Functionally graded plates 
on elastic foundation 

 

In this section, to check the accuracy of present method 
for FG plates on two-layer elastic foundations, natural 
frequencies of the plates are compared with those found in 
literature. 

Table 8 shows dimensionless fundamental frequencies 
of Al/ZrO2 FG rectangular plates resting on two-layer 
elastic foundation. The results of proposed model are 
compared with the results of the first order shear 
deformation theory of Hosseini-Hashemi et al. (2010) and 
HSDT of Hasani Baferani et al. (2011) and Akavci (2014). 
It can be observed from the Table 8 that, the results of 
proposed model are in excellent agreement with the results 
of other theories. 

The results presented in Tables 9 and 10 are performed 
for the Al/Al2O3 FG rectangular plates on elastic 
foundation. In Table 9, dimensionless fundamental 
frequencies for different aspect ratios are calculated and 
compared with other published solutions by employing 
HSDTs (Hasani Baferani et al. 2011, Akavci 2014) and the 
FSDT (Hosseini-Hashemi et al. 2010). It can be observed 
from the results that, the non-polynomial four variable 
refined plate model agrees well with the other shear 
deformation theories. Table 10 demonstrates the comparison 
of dimensionless fundamental frequencies of FG rectangular 

Table 6 The first eight non-dimensional natural frequencies 

cc Eh /   for simply supported square Al/Al2O3 
plate (h/b = 0.1) 

p 
Theory 

Mode no. 

2 4 6 8 

Mode (1, 1, 1) (1, 2, 1) (2, 2, 1) (1, 3, 1)

0 

Matsunaga 
(2008) 

0.0577 0.1381 0.2121 0.2587

Akavci (2014) 0.0578 0.1380 0.2120 0.2585

Present 0.0573 0.1378 0.2117 0.2581

0.5 

Matsunaga 
(2008) 

0.0491 0.1180 0.1819 0.2222

Akavci (2014) 0.0491 0.1176 0.1813 0.2214

Present 0.0490 0.1175 0.1811 0.2211

1 

Matsunaga 
(2008) 

0.0442 0.1063 0.1640 0.2004

Akavci (2014) 0.0442 0.1061 0.1636 0.1999

Present 0.0442 0.1060 0.1634 0.1996

4 

Matsunaga 
(2008) 

0.0381 0.0904 0.1383 0.1681

Akavci (2014) 0.0381 0.0903 0.1379 0.1677

Present 0.0381 0.0902 0.1378 0.1674

10 

Matsunaga 
(2008) 

0.0364 0.0858 0.1306 0.1583

Akavci (2014) 0.0364 0.0858 0.1305 0.1582

Present 0.0364 0.0857 0.1303 0.1579

  

Matsunaga 
(2008) 

0.0283 0.0701 0.1077 0.1313

Akavci (2014) 0.0294 0.0702 0.1079 0.1316

Present 0.0294 0.0702 0.1077 0.1313
 

Fig. 2 Variation of dimensionless fundamental frequency 

cc Eha // 2    of Al/Al2O3 FG square plates 
with volume fraction exponent 
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plates on elastic foundation with those given by Akavci 
(2014) via HSDT. It can be seen confirmed from the Table 
10 that, the results of present model are in excellent 
agreement with the results of Akavci (2014). 

Fig. 3 shows the variations of dimensionless funda-
mental frequencies of simply supported Al/Al2O3 FG square 
plates resting on elastic foundation with respect to volume 
fraction exponent. In the presence of elastic foundation, 

 
 

also, with the increase of volume fraction exponent, the 
fundamental frequencies decrease. It can be seen from the 
figure that, increasing value of Winkler and Pasternak 
coefficients causes the increase of the fundamental 
frequency. The figure demonstrates also that Pasternak 
modulus parameter of foundation has more significant 
influence than Winkler modulus parameter on the 
fundamental frequency of plate. 

Table 7 Comparison of first four non-dimensional natural frequencies cc Eha // 2   of Al/Al2O3 FG graded rectangular plate (b/a = 2)

a / h Mode no. (m, n) Theory 
p 

0 0.5 1 2 5 8 10 

5 

1 (1,1) 

Ref (a) 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677 

Ref (b) 3.4495 2.9408 2.6529 2.3989 2.2275 2.1724 2.1455 

Present 3.4463 2.9385 2.6509 2.3970 2.2260 2.1703 2.1431 

2 (1,2) 

Ref (a) 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094 

Ref (b) 5.3002 4.5321 4.0906 3.6900 3.3952 3.3031 3.2626 

Present 5.2932 4.5269 4.0859 3.6859 3.3919 3.2985 3.2571 

3 (1,3) 

