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1. Introduction 

 
It was the objective of structural analysis to determine 

the load-carrying capacity. Pressurized components should 
be designed against excessive plastic deformation (or 
plastic collapse) under monotonic loading and against 
incremental collapse under cyclic loading. To design against 
excessive plastic deformation or plastic collapse under 
monotonic loadings, information on plastic limit loads 
would be useful. For this reason, extensive work had been 
reported in the literature on plastic limit loads for complex 
structures (such as elbows, branch junctions, nozzles and so 
on). 

Li et al. (2008) reported the plastic limit load of 
cylindrical vessels with different lateral angles under 
increasing internal loadings by means of experimental 
testing. Moreover, a three-dimensional, nonlinear, finite 
element numerical simulation was also performed. The limit 
load of cylindrical vessels with different lateral angles was 
obtained using twice-elastic-slope criterion. It was found 
that the limit loads determined by experiment and numerical 
simulation methods were in good agreement. Patel and 
Kumat (2014) investigated limit load of pressure vessel 
with different inlet and outlet openings by means of 
experiment methods such as twice elastic slope method, 
tangent intersection method and nonlinear finite element 
method. Tangent intersection method which was used to 
estimate the lower value of limit pressure was more 
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effective for higher elastic slope of limit pressure vs strain. 
Prakash et al. (2016) studied plastic limit load of cylindrical 
pressure vessels with combined inclination of nozzles (i.e., 
in longitudinal and radial plane). The plastic limit load was 
obtained with twice elastic slope method. The approximate 
closed-form plastic limit load solutions for branch junctions 
under out-of-plane bending and under combined pressure 
and out-of-plane bending were presented by Lee et al. 
(2012), based on three-dimensional finite element limit 
analyses for an elastic-perfectly plastic material. Likewise, 
the researcher observed that plastic limit load of cylinder 
with nozzle was determined by elastic - plastic finite 
element analysis. However, this method required consider-
able amount of computational effort and computer storage 
space, and came from human sources. Therefore, robust 
methods, such as elastic compensation method (ECM) ( 
Mackenzie and Boyle 1993), Linear matching method 
(LMM) (Ponter and Carter 1997a, b), and so on, were 
applied for determining limit load, shakedown and 
ratcheting boundary of components or structures since limit 
analysis can be considered as a particular case of 
shakedown. 

The elastic iterative methods for limit load and 
shakedown analysis determination had been reviewed in 
detail by Machenzie et al. (2000). Many scholars (Aman 
Ahmed Bolar 2001, Engelhardt 1999, Freeman 2000, 
Hossain 2009, Adibi-Asl 2008, Habibullah 2003, Fanous 
2008, Xiao 2010) studied extensively one R-Node family 
method that was used to determine limit load or shakedown 
of some structures or components with and without defect. 
The results indicated the scientific, quick, accuracy and 
reliability of EMAP. 

Plancq and Berton (1998) studied limit load of branch 
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pipe tee connecting under different loading conditions. 
Hardy et al. (2001) studied limit and shakedown analysis of 
internal and external flanges. Yang et al. (2005) estimated 
limit load of nozzle-cylinder junctions. Based upon an 
upper bound approach using the re-parameterized exact 
Ilyushin yield surface and a nonlinear optimization 
procedure, Trân et al. (2008) determined limit load of 90° 
elbow pipe and vessel head. Abdalla et al. (2011a, b) 
determined the lower bound shakedown limit load of 90° 
elbow pipe with a simplified technique. Chen et al. (2011, 
2012), Ure et al. (2013) and Li et al. (2011, 2012) estimated 
limit and shakedown analysis of defective pipe using linear 
matching method. Moreover, Chen et al. (Chen et al. 2015, 
Chen and Chen 2016) studied ratcheting strain and 
shakedown of pressurized straight pipe and 90° elbow pipe 
subjected to reversed bending by means of finite element 
analysis. 

Robust methods were simple and required less computa-
tional effort and computer storage space. In this study, limit 
load of branch pipe tee was determined with the methods 
mentioned above. 

