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Abstract.    The modified couple stress-based third-order shear deformation theory is presented for sigmoid 
functionally graded materials (S-FGM) plates. The advantage of the modified couple stress theory is the involvement 
of only one material length scale parameter which causes to create symmetric couple stress tensor and to use it more 
easily. Analytical solution for dynamic instability analysis of S-FGM plates on elastic medium is investigated. The 
present models contain two-constituent material variation through the plate thickness. The equations of motion are 
derived from Hamilton’s energy principle. The governing equations are then written in the form of Mathieu-Hill 
equations and then Bolotin’s method is employed to determine the instability regions. The boundaries of the 
instability regions are represented in the dynamic load and excitation frequency plane. It is assumed that the elastic 
medium is modeled as Pasternak elastic medium. The effects of static and dynamic load, power law index, material 
length scale parameter, side-to-thickness ratio, and elastic medium parameter have been discussed. The width of the 
instability region for an S-FGM plate decreases with the decrease of material length scale parameter. The study is 
relevant to the dynamic simulation of micro structures embedded in elastic medium subjected to intense compression 
and tension. 
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1. Introduction 
 

In 1984, the concept of functionally graded materials (FGMs) was first introduced. FGM is a 
type of composite material in which material properties continuously vary from the surface of one 
side to the surface of the other side, thus removing the stress concentration phenomenon, which is 
a characteristic phenomenon observed in laminated composite materials. FGM is widely used in 
various structures in civil engineering, aerospace, shipbuilding and machinery sectors. Many 
computational models have been developed to estimate the structural behavior of FGM, given the 
wide spread use of engineering structures employing FGM. 

The FGMs which are made from a mixture of two materials to achieve a composition that 
provides certain functionality. These problems are reduced by gradual variation of the constituents’ 
volume fraction rather than abruptly changing it across the interface in FGM (Hirano and Yamada 
1988). Power-law function (Bao and Wang 1995, Jin and Paulino 2001), and exponential function 
(Delale and Erdogan 1983, Erdogan and Chen 1998) are commonly used to describe the variations 
of material properties of FGM. However, in both power-law and exponential functions, the stress 
concentrations appear in one of the interfaces in which the material is continuously but rapidly 
changing. Therefore, Chung and Chi (2001) proposed a sigmoid FGM (S-FGM), which was 
composed of two power-law functions to define a new volume fraction. Chi and Chung (2002) 
indicated that the use of a S-FGM can significantly reduce the stress intensity factors of a cracked 
body. Han et al. (2008, 2009) investigated mechanical vibration, buckling and non-linear analysis 
of anisotropic S-FGM plates and shells using finite element method. 

In all of these applications, the size effect plays major role which should be considered to study 
the behaviors of such small scale structures. It has been experimentally shown that the deformation 
in microstructures is size-dependent (Fleck et al. 1994, Stölken and Evans 1998, Chong and Lam 
1999). So, conventional continuum mechanics fails to predict the size-dependent response of the 
structures at small-scale due to lacking intrinsic length scales. Theories for small-scale structures 
include couple stress and strain gradient theory. In 1964, Mindlin (1964) proposed couple stress 
theory. The modified couple stress theory has recently been proposed by Yang et al. (2002) in 
which the couple stress tensor is symmetric and only one internal material length scale parameter 
is considered. Several third-order elasticity theories have been introduced to develop size-
dependent continuum models (Ansari et al. 2011, Sahmani and Ansari 2013). In recent year, 
Akgöz and Civalek (2015a, b) investigated the microstructue-dependent beam and plate model 
using the strain gradient elasticity theory. 

