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Abstract.    This paper deals with the analysis of vibration of antisymmetric angle-ply plates using spline method for 
higher order shear theory. Free vibration of laminated plates is addressed to show the capability of the present method 
in the vicinity of higher order shear deformation theory and simply supported edges of plates. The coupled 
differential equations are obtained in terms displacement and rotational functions. These displacement and rotational 
functions are approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved 
numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The antisymmetric 
angle-ply fiber orientation are taken as design variables. Numerical results enable us to examine the frequencies for 
various geometric and material parameters and accuracy and effectiveness of the proposed method is also verified by 
comparative study. 
 

Keywords:    antisymmetric angle-ply; free vibration; shear deformation theory; spline approximation; 
eigenvalue 
 
 

1. Introduction 
 

Laminated composite plates are extensively been used in civil and aerospace engineering. The 
attractive features of using laminated composites is because they possess numerious favourable 
mechanical properties such as high stiffness to weight and low density, which is particulary useful 
for aerospace and submarine structures because they require high stiffness and light weight. To use 
laminated plates structures efficiently, it is necessary to develop appropriate theories (Pagano 1970, 
Ferreira 2005) to predict accurately their structural and dynamic behaviour. The 3D elasticity 
theory was proposed by Noor (1973) to improve the accuracy of transverse shear stresses. While 
calculating 3D continuum elements for describing the response of thin structures, the 
computational cost become a serious issue. Single layer plate theories were proposed to reduce the 
computational cost and to convert 3D problem into 2D problem. Moreover, several laminated 
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plates theories were developed. Among them classical laminated plate theory (CLPT) capable of 
measuring the stresses of thin composite plates while ignoring the transverse shear deformation 
(Reissner and Stavsky 1961). The first order shear deformation theory (FSDT) (Reissner 1972) 
was developed to measure the stresses of thin and moderately thick plates. According to this theory 
the transverse shear stresses are constant through the thickness of the plate and a shear correction 
factor were introduce to correct the discrepancy in the shear forces of FSDT and 3D elasticity 
theory (Pai and Schulz 1999). Shear correction factor depends upon the laying angle, material 
constants, geometry and boundary conditions, thus making this factor difficult to determine 
(Mackerle 2002, Yang et al. 2000). To overcome the discrepancies of the FSDT, higher-order shear 
deformation theories (HSDT) were developed to accurately evaluate the transverse shear stresses 
which effectively exist in thick plates. In higher-order plate theories the displacements are 
expanded up to any desired degree in terms of thickness coordinates (Vinson 2001, Noor et al. 
1996) which avoid the need for a shear correction factor. Further, HSDT yields more accurate 
inter-laminar stress distributions and satisfies the conditions of zero shear stress at the top and 
bottom surfaces of the plate. In third-order plate theory the displacement are expanded up to the 
cubic term in thickness coordinatesto have quadratic variation of transverse shear strains and 
transverse shear stresses through the plate thickness. This avoid the need for shear correction 
coefficient (Reddy 2006). 