Ref (a) 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253 

Ref (b) 8.1179 6.9690 6.2950 5.6613 5.1479 4.9921 4.9313 

Present 8.1021 6.9572 6.2845 5.6519 5.1404 4.9820 4.9193 

4 (2,1) 

Ref (a) 9.7416 8.6926 7.8711 7.1189 6.5749 5.9062 5.7518 

Ref (b) 10.1828 8.7640 7.9209 7.1105 6.4181 6.2111 6.1355 

Present 10.1587 8.7459 7.9047 7.0958 6.4064 6.1957 6.1175 

10 

1 (1,1) 

Ref (a) 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197 

Ref (b) 3.6542 3.1008 2.7952 2.5376 2.3915 2.3418 2.3124 

Present 3.6533 3.1001 2.7946 2.5370 2.3911 2.3412 2.3117 

2 (1,2) 

Ref (a) 5.7693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580 

Ref (b) 5.7754 4.9059 4.4231 4.0118 3.7682 3.6864 3.6403 

Present 5.7731 4.9042 4.4216 4.0105 3.7671 3.6849 3.6385 

3 (1,3) 

Ref (a) 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.7575 

Ref (b) 9.2029 7.8300 7.0612 6.3959 5.9766 5.8388 5.7662 

Present 9.1973 7.8258 7.0575 6.3925 5.9740 5.8351 5.7617 

4 (2,1) 

Ref (a) 11.8310 10.0740 9.0928 8.2515 7.7505 7.5688 7.4639 

Ref (b) 11.8560 10.0992 9.1093 8.2428 7.6738 7.4892 7.3965 

Present 11.8467 10.0924 9.1033 8.2374 7.6695 7.4832 7.3892 

20 

1 (1,1) 

Ref (a) 3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642 

Ref (b) 3.7130 3.1462 2.8356 2.5774 2.4402 2.3924 2.3623 

Present 3.7127 3.1461 2.8355 2.5773 2.4401 2.3923 2.3621 

2 (1,2) 

Ref (a) 5.9198 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681 

Ref (b) 5.9215 5.0191 4.5238 4.1108 3.8883 3.8112 3.7632 

Present 5.9208 5.0189 4.5234 4.1104 3.8880 3.8108 3.7626 

3 (1,3) 

Ref (a) 9.5668 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843 

Ref (b) 9.5711 8.1164 7.3159 6.6453 6.2759 6.1488 6.0715 

Present 9.5695 8.1153 7.3149 6.6443 6.2752 6.1477 6.0702 

4 (2,1) 

Ref (a) 12.4560 10.5660 9.5261 8.6572 8.1875 8.0207 7.9166 

Ref (b) 12.4633 10.5729 9.5307 8.6542 8.1634 7.9954 7.8950 

Present 12.4606 10.5710 9.5289 8.6527 8.1621 7.9936 7.8928 
 

(a) Hosseini-Hashemi et al. (2010) 
(b) Akavci (2014) 
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In Figs. 4(a) and (b), the variations of dimensionless 
fundamental frequency of simply supported Al/Al2O3 FG 
square plate resting on Winkler and Pasternak foundations 
with respect to Winkler modulus parameter of foundation 
are illustrated. It is seen from the results that, increasing the 
volume fraction exponent decreases the natural frequency 
for both of the foundations. It is also observed from the 
figure that, increasing value of volume fraction exponent 
increases the influence of elastic foundation on natural 
frequency. The figure demonstrates also, although 
increasing value of volume fraction exponent causes to 
decrease in the fundamental frequency, if the value of 
volume fraction exponent is more than 5, the effect of it on 
the fundamental frequency is negligible. 

 
 
The results reported in Tables 2 to 10 and Figs. 2 to 4 

demonstrate that the same accuracy is achievable with the 
present model by employing a lower number of variables 
than other models, and clearly highlights how the present 
model is simpler and more easily used in predicting the free 
vibration response of FG plates. 

 
 

6. Conclusions 
 
In the present work, analytical solutions for free 

vibration investigations of FG plates are developed by 
making further simplifying assumptions to the existing 
HSDT, with the inclusion of an undetermined integral term. 

Table 8 Comparison of non-dimensional fundamental frequencies 

cc Eh /   of Al/ZrO2 FG rectangular plates 
(a/b = 1.5) 

(k
w
, k

s)
 

h 
/ a

 

p 

Theory 

Baferani 
et al. 