In order to capture the size effects in small scale structures, size-dependent beam and plate 
models based on the modified couple stress theory have been developed. Timoshenko beam model 
was studied by Ma et al. (2008) and this model was adopted to investigate the buckling (2010) and 
vibration (Ke and Wang 2011, Ke et al. 2011) of microtubes. For static analysis of microplates, 
Tsiatas (2009) first developed a Kirchhoff plate model. Asghari and Taati (2013) deal with 
Kirchhoff plate theory of FGM plates. Ma et al. (2011) and Ke et al. (2012) developed a plate 
model using shear deformation theory to account for the effects of transverse shear deformation 
and rotary inertia in moderately thick microplates. The modified coupled stress theory is further 
used to develop functionally graded Mindlin plate (Thai and Choi 2013) and microshell (Sahmani 
et al. 2013). Asghari (2012) studied geometrically nonlinear formulation of micro-plate using the 
modified couple stress theory. Also, the studies of FGMs using the modified couple stress theory 
were investigated by Thai and Choi (2013), Şimşek and Reddy (2013), Jung et al. (2014), Ansari 
et al. (2014), Jung and Han (2015), Thai et al. (2015) and Salehipour et al. (2015). Recently, a new 
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modified couple stress theory is developed to study the bending and vibration responses of FG 
micro-beams having a variable length scale parameter on the basis on a unified beam formulation 
in conjunction with the neutral axis concept by Al-Basyouni et al. (2015). 

The comprehensive review of the development of various theories for the modeling and 
analysis of FGM structures was recently carried out by Thai and Kim (2015). They provide a 
comprehensive literature review of existing theories for the modeling and analysis of FGM 
structures with the main emphasis on the equivalent-single-layer (ESL) models such as the 
classical plate theory (CPT) (Feldman and Aboudi 1997), the first-order shear deformation theory 
(FSDT) (Praveen and Reddy 1998, Jung and Han 2014), the third-order shear deformation theory 
(TSDT) (Javaheri and Eslami 2002), higher-order shear deformation theories (HSDTs) (Matsunaga 
2008, Mantari et al. 2011), simplified theories (Malekzadeh and Shojaee 2013), mixed theories 
(Fares et al. 2009). Many researchers developed the new advanced shear deformation theory 
(Belabed et al. 2014, Bourada et al. 2015, Ait Yahia et al. 2015, Han et al. 2016). The laminated 
composite and FGM plates with elastic foundation effects were investigated by Bouderba et al. 
(2013), and Nedri et al. (2014). 

In this paper, firstly, it is conducted to analyze the dynamic instability behavior of S-FGM 
plates using third-order shear deformation theory. Secondly, modified couple stress elasticity 
theory is incorporated into the classical third-order shear deformation plate theory to develop 
modified couple stress-based third-order shear deformation plate model containing additional 
material length scale parameter to capture size effect efficiently. On the basis of Voigt’s rule of 
mixture technique, the material properties of S-FGM plates are assumed to vary in the thickness 
direction. The size-dependent governing differential equations of motion and associated boundary 
conditions are derived using the minimum total potential energy principle. Next, the governing 
equations are written in the form of Mathieu–Hill equations and then Bolotin’s method is 
employed to determine the instability regions. Analytical solutions for dynamic instability 
problems are obtained for a simply supported plate. Various numerical results are presented to 
reveal the influences of material length scale parameter, power law index, static and dynamic load 
factors and side-to-thickness ratio on the dynamic stability characteristics of S-FGM plates. 
 
 

2. Theoretical formulation 
 

2.1 Constitutive relations of FGM structures 
 
Consider the case of a uniform thickness, rectangular S-FGM plate in Pasternak elastic medium, 

referred to rectangular coordinates (x, y, z), as shown in Fig. 1. The top and bottom faces of the 
plate are at z = h / 2, and the edges of the plate are parallel to axes x and y. 

The volume fraction of the functionally graded material (FGM) can be assumed to obey a 
sigmoid power-law function along the thickness. The volume fraction using sigmoid power-law 
functions, which ensure a smooth distribution of stresses, is defined. (Chung and Chi 2001). 