Higher-order shear deformation theory was used by Ferreira et al. (2003) to analyse the 
composite plates using multiquadric radial basis function. Neves et al. (2013) investigated the 
static, free and buckling analysis of plates using quasi 3-D higher-order shear deformation theory. 
Static inconsistencies of beams, plates and shells were investigated using higher-order shear 
deformation theory by Groh and Weaver (2015). Khandelwal et al. (2015) studied the vibration 
response of laminated composite plates with weakly boded layers. Free vibration of composite 
plates using higher-order shear deformation theory was investigated by Kant and Swaminathan 
(2001, 2002). Naserian-Nik and Tahani (2010) analysed free vibration of moderately thick 
rectangular laminated composite plates using semi-analytical method under different boundary 
conditions. Static and dynamic analysis of sandwich and laminated composite plates and shells 
were analysed using higher-order shear deformation theory by Mantari et al. (2011, 2012). 
Recently, Mantari and Granados (2015) examine the thermoelastic analysis of sandwich plates 
using quasi 3-D hybrid type HSDT. Further, Mantari and Soares (2015) used hybrid-type quasi-3D 
HSDT to analyse advanced composite plates. Pekovic et al. (2014) studied the bending analysis of 
composite plates under higher-order shear deformation theory. Phung-Van et al. (2015a) analyze 
cell-based three-node Mindline plate using C0-type higher-order shear deformation for 
geometrically non linear analysis of composite plates. In another paper Phung-Van et al. (2015b) 
analyse composite plates having piezoelectric sensors and actuators using HSDT. Thai et al. (2015) 
studied the isogeometric analysis of composite plates using HSDT. C0-type higher-order shear 
deformation theory was used for analysing laminated plates by Tran et al. (2015). Zhen and Wanji 
(2006) investigated the free vibration of laminated and sandwich plates using global-local higher-
order shear deformation theory. Reddy’s higher-order theory was used to examine the free 
vibration of composite sandwich plates by Nayak et al. (2002). Zuo et al. (2014, 2015) analysed 
the composite plates using wavelet finite element method and higher-order plate theory. A refined 
laminated plate theory was used by Wang and Shi (2015) to account the third order shear 
deformation and interlaminar transverse stress. Yang et al. (2013) conducted free vibration and 
buckling analysis of plates based on Reissner-Mindlin theory using a finite element method (FEM) 
of B-spline wavelet on the interval (BSWI). 
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This paper aims to investigate the free vibration of anti-symmetric angle-ply laminted 
platesusinghigher-order shear deformation theory and applying spline approximation technique. 
The plates kinematics is based on third order shear deformation theory (TSDT). The displacement 
and rotational functions are predicted using spline approximation of suitable order. Collocation 
with these splines yields a set of field equations which along with the equations of boundary 
conditions, reduce to system of homogeneous simultaneous algebraic equations on the assumed 
spline coefficients. Then the problem is solved using eigensolution technique to obtain the 
frequency parameter. The eigenvector are the spline coefficients from which the mode shapes can 
be constructed. The simply supported boundary condition is considered to show the parametric 
effects of plate’s aspect ratio, side-to-thickness ratio, laying angle, number of lamina and different 
lamination materials on the frequency of the plate. The obtained results are presented in graphs 
and tables. 
 
 
2. Formulation 
 

The displacement field considered according to third order shear deformation theory (Reddy 
2006). 
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were u, v and w are the displacement components in the x, y and z directions respectively, u0 and v0 
and w0 are the in-plane displacements of the middle plane and ϕx and ϕy are the shear rotations of 
any point on the middle surface of the plate. 

 

2.1 Kinematics 
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and the shear strain components are defined as 
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2.2 Constitutive equations 
 

The stress-strain relations for the k-th layer, after neglecting transverse normal strain and stress, 
are of the form 
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When the materials are oriented at an angle θ with the x-axis, the transformed stress-strain 
relations are 
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where ,)(k
ijQ  as functions of )(k

ijC  are fully furnished in Viswanathan and Lee (2007). The stress 
resultants are defined as 
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where Ni, Mi and Qi are stress, moment and shear resultants respectively. Pi and Ri denote higher-
order stress resultants. The stress-strain relations are obtained as follows 
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Stiffness coefficients are defined as 
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for i, j = 4, 5 where the elastic coefficients Aij, Bij and Dij (extensional,bending-extensional 
coupling and bending stiffnesses) and Eij, Fij and Hij are the higher-order stiffness coefficients. The 
equilibrium equations considered are as follows 
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and ρ is the material density of the k-th layer and 
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1M M c P    ,   2Q Q c R    ,   1 2i i iJ I c I   ,   2
2 2 1 4 1 62K I c I c I   . 