(2011) 

Hosseini-
Hashemi 

et al. (2010) 

Akavci 
(2014) 

Present

(0
, 0

) 

0.05 

0 – 0.02392 0.02393 0.02392

0.25 – 0.02269 0.02309 0.02308

1 – 0.02156 0.02202 0.02201

5 – 0.02180 0.02244 0.02243

  – 0.02046 0.02056 0.02055

0.1 

0 – 0.09188 0.09203 0.09197

0.25 – 0.08603 0.08895 0.08889

1 – 0.08155 0.08489 0.08484

5 – 0.08171 0.08576 0.08570

  – 0.07895 0.07908 0.07902

0.2 

0 – 0.32284 0.32472 0.32408

0.25 – 0.31003 0.31531 0.31473

1 – 0.29399 0.30152 0.30097

5 – 0.29099 0.29762 0.29704

  – 0.27788 0.27902 0.27842

(2
50

, 2
5)

 

0.05 

0 0.03421 0.03421 0.03422 0.03421

0.25 0.03321 0.03285 0.03312 0.03312

1 0.03249 0.03184 0.03214 0.03213

5 0.03314 0.03235 0.03277 0.03276

  – 0.02937 0.02940 0.02940

0.1 

0 0.13365 0.13365 0.13375 0.13371

0.25 0.13004 0.12771 0.12959 0.12955

1 0.12749 0.12381 0.12585 0.12581

5 0.12950 0.12533 0.12778 0.12775

  – 0.11484 0.11492 0.11490

0.2 

0 0.43246 0.49945 0.50044 0.50061

0.25 0.42868 0.48327 0.48594 0.48581

1 0.46406 0.46997 0.47298 0.47208

5 0.44824 0.47400 0.47637 0.47561

  – 0.43001 0.43001 0.42989
 

Table 9 Comparison of non-dimensional fundamental frequencies 

cc Eh /   of Al/Al2O3 FG rectangular plates 
(h/a = 0.15) 

(k
w
, k

s)
 

h 
/ a

 

p

Theory 

Baferani 
et al. 

(2011) 

Hosseini-
Hashemi 

et al. (2010) 

Akavci 
(2014)

Present

(0
, 0

) 

0.5

0 – 0.08006 0.08018 0.08014

0.25 – 0.07320 0.07335 0.07331

1 – 0.06335 0.06148 0.06145

5 – 0.05379 0.05215 0.05213

 – 0.04100 0.04081 0.04078

1

0 – 0.12480 0.12508 0.12497

0.25 – 0.11354 0.11457 0.11449

1 – 0.09644 0.09613 0.09606

5 – 0.08027 0.08089 0.08084

 – 0.06335 0.06366 0.06360

2

0 – 0.28513 0.28660 0.28610

0.25 – 0.25555 0.26356 0.26314

1 – 0.20592 0.22190 0.22157

5 – 0.16315 0.18232 0.18208

 – 0.14591 0.14587 0.14557

(1
00

0,
 1

0)
 

0.5

0 0.12869 0.12870 0.12876 0.12874

0.25 0.11885 0.11842 0.11847 0.11845

1 0.10498 0.10519 0.10388 0.10386

5 0.09227 0.09223 0.09098 0.09096

 – 0.06591 0.06554 0.06554

1

0 0.17020 0.17020 0.17039 0.17032

0.25 0.15734 0.15599 0.15665 0.15659

1 0.13854 0.13652 0.13592 0.13587

5 0.12077 0.11786 0.11774 0.11772

 – 0.08663 0.08673 0.08671

2

0 0.31449 0.32768 0.32890 0.32848

0.25 0.30484 0.29612 0.30270 0.30235

1 0.26966 0.24674 0.25901 0.25874

5 0.22932 0.20359 0.21785 0.21766

 – 0.16773 0.16740 0.16718
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The number of unknowns and equations of motion of 

the present HSDT are reduced by one, and hence, make this 
theory simple and efficient to use. Verification studies 
demonstrate that the predictions by the present HSDT and 
existing HSDT (Akavci 2014) for FG plates are close to 
each other. The results obtained by the present theory can 
be summarized as follows: 

 
 

 It has been observed that the present analytical 
model can accurately predict fundamental frequen-
cies of FG plates resting on two-layer elastic 
foundations. 

 The fundamental frequencies of FG plate decrease 
with the increase of volume fraction exponent. 