 

1 1 / 2
( ) 1 for 0 / 2

2 / 2

p

f

h z
V z z h

h

     
 

, (1a)

 

2 1 / 2
( ) for / 2 0

2 / 2

p

f

h z
V z h z

h

     
 

. (1b)
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Fig. 1 Geometry of the S-FGM plate in Pasternak elastic medium 
 
 

where, p is the power-law index, which indicates the material variation profile through the 
thickness. The material properties of the S-FGM can be expressed by using the rule of mixture, as 

 

 1 1
1 2( ) ( ) 1 ( ) for 0 / 2f fH z V z H V z H z h     , (2a)

 

 2 2
1 2( ) ( ) 1 ( ) for / 2 0f fH z V z H V z H h z      . (2b)

 

The above Voigt model is relatively simple. The difference of the fundamental frequencies 
between Mori–Tanaka and Voigt solutions is very small and may be negligible (Shen and Wang 
2012). 

Consider a plate made of two constituent functionally graded materials. The material properties, 
like Young’s modulus E, and the mass density ρ, can then be calculated by 

 

      1 1
1 1 2 2( ), ( ) ( ) , 1 ( ) , for 0 / 2t t f fE z z V z E V z E z h       , (3a)

 

      2 2
1 1 2 2( ), ( ) ( ) , 1 ( ) , for / 2 0b b f fE z z V z E V z E h z        . (3b)

 

where, the subscripts t and b denote the top and bottom of the plate, respectively, and the 
subscripts 1 and 2 represent the two materials used. Poisson’s ratio v is assumed to be constant in 
this study, as the effect of Poisson’s ratio on the deformation is much less than that of Young’s 
modulus (Chi and Chung 2002). 
 

2.2 Elastic medium models 
 
In Fig. 1, a sigmoid functionally graded material (S-FGM) plates is assumed to be embedded in 

a Pasternak elastic medium with the Winkler modulus of Wk  and shear moduli of Pxk  and .Pyk
Consider a rectangular S-FGM plate of length a, width b and thickness h made of functionally 
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graded material with the coordinate system as shown in Fig. 1. The polymer matrix is described by 
a Pasternak-type foundation model (Pasternak 1954), which accounts for both normal pressure and 
the transverse shear deformation of the surrounding elastic medium. The modulus of Winkler 
elastic medium (Winkler 1867) is assumed equivalent to stiffness of the springs. The normal 
pressure and the incompressible layer that resists transverse shear deformation are represented by 
Winkler and Pasternak elastic medium models, respectively. Since the bottom surface of the S-
FGM plate is assumed subjected to Winkler–Pasternak elastic medium (see Fig. 1), the reaction–
deflection relation at the bottom surface of the model is expressed by 

 

W 3Wq k u  (4)
 

2 2
3 3

P 3 2 2W Px Py

u u
q k u k k

x y

 
  

 
 (5)

 

where, qw and qP are the density of reaction forces of Winkler and Pasternak elastic medium, 
respectively and Wk  and )( PyPx kk  denote the Winkler modulus and the shear moduli of the 
surrounding elastic medium, respectively. If the elastic medium is modeled as the linear Winkler 
elastic medium, the coefficients )( PyPx kk  are zero. 

 
2.3 Modified couple stress theory 
 
It is noted that the couple stress theory proposed by Yang et al. (2002) is a modification of the 

classical couple stress theory (see Ma et al. (2011)). Unlike classical couple stress theory, the 
modified couple stress theory includes a symmetric couple stress tensor. The advantage of the 
modified couple stress theory over the classical couple stress theory is the involvement of only one 
material length scale parameter. According to the modified couple stress theory, the virtual strain 
energy δU can be expressed as 

 

   : : ij ij ij ijV V
U dV m dV         ε σ χ m  (6)

 

where, summation on repeated indices is implied; here, σij are the stress components, εij are the 
components of the strain tensor, mij are the components of the deviatoric part of the symmetric 
couple stress tensor, and χij are the components of the symmetric curvature tensor, defined by 

 

T1 1
( ) ,

2 2
       χ ω ω ω u  (7)

 

or 
 

1
, , 1, 2,3

2
ji

ij
j i

i j
x x


 

      
 (8)

 

and ωi (i = 1, 2, 3) are the components of the rotation vector, given as 
 

3 32 1 2 1
1 2 3

2 3 3 1 1 2

1 1 1
, ,

2 2 2x y z

u uu u u u

x x x x x x
     

         
                      