 
Substitute Eqs. (2) and (3) into Eq. (7) and then substituting into Eq. (9). Further, equating the 

following laminate stiffnesses equal to zero for anti-symmetric angle-ply laminates (Reddy 1997) 
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The displacements and rotational functions are assumed in the separable form for 
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The non-dimensional parameters introduced are as follows 
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where Lij′s are shown in Appendix. 
2.3 Method of solution 
 
The differential equations in Eq. (11) contain derivatives of second order in U(X), third order in 

V(X), fourth order in W(X), third order in ΦX(X) and second order in ΦY(X). These functions are 
approximated by using cubic and quantic spline functions , in the range of X  [0, 1], since splines 
are relatively simple and elegant and use series of lower order approximations rather than global 
higher order approximations, affording fast convergence and high accuracy. 

The displacement functions U(X), V(X) and W(X) and the rotational functions ΦX(X) ΦY(X) are 
approximated respectively by the splines 
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Here H(X ‒ Xj) is the Heaviside step function and N is the number of intervals into which the 

range [0, 1] of X  is divided. The points ,
N

s
XX s  (s = 0, 1, 2, ......, N) are chosen as the 

knots of the splines, as well as the collocation points. Thus the splines are assumed to satisfy the 
differential equations given by Eq. (12), at all Xs. The resulting expressions contain (5N + 5) 
homogeneous system of equations in the (5N + 21) spline coefficients. 

The boundary condition considered on the edges x = 0 and x = a are 
 
(1) (S-S): both the ends simply supported 
This boundary condition gives 13 more equations, thus making a total of (5N + 18) equations, 

in the same number of unknowns. The resulting field and boundary condition equations may be 
written in the form 

     2M q P q  (13)
 

where [M] and [P] are square matrices, {q} is a column matrix. This is treated as a generalized 
eigenvalue problem in the eigenparameter λ and the eigenvector {q} whose elements are the spline 
coefficients. 
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3. Results and discussion 
 

The higher order shear deformation theory is used to investigate the free vibration of anti-
symmetric angle-ply plates for simply supported end condition. All numerical computations in this 
section, unless otherwise stated, two materials are considered: Kevlar-49/epoxy (KE) and 
Graphite/Epoxy (AS4/3501-6) (GE). Two, four, and six layered plates with anti-symmetric angle-
ply orientations are considered. 

 
3.1 Convergence study 
 
The frequency parameter with respect to different configurations are carried out to confirm the 

convergence of the spline method for antisymmetric angle-ply plates. The number of subintervals 
N of the range X  [0, 1]. The value of N started from 4 and finally it is fixed for N = 18, since for 
the next value of N, the percent changes in the values of λ are very low, the maximum being 3%. 

 
3.2 Validation 
 
The accuracy and effectiveness of the proposed method is verified with the number of previous 

studies available in the literature. Table 1 shows the comparison of the fundamental frequency with 
respect to the side-to-thickness ratio and aspect ratio of the present results compared with 
Swaminathan and Patil (2008a), for two layered antisymmetric angle-ply square laminated plates 
under higher order shear deformation theory. It can be seen from the Table 1, some of the present 
values closer and few values are significantly lesser than the results obtained by Swaminathan and 
Patil (2008a). Table 2 depicts the comparison of fundamental frequencies of four layered anti 

 
 

Table 1 Non-dimensioned fundamental frequencies for simply supported two layered antisymmetric 
angles-ply (θ/‒θ) square laminated plate 

2
2( / ) /b h E   , 

13 231 12
12 13 23

2 2 2 2
40, 0.6, 0.5, 0.25G GE G

E E E E         
 

θ Source 
a/h 

2 4 

15° 

Present 4.8711 8.3495 

Swaminathan 
and Patil 
(2008a) 

Model 1 5.1600 8.5142 

Model 2 5.1390 8.4789 

Model 3 5.6280 8.8117 

Model 4 5.9909 9.4119 

 a/b 

 1 1.5 

Present 8.3495 3.8611 

Swaminathan 
and Patil 
(2008a) 

Model 1 8.5142 4.6111 

Model 2 8.4789 4.5911 

Model 3 8.8117 4.7931 

Model 4 9.4119 5.2226 
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Table 2 Non-dimensionalized fundamental frequencies for simply supported four layered antisymmetric 
angle-ply (45°/‒45°/45°/‒45°) square laminated plate 