 
 

2. Limit load determination methods 
 

2.1 Lower and upper bound theorem 
 
2.1.1 Classical lower bound theorem 
The statement of the classical lower bound theorem 

(Calladine 2000) was as follows: “If any stress distribution 
throughout the structure can be found, which was 
everywhere in equilibrium internally and balanced the 
external loads and at the same time did not violate the yield 
condition, those loads will be carried safely by the 
structure”. 

ij j L in m T   (1)
 

    0yf        (2)
 

Based on the lower bound limit theorem of limit 
analysis, the lower bound limit load multiplier mL and limit 
load value PL were expressed, respectively as follows 
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y
Lm




  (3)

 

L LP Pm  (4)
 

2.1.2 Classical upper bound theorem 
The classical upper bound theorem (Calladine 2000) 

stated that “If an estimate of the plastic collapse load of a 
body was made by equating the internal rate of dissipation 
of energy to the rate at which external forces do work in any 
postulated mechanism of deformation of the body, the 
estimate would be either high, or correct”. 
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Therefore, the classical upper bound limit load multiplier 
was found as 
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where, σ in the upper bound was the stress yield associated 
with the compatible strain rate ,  ip  was the shape 
description of a unit load. iu  was the displacement rate 
field. 
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Then, substitution of Eq. (7) into Eq. (6) provided as 
follows 
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where,  
yijij   and .

3

2
ijij    

In terms of finite element discretization scheme, Eq. (8) 
can be written as follows. 

 

 

 
1

1

N

y eq y eq k
V k

U N

ij ij
eq eq kV

k

dV V
m

dV V

   

   






 



 

 
 (9)

 

where, σeq and εeq were equivalent stress and strain, 
respectively. 

The upper bound limit load value PU were expressed as 
 

U UP Pm  (10)
 
2.1.3 New lower and upper bound theorem 
In limit analysis, the statically admissible stress field 

(equilibrium set) cannot lie outside the hypersurface of the 
yield criterion, and the stress field obtained from a 
kinematically admissible strain rate field (compatibility set) 
in calculating the plastic dissipation should be on the 
hypersurface. In order to eliminate such requirement, the 
concept of integral mean of yield based on a variational 
formulation was proposed by Mura and Lee (1965) who 
extended the classical lower and upper bound theorem. 

 

2.1.3.1 New lower bound theorem 
Mura and Lee (1965) proposed the new lower bound 

multiplier m′, which was derived from Mura’s extended 
variational principle and was expressed as follows 
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where, m0 was the following new upper bound multiplier, σy 
was yield stress, σ0

M was the maximum equivalent stress in a 

132



 

Evaluation of limit load analysis for pressure vessels – Part II: Robust methods 

structure or component. 
 
2.1.3.2 New upper bound theorem 
Using the integral mean of yield criterion, Mura and Lee 

(1965) proposed the new upper bound multiplier m0 which 
was expressed as follows 
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Mangalaramanan and Seshadri (1997) proposed the 

upper bound multiplier m0
1 from Mura’s formulation 
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The upper bound multiplier m0

1, was based on the total 
volume V. If plastic collapse occurred over a localized 
region of the structures, it would be significantly 
overestimated. Therefore, Pan and Seshadri (2001) proposed 
a new upper bound multiplier m0

2 from Mura’s formulation 
in order to address the above problem. 
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2.1.3.3 Reference volume approach 
If plastic collapse occurred over a localized region of a 

component or structure, some regions may remain rigid or 
elastic, namely dead region VD. The volumes of the 
remaining plastic regions were called reference volume VR 
which carried the external loads at the limit state 
(Mangalaramanan and Seshadri 2001). The upper bound 
multiplier m0, m0

1 and m0
2 would be largely overestimated if 

it was based on the total volume VT. The multiplier m′ 
would be underestimated. Therefore, the multiplier can be 
written as follows 
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Moreover, the reference volume VR (VR ≤ V) was 
introduced by Reinhardt and Seshadri (2003) in order to 

identify the kinematically active portion of component or 
structure that participated in plastic action. Hence a new 
upper bound multiplier can be written as follows 
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2.1.3.4 The mα-method 
Seshadri and Mangalaramanan (1997) developed an 

improved lower bound multiplier mα-method based on 
Mura’s variational theorem, which provided better lower 
bound limit load over Mura's lower bound estimate. The mα 
-method adopted the elastic modulus adjustment procedure 
(EMAP) to estimate improved lower bound limit load. 
Further discussion on these methods was presented as 
follows 
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where, ζ = m0 / mL, r0 = m0 / m and Ra = mα / m. Due to 
normalization, Ra = 1represented the boundary between the 
upper bound region Ra > 1 and lower bound region Ra < 1. 
The value of mα became imaginary when m0 / mL > 1 + ,2  
as would be the case for components with notches and 
cracks. 