. (9)
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For an isotropic, linear elastic material, the 3-D stress-strain relations are 
 

2ij ij ij kk     ,     22ij ijm    , (10)
 

where 
 

, 2
(1 )(1 2 ) (1 )

E E 
  

 
  

, (11)

 

The material length scale parameter   is the square root of the ratio of the modulus of 
curvature to the modulus of shear, and is a property measuring the effect of the couple stress. For a 
functionally graded material, μ and λ are functions of z. Recently, Kahrobaiyan et al. (2012) take 
into consideration the variations in the material length scale parameters in Euler-Bernoulli beam 
model. Al-Basyouni et al. (2015) investigated new first and sinusoidal shear deformable FG micro 
beams including the material length scale parameter which are assumed to vary in the thickness 
direction. 

The effective material length scale parameter   is given by Eq. (3) 
 

      1 1
1 2( ) ( ) 1 ( ) for 0 / 2t f fz V z V z z h       , (12a)

 

      2 2
1 2( ) ( ) 1 ( ) for / 2 0b f fz V z V z h z        . (12b)

 
The material length scale parameter   is an important material parameter in the modified 

couple stress theory and varies for different materials. Since the present study has considered the 
functionally graded material, it is better to use a function of the z-coordinate rather than a constant 
as a material length scale parameter. However, because of this study is only focused on the 
dynamic instability of micro FGM plates, the constant material length scale parameter is used to 
simplify formulation. 

The linear constitutive relations with Eq. (10) that use the plane stress-reduced constitutive 
relations are 

2

1( )

11
xx xx

yy yy

E z 
 
    

         
,     

2
1 0 0

( )
0 1 0

1
0 0 1

xx xx

yy yy

zz zz

m
E z

m

m







     
                 

  (13)

 

 

2

2

2

, 1 0 0 ,
( )

, 0 1 0 ,
2 1

, 0 0 1 ,

xy xy xy xy

xz xz xz xz

yz yz yz yz

m
E z

m

m

  
  


  

    
                







 (14)

 
2.5 Third-order shear deformation theory 
 
The displacements of a material point located at (x, y, z) in the plate may be written as 
 

1

( , , ) ( , , )
( , , , ) ( , , ) ( ) ( , , )x

w x y t w x y t
u x y z t u x y t z z x y t

x x
        

, (15)
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2

( , , ) ( , , )
( , , , ) ( , , ) ( ) ( , , )y

w x y t w x y t
u x y z t v x y t z z x y t

y y

  

      
, 

3 ( , , , ) ( , , )u x y z t w x y t  

(15)

 

where 
 

2

2

4
( ) 1

3

z
z z

h

 
   

 
. (16)

 

in which, u, v, w, θx, θy are the five unknown displacements of the middle surface, and Ψ(z) 
represents the shape function determining the distribution of the transverse shear strains and 
stresses along the thickness. The displacement field of the classical thin plate theory (CPT) is 
obtained easily, by setting Ψ(z) = 0. The displacement of the first-order shear deformation plate 
theory (FSDT) is obtained by setting Ψ(z) = z. 

The components of strain tensor, rotation vector and curvature tensor associated with the 
displacement field in Eq. (15), are obtained as 

 

(0) (1) (3)

(0) (1) 3 (3)

(0) (1) (3)

xx xx xx xx

yy yy yy yy

xy xy xy xy

z z

   
   
   

      
                

       
        ,  

(0) (2)

(0) 2 (2)

(0) (2)

zz zz zz

xz xz xz

yz yz yz

z

  
  
  

    
           

     
      . 

(17)

 

where,  (0) (0) (0), ,xx yy xy  
 are the membrane strains,  (1) (1) (1), ,xx yy xy  

 are the flexural (bending) 

strains,     (2) (2) (2) 2 (0) (0) (0), , 4 / , ,zz xz yz zz xz yzh      
 
and  (3) (3) (3), ,xx yy xy  

 are the higher-order 
strains (see Jung and Han (2015)). 