 In the presence of elastic foundation, increasing 

Table 10 Comparison of non-dimensional fundamental frequencies mm Eha //~ 2   of Al/Al2O3 FG rectangular plates 

(kw, ks) 
(a) a / b a/ h 

p 

0 1 5 10 

Akavci (2014) Present Akavci (2014) Present Akavci (2014) Present Akavci (2014) Present 

(0, 0) 

0.5 

5 6.7771 6.7711 5.2122 5.2082 4.3763 4.3735 4.2153 4.2105 

10 7.1794 7.1775 5.4918 5.4906 4.6986 4.6978 4.5432 4.5417 

20 7.2948 7.2943 5.5712 5.5708 4.7943 4.7941 4.6411 4.6407 

1 

5 10.4133 10.3995 8.0368 8.0276 6.6705 6.6640 6.4099 6.3992 

10 11.3468 11.3424 8.6900 8.6871 7.4033 7.4012 7.1521 7.1485 

20 11.6338 11.6326 8.8879 8.8871 7.6393 7.6389 7.3934 7.3924 

2 

5 22.8734 22.8126 17.8289 17.7879 14.3625 14.3325 13.7120 13.6669

10 27.1085 27.0842 20.8487 20.8328 17.5051 17.4938 16.8613 16.8422

20 28.7174 28.7102 21.9670 21.9623 18.7946 18.7912 18.1727 18.1668

(0, 100) 

0.5 

5 11.1237 11.1204 10.8489 10.8474 10.9925 10.9917 11.0818 11.0806

10 11.4503 11.4492 11.0940 11.0934 11.2538 11.2535 11.3313 11.3307

20 11.5474 11.5471 11.1660 11.1658 11.3343 11.3342 11.4093 11.4091

1 

5 15.2095 15.2010 14.3923 14.3884 14.3071 14.3050 14.3829 14.3798

10 15.9813 15.9782 14.9443 14.9427 14.8693 14.8683 14.9193 14.9177

20 16.2285 16.2277 15.1189 15.1184 15.0607 15.0604 15.1056 15.1051

2 

5 28.6623 28.6184 25.6912 25.6688 24.3625 24.3498 24.3109 24.2936

10 32.3444 32.3246 28.2316 28.2206 26.7223 26.7155 26.5586 26.5475

20 33.8076 33.8015 29.2272 29.2237 27.7770 27.7748 27.5919 27.5881

(100, 0) 

0.5 

5 7.2276 7.2219 5.8746 5.8711 5.2360 5.2341 5.1288 5.1255 

10 7.6153 7.6136 6.1393 6.1383 5.5276 5.5269 5.4199 5.4187 

20 7.7272 7.7267 6.2152 6.2149 5.6156 5.6154 5.5087 5.5083 

1 

5 10.7082 10.6948 8.4748 8.4665 7.2560 7.2502 7.0373 7.0272 

10 11.6261 11.6218 9.1107 9.1079 7.9520 7.9501 7.7356 7.7323 

20 11.9093 11.9081 9.3044 9.3037 8.1789 8.1783 7.9658 7.9501 

2 

5 23.0053 22.9454 18.0231 17.9827 14.6363 14.6069 14.0098 13.9658

10 27.2246 27.2005 21.0241 21.0083 17.7396 17.7285 17.1126 17.0938

20 28.8295 28.8223 22.1378 22.1332 19.0187 19.0155 18.4115 18.4057

(100, 
100) 

0.5 

5 11.4036 11.4004 11.1817 11.1801 11.3598 11.3593 11.4581 11.4584

10 11.7285 11.7274 11.4284 11.4278 11.6243 11.6240 11.7103 11.7098

20 11.8253 11.8250 11.5008 11.5007 11.7054 11.7052 11.7888 11.7887

1 

5 15.4127 15.4043 14.6407 14.6368 14.5862 14.5835 14.6702 14.6658

10 16.1808 16.1778 15.1927 15.1912 15.1498 15.1489 15.2075 15.2060

20 16.4271 16.4263 15.3674 15.3670 15.3414 15.3411 15.3938 15.3933

2 

5 28.7674 28.7273 25.8251 25.8033 24.5206 24.5080 24.4759 24.4596

10 32.4417 32.4220 28.3613 28.3504 26.8763 26.8695 26.7186 26.7077

20 33.9029 33.8968 29.3557 29.3523 27.9292 27.9270 27.7497 27.7460
 

(a) ,/4
mww DaKk   mss DaKk /2  where )1(12/ 23  hED mm  
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value of Winkler and Pasternak coefficients causes 
to increase in the fundamental frequency of FG 
plate. 

 The Pasternak modulus parameter of foundation has 
more significant influence on increasing natural 
frequency of FG plate than the Winkler modulus 
parameter. 

 Increasing value of volume fraction exponent 
increases the influence of elastic foundation on 
natural frequency. 

 

Finally it can be concluded that, the present model can 
improve the numerical computational cost due to their 
reduced degrees of freedom. 
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