 
2.1.3.5 The mT

α-method 
Once the RT

α = 1 line was identified, the multiplier mT
α 

value (Seshadri and Hossain 2009) can be readily estimated 
by the relationship. 
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2.1.3.6 The m*-method 
Based on Mura’s lower bound multiplier and extended 

lower bound theorem, Seshadri and Indermohan (2004) 
introduced a multiplier m*. 

 
0

'' 1  
1

m
m

G



 (23)

where the parameter G evaluated acted as a convergence 
parameter, and was indicative of any deviation of statically 

133



 
Xiaohui Chen, Bingjun Gao and Xingang Wang 

admissible stress distributions from limit state. 
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2.1.3.7 The mβ-method 
The multiplier m* need to be a lower bound. The 

parameter β was introduced in Eq. (25) by Seshadri and 
Indermohan (2004), the multiplier mβ was expressed as 
follows 
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The multiplier mβ was sensitive to the value of β. When 
β = βR, the exact multiplier mβ was achieved. βR was the 
reference parameter and was as yet undefined. The 
reference parameter βR would be the lowest possible value 
of β that would generate the multiplier mβ which satisfied 
the following four requirements. But the multiplier mβ was 
less than or equal to m. 
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where, ζ was iteration variable. 
 
2.1.4 Reference stress method 
In order to overcome some of complications of creep 

analysis, Sim (1968) proposed a useful simplified method, 
namely reference stress method. Reference stress was a 
function of stress components that must reach the value of 
yield stress in simple tension or compression for yielding to 
occur. The basic principle of reference stress method was 
that the deformation of structures subjected to multiaxial 
creep can be related to the results of a uniaxial creep test 
carried out at the reference stress through a scaling factor. 
Therefore, the deflection δ at a point in a structure at some 
time t was given by 

 

   ct t   (28)
 

where, ξ was the geometric scaling factor depending on 
configuration of structure and boundary conditions, εc(t) 
was the creep strain at time t as obtained by uniaxial creep 
test performed at the reference stress σref. Creep strain was 
expressed by the Norton equation. 

n
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where, B and n were the material constants, σ was the stress. 
Reference stress σref at any other load was expressed as 

following since it was insensitive to exact creep exponent n 
in the strain rate to stress relationship (Anderson et al. 
1963). If the creep exponent n approximated infinity, the 
limit solution to perfect plasticity would be approached, i.e., 
at limit load. The reference stress would equal to yield 
stress. 
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where, P was any other load, PL was limit load, σf was the 
yield stress of the material. 

 
2.1.5 Theorem of nesting surfaces 
The reference stress can be expressed in another manner 

based on energy dissipation. The average dissipation rate at 
the reference stress equated to the dissipation rate in a 
structure of component under applied loading. 
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Eq. (31) was written by equivalent stress and strain, and 
Eq. (29) was substituted in Eq. (31), provided 
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Thus, the reference stress can be obtained as follows 
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Calladine and Drucker (1962) proposed the theorem of 
nesting surfaces for determining the reference stress which 
was given by the expression 
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Eq. (34) indicated that the reference stress increased 
monotonically the increasing of the exponent n. It was 
bounded below by the result of n = 1 (elastic) and above by 
the limiting functional as n → ∞ (perfect plasticity). The 
minimum and maximum values of the reference stress 
corresponded to n = 1 and n → ∞, respectively. The stress 
distributions relating to the various values of n can be 
simulated by performing elastic analysis combining with 
elastic modulus adjustment procedures. Therefore, limit 
load corresponding to stress distributions can be identified 
when n → ∞. 

Assuming the external load P applied to be equal to the 
exact limit load and limit stress distribution, for a structure 
or component the completely became plastic at collapse, σref 
= σy and otherwise σref < σy, namely 

 

ref y   (35)
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The reference stress formula due to Sim (1970, 1971) 
given by Eq. (35) can be expressed as follows, i.e., limit 
load was written as follows 

 

y
L

ref

P P



  (36)

 
2.1.6 Brief summary 
Clearly, the limit load multiplier m0

1 and mβ was 
significantly overestimated if it was based on the total 
volume. It was shown in Table 6 that the limit load 
multiplier m0

1 and m0
2 were greater than the classical upper 

bound mU and classical lower bound limit load multiplier 
mL (Reinhardt and Seshadri 2003). If plastic collapse 
occurred over a localized region of the component or 
structure, the m0

1 multiplier could be overestimated. 
The lower bound limit load multiplier m′ derived from 

Mura's extended variational principle was shown to be 
smaller than that obtained by applying classical lower 
bound theorem (m′ < mL), and less than the unknown actual 
collapse load multiplier m (m′ < m). The multiplier m′ was 
significantly underestimated if it was based on the total 
volume. 