Then, the components of the curvature tensors for HSDT are (For more details, see Jung and 
Han (2015)) 

 

(0) (2)

(0) (2)
2

(0) (2)

(0) (2)

xx xx xx

yy yy yy

zz zz zz

xy xy xy

z

  
  
  
  

     
     
           
     
           ,  

(0) (1) (3)
3

(0) (1) (3)
xz xz xz xz

yz yz yz yz

z z
   
   

                       
               .

 

(18)

 
 
3. Equations of motion 
 

3.1 Equations of motion in terms of displacements 
 
The equations of motion of the third-order theory will be derived, using the dynamic version of 

the principle of virtual displacements. The principle of virtual displacements for the dynamic case 
requires that (see Reddy (2004)) 

 

 
0

( ) 0
T

EMK U U V dt       (19)
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where, δK is the virtual kinetic energy, δU is the virtual strain energy, δUEM is the virtual strain 
energy induced by the elastic medium, and δV is the virtual work done by external forces. Each of 
these quantities is derived next. 

The ΔUEM can be expressed as 
 

3 3 3 3
3 3EM W Px Py

u u u u
U k u u k k dxdy

x x y y

  


    
       
  (20)

 
The δK is defined as 
 

/ 2
3 31 1 2 2

/ 2

h

h

u uu u u u
K dzdxdy

t t t t t t

  
 

                 (21)

 
The δU is given by 
 

 / 2

/ 2

h

xx xx yy yy zz zz xy xy xz xz yz yzh
U dzdxdy            

 
        

     
 / 2

/ 2

h

xx xx yy yy zz zz xy xy xz xz yz yzh
m m m m m m dzdxdy     

 
        

(22)

 
The thickness-integrated stress resultants are defined as 
 

/ 2 / 2( ) ( )

/ 2 / 2
( ) , ( ) , ( 0,1, 2,3)

h hk k k k
ij ij ij ijh h

M z dz m z dz k
 

   M  (23)

 
Using Eq. (23), δU can be expressed in terms of the stress resultants, as 
 

   
3 2

( ) ( ) ( ) ( ) ( ) ( )
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i i i i i i
xx xx yy yy xy xy zz zz xz xz yz yz

i i
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

 

     
 

 

    
   

2 3
( ) ( ) ( ) ( ) ( ) ( )

0 0

i i i i i i
xx xx yy yy zz zz xy xy xz xz yz yz

i i

dxdy     
 

      
 M M M M M M

 

(24)

 
Let if  be body forces, ic  be body couples, it  be surface forces, qi be distributed forces, 

with i = x, y, z, and  , ,x y xyN N N
 being in-plane applied loads. Then, δV is 

 

 
   

1 2 3 1 2 3

1 2 3 1 2 3

3 3 3 3 3 32

x y z x y zV

x y z x y zA S

x y xyA

V f u f u f u c c c dV

q u q u q u dxdy t u t u t u dS

u u u u u u
N N N dxdy

x x y y x y

      

     

  

      
       

      
         


 



 
(25)
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Substituting δK, δU, δUEM and δV into Eq. (19), the equations of motion of the third-order plate 
theory governing functionally graded plates, accounting for modified couple stresses, are obtained. 
For linear S-FGM plates without body force and body couple, the equations of motion in terms of 
generalized displacements are 

 

(0) (0)(0) (0)1
:

2
xy yzxx xz

MM
u

x y y x y


   
         

MM
0 1 3 1x x

w
m u m m c

x
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(26)
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
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and, the superposed dots denote differentiation with respect to time, and mi are the mass moments 
of inertia, defined as 

 
/ 2

/ 2

h i

i h
m z dz


   (31)

 
The boundary conditions of a rectangular micro-plate with all edges simply supported are 
 

(0) (1) (0) (3)1ˆ 0,
2y xx xx xy xxv w M M M      M

   
at

   
0,x a ,

 
(0) (1) (0) (3)1ˆ 0,

2x yy yy xy yyu w M M M      M
    

at 0,y b .
 