2
2( / ) /b h E   , 

13 231 12
12 13 23

2 2 2 2
40, 0.6, 0.5, 0.25G GE G

E E E E         
 

Lamination and 
number of layers 

Source 
a/h 

2 4 

45°/‒45°/45°/‒45° 
Present 5.7035 10.3677 

Swaminathan and 
Patil (2008b) 

5.5674 10.0731 

6.1067 10.6507 
 
 

Table 3 Fundamental frequency λ of four layered anti-symmetric plates (45°/‒45°/45°/‒45°) a / h =20 

2
2

2

a
E h

  
, 

13 231 12
12

2 2 2 2
40, 0.6, 0.5, 0.25G GE G

E E E E     
 

Sources 
a/b 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Present 8.8974 10.2512 12.8226 15.9767 19.6810 25.6715 29.6799 33.2168 38.7031 44.7735

Ghosh and 
Dey (1994) 

9.52 11.70 14.72 18.26 22.19 26.45 31.02 35.89 41.07 46.54

Reddy 
(1979) 

9.475 11.767 14.896 18.557 22.584 26.857 31.401 36.249 41.372 46.789

Bert and 
Chen (1978) 

9.300 11.46 14.45 17.97 21.87 26.12 30.68 35.56 - 46.26

 
 

Table 4 Fundamental frequency variation of four layered plates with respect to side-to-thickness ratio 
a / h = 0.4 

a/h 
30°/‒30°/30°/‒30° 
(GE/GE/GE/GE) 

45°/‒45°/45°/‒45°
(GE/GE/GE/GE) 

60°/‒60°/60°/‒60° 
(GE/GE/GE/GE) 

10 0.7485 0.8737 1.8039 

20 0.5160 0.69328 1.4055 

30 0.5043 0.6218 1.1095 

40 0.4837 0.5912 0.9823 

50 0.4043 0.5606 0.7622 

60 0.3654 0.4959 0.6133 

 
 

symmetric angle-ply plates for side-to-thickness ratio fixed as 2 and 4 showing that the present 
results are closer to the results of Swaminathan and Patil (2008b). Table 3 presents the comparison 
of current results with the FSDT with the fundamental frequency λ for four layered anti-symmetric 
angle-ply plates (45°/‒45°/45°/‒45°). It is observed that thepresent results are significantly lesser 
than the results obtained using FSDT (Bert and Chen 1978, Ghosh and Dey 1994, Reddy 1979). 

Table 4 depicts the effect of side-to-thickness ratio on the fundamental frequency of four 
layered plates consisting of GE material with different laying angles. The aspect ratio a / b = 0.4 is 
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fixed. It is seen that frequency increases with the increase of laying angle. Further, frequency 
decreases with the increase of side-to-thickness ratio. 

 
3.3 Effect of differenr materials and geometric parameters on the frequency of 

antisymmetric angle-ply plates 
 
3.3.1 Effect of aspect ratio 
Fig. 1 depicts the effect of aspect ratio a / b, laying-angle and material sequence on the value of 

frequency parameter λm of six layered plates. The laying angle 45°/‒30°/60°/‒60°/30°/‒45° and 
 
 

 

Fig. 1 The frequency variation of six layered anti-symmetric angle-ply plates with respect to aspect 
ratio. 45°/‒30°/60°/‒60°/30°/‒45° (KE/GE/KE/KE/GE/KE) 

 
 

 
(a) (b) (c) 

Fig. 2 The frequency variation of six layered anti-symmetric angle-ply plates with respect to aspect 
ratio: (a) 30°/‒30°/30°/‒30°/30°/‒30°; (b) 45°/‒45°/45°/‒45°/45°/‒45°; (c) 60°/‒60°/60°/‒60°/ 
60°/‒60° consisting of KE material 
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material combination (KE/GE/KE/KE/GE/KE) is considered and side-to-thickness ratio is fixed as 
a / b = 10. It can be seen that the frequency value decrease slowly till a / b = 0.6 and increases 
gradually afterwards. 