The mα multiplier was an improved estimate of the 
analytical limit load multiplier compared to the bounds mL 
and m0. Although it was often found to be an improved 
lower bound, it could not be established as a lower bound in 
general. Reinhardt and Seshadri (2003) proposed that 1 ≤ 
m0 / mL ≤ 1 + 2 and 1 ≤ m0 / m ≤ 1 + 2  was designated 
as the “mα triangle”. The mα multiplier method was not 
applicable if a component falls outside the “mα triangle”. 
Therefore, the mT

α method was applicable to a general class 
of mechanical components and structures containing 
significant amount of peak stresses. The estimates of mT

α for 
all the worked out example problems were found to be 
lower bound to the corresponding analytical or inelastic 
finite element analysis results. Therefore, the reference 
volume had been presented to identify the “kinematically 
active” region of the component or structure that partici-
pated in plastic action. 

 
2.2 Pseudo-elastic finite element method 
 
In general, limit load was usually determined by the 

classical upper bound and lower bound theorems. However, 
this method which became highly tedious for structures 
with high degree of indeterminacy was impracticable for 
complex structures. Therefore, simplified methods which 
were developed to determine the limit load of structures 
including gloss R-Node method, elastic compensation 
method, modified elastic compensation method, mα method, 
and so on. 

 
2.2.1 Origin of simplified methods 
Elastic modulus adjustment procedures (EMAP) or 

reduced modulus technique was used to determine the limit 
load of structures (Dhalla and Jones 1981, 1986, Dhalla 
1984, 1987). A systematic adjustment procedure of elastic 
modulus resulted in inelastic response of the structures. The 
essence of EMAP was that local clamp stresses could be 
secondary owing to their redistribution on account of 

material or geometric non-linearity. 
Marriott (1988) proposed an iterative procedure, 

reduced modulus technique for estimating lower bound 
limit load on the basis of elastic analysis by generating 
statically admissible stress fields and using them in 
conjunction with established theorems of limit analysis. 
With this method, a series of linear elastic finite element 
analysis (FEA) were performed. An arbitrary load P in the 
first FEA that guaranteed yielding in the component was 
applied on structures. Then, the method identified stress 
intensities of all the elements that exceeded the code 
allowable stresses and were selected in each linear elastic 
FEA. The elastic moduli of the selected elements were 
modified using the following equation 

 

0
m
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S
E E
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  (37)

 

where, E0 was the original value of elastic modulus, Sm was 
the code allowable stress, SI was the stress intensity. 

The procedure was repeated until the maximum stress in 
the component did not change with further iteration or the 
equivalent stresses of all the elements were lower than the 
code allowable stress Sm or some other convergence criteria. 
Finally, limit load was determined using the following 
expression 

max

y
LP P




  (38)

 

where, σy was the yield strength, σmax was the maximum 
equivalent stress. 

 
2.2.2 Gloss R-Node method 
Seshadri (Seshadri 1991, Seshadri and Fernando 1992) 

developed the generalized local stress strain (GLOSS) R-
Node analysis which was a simple systematic method for 
inelastic evaluation of components and structures on basis 
of two linear elastic finite element analyses. The first linear 
elastic FEA was conducted for structures under considera-
tion with an arbitrary proportional load factor. The elastic 
modulus of all elements was modified using the following 
expression 

0
y

R
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E E


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where, E0 was the original value of elastic modulus, σy was 
the yield stress, σei was the von Mises equivalent stress from 
the initial elastic analysis of the ith element. 

The second linear elastic FEA which was carried out 
after making the above modification produced a stress 
distribution. The stresses of location points in the structures 
remained the same between the two FEA, because the 
stresses at these locations were insensitive to the material 
constitutive relations. These locations were called redistri-
bution nodes (R-Nodes). R-Node location was determined 
by the follow up angle θ which was expressed in the 
following 
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When θ = 90°, the effective stresses σnj(j) at R-Node 
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locations were linearly proportional to externally applied 
loads for elastic-perfectly plastic material model. Limit load 
was the corresponding external load when R-Node locations 
reached the yield strength of the structures and mechanical 
components 

y
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P P



 

  
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 (41)

 

where, n was the average R-Node stress locations, and can 
be expressed as follows 
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where, N was the number of R-Node locations in the 
structures and mechanical components. 