(32)

 
3.2 Dynamic instability analysis 
 
By using the Navier’s solution procedure, we assumed the generalized displacements at the 

middle of the plane (z = 0) that satisfies the boundary conditions. The solution forms are expanded 
in double Fourier series, as 
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

   
            
      

     

 . (33)

 

where, 1i   , ϖ is the frequency of vibration, Λ1 = cos ξx sin ηy, Λ2 = sin ξx cos ηy, and Λ3 = 

sin ξx sin ηy, in which, 

m

a

 
, 

n

b

 
. 

The governing equation of this S-FGM plate is obtained in matrix form as follow 
 

        ( ) 0xN t      M K G  (34)

 
where [M], [K] and [G] are mass matrix, stiffness matrix and geometric stiffness matrix, 
respectively, and {Δ} is the vector of unknowns functions ({Δ} = {Umn, Vmn, Wmn, Xmn, Ymn}). 

The dynamic instability analysis of the S-FGM plate is performed by expressing the 
dimensionless periodic axial excitation compressive load Nx(t) in terms of the critical axial 
buckling load (Ncr) as follow 

 

 ( ) cos( )x crN t t N      (35)
 

where α and β are the static and dynamic load factors taking values from 0 to 0.5 and 0 to 2, 
respectively. Also, ϖ denotes the excitation frequency. The dimensionless excitation frequency can 

be expressed as 

2
2

2
2

a

h E




 
. 

1248



 
 
 
 
 
 

Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium... 

After substituting the axial excitation compressive load (Nx(t)) into Eq. (34), the governing 
equation of the S-FGM plate is derived as 

 

         ( cos( )) 0crt N         M K G  (36)

 
Eq. (36) is a Mathieu-Hill type equation, describing the nonlinear instability behavior of the S-

FGM plate subjected to an axial excitation compressive load which has a static and a dynamic 
component. The generalized eigenvalue problem obtained from Eq. (36) is solved by neglecting 
the term containing Ncr to obtain the natural frequencies. If the mass and the harmonic terms are 
neglected, the new generalized eigenvalue problem yields the critical buckling load. If only the 
harmonic term is neglected, Eq. (36) yields the natural frequency of the loaded plate, the load 
being αNcr, a static compressive force. 

Based on the basis of the linear equations theory, the boundaries between stable and unstable 
solutions of the Eq. (36) with periodic coefficients of the Mathieu–Hill type can be formed by 
periodic T0 (T0 = 2π / ϖ), or by periodic 2T0. The aim of this study is the solutions with period 2T0 
because of the corresponding principle instability regions that are usually much larger than the 
secondary instability regions defined by the solutions with period T0. Bolotin (1964) has revealed 
that the solutions with periods 2T0 can be determined as a first order approximation from the 
following equations 

 

      2
1( / 2) ( / 4) 0crN      K G M  (37)

 
where ϖ1 represents the first-order approximation of the parametric resonance frequency. 

In order to solve the eigenvalue problem of Eq. (37), it is enough to probe the critical 
dimensionless excitation frequency Ω from the preceding determinant. Following the standard 
eigenvalue algorithms, for a given value of α, the variation of the eigenvalue Ω with respect to β 
can be calculated. The plot of such variation in the β ‒ Ω plane determines the instability regions 
of the S-FGM plates undergoing the periodic axial excitation compressive load. 
 
 
4. Numerical results and discussion 
 

Here, we study the dynamic instability analysis of S-FGM plates. The Navier’s solution 
procedure is used to determine the dimensionless excitation frequencies for simply supported S-
FGM plates. The results of references (Dey and Singha 2006, Lee et al. 2015) are presented and 
discussed, to verify the accuracy of the present model. On the basis of third-order shear 
deformation theory and the modified couple stress theory, the dynamic instability regions are 
determined. 