The variation of frequency parameter λm with respect to the aspect ratio is shown in Fig. 2. The 
material values of KE is used and six layered plates with different ply anglesare considered. The 
frequency valuesare decreasesin the range 0.2 < a / b < 0.6 and slowly increases afterwards. 
Moreover, the frequency values are increases with increasing ply-angles. 

Fig. 3 shows the variation of frequency value with respect tothe aspect ratio for four layered 
plates with the different ply-angles consisting of materials KE and GE arranged in the order of 
KE/GE/GE/KE. The maximum relative values increase for the first three modes, in the range 0.2 ≤ 

 
 

 
(a) (b) (c) 

Fig. 3 The frequency variation of four layered anti-symmetric angle-ply plates with respect to aspect ratio: 
(a) 30°/‒60°/60°/‒30°; (b) 60°/‒45°/45°/‒60°; (c) 45°/‒60°/60°/‒45° consisting of KE/GE/GE/KE 
materials combination 

 
 

 
(a) (b) (c) 

Fig. 4 The frequency variation of two layered anti-symmetric angle-ply plates with respect to laying-angle 
(a) a / b = 0.4; (b) a / b = 1; (c) a / b = 1.6 consisting of KE material 
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(a) (b) (c) 

Fig. 5 The frequency variation of four layered anti-symmetric angle-ply plates with respect to laying-angle:
(a) a / b = 0.4; (b) a / b = 1; (c) a / b = 1.6 consisting of (KE/GE/GE/KE) materials combination 

 
 

(a / b) ≤ 2.2, are 0.096119, 0.27516 and 0.467566 for Fig. 3(a), 0.426667, 0.384791 and 0.405663 
for Fig. 3(b) and 0.193654, 0.578167 and 0.688356 for Fig. 3(c). 

 
3.3.2 Effect of ply-angle 
The effect of ply-angle θ and aspect ratio shows that the frequency value decreases between 0 ≤ 

θ ≤ 20 and significantly increases afterwards for two layered antisymmetric plates using KE 
material. The aspect ratio is fixed as a / b = 0.4 for Fig. 4(a), a / b = 1 for Fig. 4(b), and a / b = 1.6 
for Fig. 4(c). 

Four layered anti-symmetric angle-ply plates with material combination (KE/GE/GE/KE) are 
considered to examine the effect of ply-angle on the value of the frequency parameter. Figure 5. 
shows that the frequency value iniallly decreases for certain value and increases afterwards.The 
aspect ratio is fixed as a / b = 0.4 for Fig. 5(a), a / b = 1 for Fig. 5(b), and a / b = 1.6 for Fig. 5 (c). 

 
 

 
(a) (b) 

Fig. 6 The frequency variation of six layered anti-symmetric angle-ply plates with respect to laying-
angle consisting of: (a) (KE/GE/KE/KE/GE/KE); (b) (GE/KE/GE/GE/KE/GE) materials 
combination a / b = 1 
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Fig. 6 shows six layered antisymmetric angle-ply plates with two different material 
combinations are considered (KE/GE/KE/KE/GE/KE), (GE/KE/GE/GE/KE/GE). The aspect ratio 
is fixed as a / b = 1. It is observed that there is a decrease and then increase in the frequency values 
with ply-angle increases. 

 
3.3.3 Effect of side-to-thickness-ratio 
The variation of the frequency parameter between the range of side-to-thickness ratio 10 ≤ (a / 

h) ≤ 60 is presented in Fig. 7 showing that frequency value decraeases strictly between 10 ≤ (a / h) 
≤ 20 and decraeases slowly afterwards. Six layered antisymmetric plates with laying-angle 
60°/‒45°/30°/‒30°/45°/‒60° (GE/KE/GE/GE/KE/GE) is considered. The aspect ratio is fixed as a / b 
= 1 and a / b = 1.6 for Figs. 7(a) and (b) repectively. 