 

2.2.3 Elastic compensation method 
Based on the Gloss R-Node method, elastic compensa-

tion method (ECM) was proposed by Mackenzie and Boyle 
(1993) who used a sequence of linear elastic FEA with 
EMAP to estimate lower or upper bound limit load of 
structures and mechanical components. Similar to Gloss R-
Node method, limit load determined by elastic compensa-
tion method was several repeated elastic iterations FEA. 
The elastic modulus of elements in each elastic iterations 
FEA was modified according to Eq. (43). An arbitrary load 
P was imposed on the structures under consideration. The 
elastic modulus adjustment of all elements in each iteration 
was carried out as follows 
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where, i was the present iteration number, σ(i‒1) was the 
maximum equivalent stress of element from previous 
iteration, σn was a nominal stress value which had a certain 
arbitrariness, σn = [max(σi) + min(σi)]/2 or 
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Several iterations (5 or 10) were carried out until the 
maximum equivalent stress in the component at each 
subsequent iteration equals to or less than the yield strength. 
Therefore, the lower limit load PLi or upper limit load PUi in 
each iteration were given by 
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where, σy was the yield strength, σmax,j was the maximum 
von Mises equivalent stress 
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where, Di was the energy dissipation, Ui was the strain 
energy. 

The best estimation of lower or upper bound limit load 
for the structures under consideration was the iteration with 
minimum value of maximum stress. Thus, the lower bound 
limit load PL can be expressed as 

 

max( )L LiP P  (46)
 

The best estimation of upper bound limit load for the 
structures under consideration was the iteration with 
minimum value of maximum stress. Thus, the upper bound 
limit load PU can be expressed as 

 

min( )U UiP P  (47)
 
2.2.4 Modified elastic compensation method 
ECM can obtain better results for overall plastic damage 

of simple structures and uniform bearing structure. For local 
plastic damage of complex structures, the results of ECM 
often contained notable error. Because the essence of ECM 
was that the elastic modulus of all elements was modified, 
which resulted in the fact that von Mises equivalent stress 
of some elements decreased toward zero while the elastic 
modulus of these elements increased to infinity. This 
resulted in that excessively strengthened element stiffness, 
which would cause bigger numerical error for finite element 
analysis or numerical singularity of the procedure before the 
better limit load could be obtained. As a result, mistake 
occurred and the procedure aborted. Therefore, Yang et al. 
(2006) and Liu et al. (2009) proposed a modified ECM 
(MECM). Only when von Mises equivalent stress of the 
elements was larger than nominal stress did elastic modulus 
of these elements adjust as expressed in the following 
equation. 
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where, i was the present iteration number, σn was a nominal 
stress value and σi was the maximum equivalent stress of 
element from previous iteration. 

The nominal stress σn, which should satisfy 
 

   min maxi n i     (49)
 

The adjustment factor λ  [0, 1] was introduced in Eq. 
(49). Then the nominal stress σn was defined as follows 

 

     max max minn i i i          (50)
 

Limit load of MECM was determined by the above 
several equations. 

 
2.2.5 General formulation of 

elastic modulus adjustment procedure 
Elastic modulus adjustment procedure (EMAP) was 

adopted to modify the local elastic modulus, which was to 
generate statically admissible stress distribution in order to 
obtain the necessary stress redistribution. Numerous sets of 
statically admissible and kinematically admissible distribu-
tions can be generated in this manner, which enable calcula-
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tion of both lower and upper bounds limit loads. 
The elastic modulus of each element in the linear elastic 

finite element scheme was modified as follows 
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where, q was the elastic modulus adjustment parameter, σref 
was the reference stress, σeq was the equivalent stress and ‘i’ 
was the iteration index (i = 1 for the initial elastic analysis). 

The reference stress σ i
ref was given by the expression 
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In order to make use of Eq. (52) for the FEA solution, it 
can be written as follows 
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The above expressions described how the elastic 
modulus at a location with the equivalent stress σeq (e.g., the 
von Mises equivalent stress) was updated from the ith to the 
(i+1)th elastic iteration. This procedure was repeated until 
suitable convergence in a subsequent iteration was 
achieved. 