 
4.1 Validation 
 
To verify the accuracy of the present third-order plate theory, comparisons are made between 

the results obtained from the present theory, and those obtained by Dey and Singha (2006) and Lee 
et al. (2015), as given in Fig. 2. The set of materials chosen has the following material properties 

 

/ 40.0, / 0.6, / 0.5, 0.25   L T LT T TT T LTE E G E G E . (38)
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Fig. 2 Dynamic instability region of laminated (0°/90°/90°/0°) composite plate (a / h = 25, α = 0.0) 
 
 

where E, G and v are Young’s modulus, Shear modulus and Poisson’s ratio, respectively. 
Subscripts L and T represent the longitudinal and transverse directions, respectively with respect to 
the fibers. All the layers are of equal thickness. 

Dynamic instability analysis of a simply supported cross-ply [0°/90°/90°/0°] laminated 
composite square plate (a / h = 25, α = 0.0) is investigated and compared with the results of Dey 
and Singha (2006) and Lee et al. (2015) in Fig. 2. The boundaries of the principal instability 
region are presented in the non-dimensional excitation frequency (ϖ1 / ϖ

*, ϖ*—the lowest natural 
frequency) versus dynamic load factor (β) plane. The plot of the principal instability region is 
found to be in an excellent agreement with those of Refs. (Dey and Singha 2006, Lee et al. 2015). 

 
4.2 Parameter study 
 
The study, here, has been focused on the dynamic instability characteristics of simply supported 

S-FGM plates. The material properties, used in the present analysis are 
 

6
1 2

3 3 3 3
1 2

14.4GPa, 1.44GPa, =0.38, 17.6 10 m, 

12.2 10 kg/m , 1.22 10 kg/m .

E E h

 

   

   
 (39)

 
It should be pointed out that to evaluate the length scale parameter of a homogeneous epoxy or 

FGM plate, the experimental data is needed. The length scale parameter of an isotropic 
homogeneous micro beam has been experimentally obtained as 

 
= 17.6 × 10‒6 m by Lam et al. 

(2003). 
Figs. 3 and 4 demonstrate the influence of static load factor on the dynamic stability 

characteristics of FGM third-order shear deformable micro plates. It is shown that the instability 
regions of the FGM micro plates tend to become wider and shift closer to the coordinate origin by 
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Fig. 3 Effect of static load factor (α) on the instability region of an S-FGM plate third-order shear 
deformation plate model (p = 1.0,  /h = 0.0) 
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Fig. 4 Effect of static load factor (α) on the instability region of an S-FGM plate third-order shear 
deformation plate model (p = 1.0,  /h = 0.0) 

 
 

increasing the value of static load factor. This pattern is the same for the both of classical and 
developed non-classical plate model. 

In Fig. 5, the effect of the value of dimensionless length scale parameter on the dynamic 
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Fig. 5 Effect of material length scale parameter ( /h) on the instability region of an S-FGM plate 
third-order shear deformation plate model (p = 1.0, α = 0.5) 
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Fig. 6 Effect of power law index (p) on the instability region of an S-FGM plate third-order shear 
deformation plate model ( /h = 1.0, α = 0.5) 

 

 

stability behavior of S-FGM plates is depicted. It is found that at a given dynamic load factor, 
increasing of dimensionless length scale parameter leads to increase of dimensionless excitation 
frequency. Moreover, it is investigated that the instability region is wider for S-FGM plates with 
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higher values of dimensionless length scale parameter. 
Illustrated in Fig. 6 are the instability regions of S-FGM plates with various values of power 

law index. It can be found that the width of the instability region increases with decrease in power 
law index, slightly. Also, it is seen that the increasing values of the power law index lead to a 
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Fig. 7 Effect of elastic medium parameter (kW) on the instability region of an S-FGM plate third-
order shear deformation plate model (kP = 0,  /h = 1.0 p = 10.0, α = 0.5) 
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Fig. 8 Effect of elastic medium parameter (kP) on the instability region of an S-FGM plate third-
order shear deformation plate model (kW = 0,  /h = 1.0, p = 10.0, α = 0) 
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decrease in the magnitude of non-dimensional excitation frequency. 
In Figs. 7-9, the effects of dynamic load factor on the dimensionless excitation frequency with 