Fig. 8 illustrates the effect of different material combinations and side-to-thickness ratio with 
ply-angle arranged as 30°/‒45°/60°/‒60°/45°/‒30° and material combinations for Fig. 8(a) as 

 
 

 
(a) (b) 

Fig. 7 The frequency variation of six layered anti-symmetric angle-ply plates with respect to side-to-
thickness ratio consisting of (a) a / b = 1; (b) a / b = 1.6, laying-angle 60°/‒45°/30°/‒30°/45°/‒60° 
materials combination (GE/KE/GE/GE/KE/GE) 

 
 

 
(a) (b) 

Fig. 8 The frequency variation of six layered anti-symmetric angle-ply plates with respect to side-to-
thickness ratio consisting of laying-angle 30°/‒45°/60°/‒60°/45°/‒30°; (a) (GE/KE/GE/GE/KE/GE);
(b) (KE/GE/KE/KE/GE/KE) materials combination, a / b = 0.4 
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(GE/KE/GE/GE/KE/GE) and Fig. 8(b) as (KE/GE/KE/KE/GE/KE) on the frequency parameter 
value. The aspect ratio is fixed as a / b = 0.4. It can be seen that the frequency value decreases 
strictly between 10 ≤ (a / h) ≤ 20 and slowly decreases afterwards. 

The effect of different aspect ratio and side-to-thickness ratio on the frequency parameter value 
of six layered plates with laying-angle 30°/‒45°/60°/‒60°/45°/‒30° (KE/GE/KE/KE/GE/KE) is 
presented in Fig. 9. The results shows that frequency value decreases with the increase of side to 
thickness ratio. Further, the frequency value is higher for aspect ratio a / b = 1 as compare to a / b = 
0.4. 

Four layered plates with anti-symmetric layers 30°/‒30°/30°/‒30°, 45°/‒45°/45°/‒45° and 
60°/‒60°/60°/‒60° and material combination as (GE/KE/KE/GE) are considered in Fig. 10. The 

 
 

 

Fig. 9 The fundamental frequency variation of six layered anti-symmetric angle-ply plates with 
respect to side-to-thickness ratio consisting of laying-angle 30°/‒45°/60°/‒60°/45°/‒30° 
(KE/GE/KE/KE/GE/KE) materials combination: (a) a / b = 0.4; (b) a / b = 1 

 
 

 
(a) (b) (c) 

Fig. 10 The fundamental frequency variation of four layered anti-symmetric angle-ply plates with respect 
to side-to-thickness ratio consisting of laying-angle: (a) 30°/‒30°/30°/‒30°; (b) 45°/‒45°/45°/‒45°; 
(c) 60°/‒60°/60°/‒60° (GE/KE/KE/GE) materials combination, a / b = 1 
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(a) (b) (c) 

Fig. 11 The fundamental frequency variation of two layered anti-symmetric angle-ply plates with respect to 
side-to-thickness ratio consisting of laying-angle: (a) 30°/‒30°; (b) 45°/‒45°; (c) 60°/‒60° (GE/GE) 
materials combination, a / b = 1 

 
 
aspect ratio is fixed as a / b = 1. The effect of side-to-thickness ratio shows that frequency 
decreases significantly in the beginning and decreases slowly between 20 ≤ a / b ≤ 60. Further, it is 
also seen that frequency value increases with the increase of laying-angle. 

The frequency vatiation of two layered plates with laying-angles as 30°/‒30°, 45°/‒45°, 
60°/‒60° and material combination as (GE/GE) is presented in Fig. 11. The aspect ratio is fixed as 
a / b = 1. It is observed that frequency decreases with the increase of side-to-thickness ratio. 
 
 
4. Conclusions 
 

In this paper the free vibration of anti-symmetric angle-ply platesare analysed using spline 
approximationunder higher-order shear deformation theory. The vibrational behavior of 
laminatedplates is examined for simply suportedboundary conditions. The vibration characteristic 
of the plates is examined for aspect ratio, ply-angle, side-to-thickness ratio, differentnumber of 
layersand two different lamination materials. It is concluded that variation of the geometric 
parameters and materials effect the frequencies of plates, which may be beneficial for the 
designers of related fields. 
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