The exponent q controlled the amount of redistribution 
within the element, as shown in Fig. 21. The detailed 
development of these formal bases for the elastic modulus 
adjustment and related procedures had been provided by 
Ponter and co-workers (Ponter and Engelhardt 2000, Ponter 
and Chen 2001). The generalized approach was similar with 
the elastic modulus adjustment procedures and can be better 
described as “linear matching methods” where a sequence 
of linear solutions was matched to the nonlinear problem. 
The elastic modulus adjustment methods relied on the 
convergence of the specific moduli adjustment procedure. 
This problem was also addressed by Ponter and Engelhardt 
(2000), who showed that the convergence of suitable 
matching methods was theoretically guaranteed for 
practically important yield functions. 

 

2.2.6 Linear matching method 
Linear matching method (LMM) (Ponter and Carter 

1997a, b) was also a nonlinear programming technique, 
developed out of the ECM. LMM attempted to relate a 
series of incompressible linear solutions to the limit state 
described in Section 2.2.1. LMM was different with ECM. 
LMM was that the standard stress-strain relationship of 

 
 

isotropic material was divided into two separate linear 
relationships, namely the relationship of the deviatoric 
stress and hydrostatic stress versus strain rates components, 
respectively. 

LMM in limit analysis which was also an iterative 
method with a linear elastic stress solution similar to ECM 
required varying spatially the shear modulus. A new 
distribution of shear modulus was evaluated by the 
following equation 
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where, k was the iterative number, μk+1 and μk was the shear 
modulus in the (k+1)th and kth iterative process. σy was the 
yield stress and )( k

ij was von Mises equivalent stress in 
the kth iterative number. 

The primary application of these methods was the 
evaluation of limit load and shakedown limits for complex 
structural components. The lower and upper limit load 
multiplier may be evaluated by LMM at each iterative step, 
as the following Eqs. (60)~(63). 

 

2.2.7 Equivalent strain energy density method 
Based on total strain energy concept, Molski and Glinka 

(1981) found that the plastic stress and strain in notch root 
were equivalent to the elastic stress-strain field. The secant 
modulus Es in the plastic zone was expressed as the ratio of 
the yield stress to the total strain, resulting in the following 
equation 
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where, E was the actual elastic modulus, σy was the yield 
stress, σ was the stress in notch root. 

Adibi-Asl et al. (2006) used Eq. (68) to modify the 
elastic modulus in the EMAP. The finite element implemen-
tation of the equation was expressed as follows 
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where, 1i
kE  was the elastic modulus of the element k at 

increment i. σarb was an arbitrary value and similar to Eq. 

Fig. 1 Stress redistribution regions 
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(50). 
 
2.2.8 Direct secant method 
Direct secant method was proposed by Adluri (1999) 

based on R-Node family of techniques for limit load 
determination of structures or components. Direct secant 
method only applied to simple framed structures and plates. 
Similar to R-Node family method, two linear elastic finite 
element analyses (FEA) were performed. 

A purely elastic analysis was first carried out, the 
maximum bending stress location was the first location of a 
plastic hinge. After the formation of the first plastic hinge, 
the stress will redistribute. The other peak moments in the 
first elastic analysis were thereby not at the locations of 
potential plastic hinges. And then the rigidity was modified 
based on elastic analysis results. The rigidity was modified 
in the following equation 

 

     0 max

0

q

new old

M
I x I x

M x
  (58)

 

where, M0(x) was the bending moment from an initial 
analysis. The exponent q is usually taken between 1 and 2. 
M0-max was not less than M(x), Inew(x) was greater or equal to 
Iold(x). 

The second elastic analysis was executed on the basis of 
the modification Eq. (75). The modified structure was 
analyzed again with the same load, the same supported but 
the new rigidity. The peak moments and other relevant 
stress resultants were obtained. The same opportunities of 
all the elements led to all the potential locations of plastic 
hinges appearing at the same time. The selection of 
potential location of plastic hinges can be done in several 
ways. After selecting the locations of plastic hinges, limit 
load can be calculated by the following equation 

 

lim P

peak ave

P M

P M 

  (59)

 

where P was the externally applied vector load and can had 
any non-zero value. MP was the plastic moment and was 
determined by the geometrical properties of the cross-
section. MPeak-ave was the peak average bending moment in 
the second elastic analysis. At the location of these peak 
bending moments, plastic hinges form and they contributed 
to the plastic collapse. 