variable Winkler’s and Pasternak’s elastic medium parameters are presented for a simply 
supported square plate with  / h = 1.0, p = 10.0, α = 0.5, kW = 0 – 5000 and kP = 0 – 500, 
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Fig. 9 Effect of elastic medium parameter (kP) on the instability region of an S-FGM plate third-
order shear deformation plate model (kW = 5000,  /h = 1.0, p = 10.0, α = 0.5) 
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Fig. 10 Effect of static load factor (α) on the instability region of an S-FGM plate third-order shear 
deformation plate model (kW = 5000, kP = 500, p = 10.0,  /h = 0.0) 
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Fig. 11 Effect of static load factor (α) on the instability region of an S-FGM plate third-order shear 
deformation plate model (kW = 5000, kP = 500, p = 10.0,  /h = 1.0) 
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Fig. 12 Effect of material length scale parameter (  /h) on the instability region of an S-FGM plate 
third-order shear deformation plate model (kW = 5000, kP = 500, p = 10.0, α = 0.5) 

 
 

respectively. The increasing values of the Winkler’s and Pasternak’s elastic medium parameter 
lead to an increase in the magnitude of non-dimensional excitation frequency. Although the effects 
of Winkler’s and Pasternak’s elastic medium parameter are to increase non-dimensional excitation 
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frequency, the results show the Pasternak’s elastic medium parameter has more effect on 
increasing the non-dimensional excitation frequency than the Winkler’s elastic medium parameter. 

The influence of static load factor on the dynamic stability characteristics of classical and non-
classical S-FGM third-order shear deformable plates are illustrated in Figs. 10 and 11. It is shown 
that the instability regions of the S-FGM plates tend to become wider and shift closer to the 
coordinate origin by increasing the value of static load factor. This pattern is the same for the both 
of classical and developed non-classical S-FGM model. 

In Fig. 12, the effect of the value of dimensionless length scale parameter on the dynamic 
stability behavior of S-FGM plates is plotted. It is observed that at a given dynamic load factor, 
increasing of dimensionless length scale parameter leads to increase of dimensionless excitation 
frequency. Furthermore, it can be shown that the instability region is wider for S-FGM plates with 
higher values of dimensionless length scale parameter. 
 
 
5. Conclusions 
 

The modified couple stress-based third-order shear deformation theory for dynamic instability 
characteristics of S-FGM plates is investigated. Size-dependent plate model is developed 
containing additional internal material length scale parameter to interpret size effect, efficiently. 
The equations of motion are derived from Hamilton’s principle. The analytical solutions of simply 
supported plate are obtained. The accuracy of the theory proposed in this study is verified through 
the analysis of dynamic instability analysis of laminated composite plate. 

The present work has the following conclusions: 
 
(1) The width of the instability region increases with increase in both static and dynamic load 

factor. 
 

(2) It is found that the instability region is wider for S-FGM plates with higher values of 
dimensionless length scale parameter. 
 

(3) Increasing values of the Winkler’s and Pasternak’s elastic medium parameter lead to an 
increase in the region of instability. 
 

(4) The Pasternak’s elastic medium parameter has more effect on increasing the non-
dimensional excitation frequency than the Winkler’s elastic medium parameter. 
 

(5) It is indicated that the instability regions of the S-FGM plates tend to shift closer to the 
coordinate origin by increasing the value of static load factor. 

 
The solutions given in the present paper can be used as benchmark for dynamic instability 

characteristics of other size-dependent FGM plate. Furthermore, the proposed theory may be 
extended to other types of S-FGM structures such as S-FGM shells on Pasternak elastic medium. 
Also, the techniques should provide engineers with the capability for the design of FGM structures 
for special technical applications including micro plates and skins. Due to the fact that the material 
length scale parameter is important aspects in the analysis of functionally graded material 
structures, the material length scale parameter which is assumed to vary in the thickness direction 
should be incorporated in the modified couple stress theory for the assessment of structural 
responses. The study with effective material length scale parameter will be considered and 
submitted for the publication in the future. 
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