 
2.2.9 Brief summary 
In conclusion, a series of pseudo-elastic finite element 

methods based on R-Node method or similar to R-Node 
method, which were linear elastic stress solution and need 
to be several repeated elastic iterations, had a similar feature 
in their modified elastic modulus, shear modulus or rigidity. 
The flowchart of the R-Node family methods (i.e., EMAP) 
was given in Fig. 22. 

 
 

3. Application and discussion 
 
Taking a cylinder with nozzle (Chen 2005) as an 

example in this study, the limit load of a cylinder with 

 
 

nozzle was used by pseudo - elastic finite element method 
in conjunction with robust methods by mean of finite 
element software ANSYS. 

 
3.1 Limit load determined by EMAP 
 
Limit load of the cylinder with nozzle was determined 

by the general formulation of elastic modulus adjustment 
procedure combining with lower and upper bound theorem 
in Section 2.1, as listed in Table 6. The reference volume in 
the multiplier )(0

2 Vm was sub-volume corresponding to 
last iteration. Fig 23 indicated the multipliers of robust 
methods. 

 
3.2 Results and discussion 
 
The cylinder with nozzle was modeled using commercial 

finite element program ANSYS. Limit load of the cylinder 
with nozzle was determined by linear elastic EMAP 
iteration. Theses evaluations were supported by a macro 
program, using the ANSYS Parametric Design Language 

Fig. 2 Flowchart of the EMAP 
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(APDL). This program can be conveniently used as part of 
a post-processing program. The main characteristics in this 
study can be described as follows: 

 

(1) Reinhardt and Seshadri (2003) showed that the 
classical lower bound multiplier (mL) was less than 
or equal to the exact limit load multiplier. 

(2) Reinhardt and Seshadri (2003) showed that the 
classical upper bound multiplier (mU) was greater 
than or equal to the exact limit load multiplier. 

(3) If plastic collapse occurred over a localized region 
of the component or structure, the multiplier m0

1 
was significantly overestimated if it was based on 
the total volume. The m0

1 multiplier were shown to 
be greater than the classical lower bound multiplier 
(mL) and greater than the classical upper bound 
multiplier (mU) (Reinhardt and Seshadri 2003). 

(4) The m0
2 multiplier were shown to be greater or 

equal than the classical lower bound multiplier 
(mL) and greater or equal than the classical upper 
bound multiplier (mU) (Pan and Seshadri 2001). 

(5) The multiplier m0
1 based on the total volume was 

significantly overestimated. Therefore, the 
reference volume had been presented to identify 
the “kinematically active” region of the component 
or structure that participated in plastic action. 

(6) The lower bound limit load multiplier m′ obtained 
from Mura’s extended variational theorem was 
shown to be less than that obtained by applying 
classical lower bound theorem (m′ < mL). The 
multiplier m′ was significantly underestimated if it 
was based on the total volume. 

(7) Seshadri and Indermohan (2004) showed that the 
m″ multiplier based on m0

1 need not be a lower 
bound. 

(8) The mα multiplier depended on the parameters m0 
and mL. The mα multiplier was an improved 
estimate of the analytical limit load multiplier 
compared to the bounds m0 and mL. Although it 
was often found to be an improved lower bound, it 
could not be established as a lower bound in 
general. The mα multiplier method was applicable 
if a component fell inside the “mα triangle”. The 
region of “mα triangle” was 1 ≤ m0 / mL ≤ 1 + 2  
and 1 ≤ m0 / m ≤ 1 + 2 . 

(9) In order to overcome these limitations, the mT
α 

method is developed. The mT
α method was 

developed as a viable tool for estimating the limit 
load of a general class of mechanical components 
and structures by using a single linear elastic 
analysis. The limit load multiplier mL was 
evaluated by making use of the limiting tangent; 
upper bound multiplier m0 and classical lower 
bound multiplier mL. All necessary information can 
be extracted from the initial linear elastic analysis. 
The mT

α method can take practically any value of 
m0 / mL, which extended the domain of application 
of the proposed mT

α method beyond the “mα 
triangle”. The mT

α method was applied to a number 
of mechanical components and structures, ranging 
from simple to relatively complex geometric 
configurations, and the results compared well with 
those obtained from the corresponding analytical 
and inelastic finite element analysis results. 

(10) The mβ multiplier was a lower bound value and 
was determined that relied on the entire stress 
distribution rather than the maximum stress. For 
any given iteration, the (mβ, mU) pair provided the 
minimum spread in terms of bounds on the limit 
load multipliers. The mβ multiplier was a better 
lower bound than the mL multiplier and mα 
multiplier. 

 
3.3 Limit load determined 
 
3.3.1 Numerical example 
Gloss R-Node method, elastic compensation method 

and modified elastic compensation method were used to 
determined limit load of the connection of flat head and 
cylinder under internal pressure. Arbitrary load was 100 
MPa, the iterations were ten. Elastic modulus of the 
material was E = 212 GPa, yield strength was Sm = 255 
MPa. Element type PLANE82 with eight nodes was applied. 
Due to the symmetry of the structure, a quarter of the 
connection of flat head and cylinder was modeled, as shown 
in Fig. 24. Symmetry plane was applied symmetric load. 
The end of cylinder was applied axial constraint. Internal 

Table 1 Numerical solution of limit load 

No. Methods Multiplier Limit load/MPa 

1 mL 136.1 2.72 

2 mU 231.4 4.62 

3 m′ 108.2 2.16 

4 m0 275.2 5.5 

5 m0
1 275.2 5.5 

6 m0
2 231.4 4.63 

7 mα 168 3.38 

8 mT
α 211.8 4.24 

9 m″ 260.1 5.2 

10 mβ 273.6 5.47 

11 )(0
2 Vm  277 5.54 

 

Fig. 3 The multipliers of robust methods 
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pressure was applied on the internal surface of flat head and 
cylinder. Limit load of the connection of flat head and 
cylinder under internal pressure, which was determined by 
Gloss R-Node method, elastic compensation method and 
modified elastic compensation method, was listed in Table 
7. 

 

3.3.2 Discussion 
Zhou et al. (2006) observed that Gloss R-Node method, 

which was suitable for two dimensional problems, the mesh 
of finite element model need along the thickness direction 
was progressive refinement. Therefore, the application of 
Gloss R-Node method for three dimensional problems was 
restricted. Moreover, Mackenzie and Boyle (1993) 
investigated that Gloss R-Node method may appear to 
numerical singular problem in the process of the modified 
elastic modulus, thus elastic modulus of finite element may 
differ more than one order of magnitude. Yang et al. (2005) 
and Nadarajah et al. (1996) indicated that ECM, which was 
regarded as an evaluation method of ultimate bearing 
capacity of structures or component, was adopted by ASME 
code, and so on. ECM was widely applied in the design and 
safety assessment of pressure vessel. By mean of several 
elastic finite element iterations, limit load was determined 
by ECM. Elastic modulus of all elements was modified in 
each iteration, and then the stresses were redistributed. 
When Mises stress of the element tended to zero, and then 
element stiffness would be excessively strengthened, which 
would result in higher numerical error for finite element 
analysis. ECM can obtain high accuracy for simple 
structure or component. But ECM had high error for 
complex structure or component. When the structure 
appeared to lower stress or was applied uneven loading, the 
no convergence iteration results were usually caused. 
Therefore, Gloss R-Node method and ECM were not used 
to a cylinder with nozzle in this study. 

According to the shortcoming of ECM, MECM was 
proposed by Liu et al. (2009) who thought that MECM was 
simple, efficient, convenient and significant for engineering 
application. For complex structures, limit load determined 
by MECM had high accuracy. Therefore, MECM can be 
applied to the designing of the structural engineering and 
safety assessment. Liu et al. (2009) studied limit load of the 
cylinder with nozzle which was determined by ECM, MECM 

 
 

and elastic-plastic incremental method, it was found that the 
results of MECM were closer to those of elastic-plastic 
incremental method. But the computing time of MECM was 
longer than that of ECM. 

 
 

4. Conclusions 
 

The pseudo-elastic finite element method was a simple 
and robust methods for identifying the limit load for a 
component or structure. The method can be formulated to 
use only linear elastic tools available in all finite element 
software. It was easily automated in standard finite element 
packages with a moderate amount of user programming. 

A computational implementation of the robust method 
was described in this study. The robust method was found to 
provide good accuracy approximations of the limit load 
obtained using other methods. Taking a cylinder with nozzle 
as an example, the results of limit loads of a cylinder with 
nozzle were calculated and compared. Through comparison 
of elastic-plastic finite element analysis, it was found that 
robust methods using elastic modulus adjustment techniques 
can save a lot of computation time. Limit load determined 
by some of robust methods was in well agreement with 
twice elastic slope criterion. In recent years, the develop-
ment of robust methods has been beneficial for shakedown 
analysis and ratcheting boundary determination of structures 
or components. 
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