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Abstract.    The purpose of this paper is to compare the structural responses obtained from the stochastic analysis of 
a suspension bridge subjected to uniform and partially correlated seismic ground motions, using different spatial 
correlation functions commonly used in the earthquake engineering. The spatial correlation function employed in this 
study consists of a term that characterizes the loss of coherency. To account for the spatial variability of ground 
motions, the widely used four loss of coherency models in the literature has been taken into account in this study. 
Because each of these models has its own characteristics, it is intended to determine the sensitivity of a suspension 
bridge due to these losses of coherency models which represent the spatial variability of ground motions. Bosporus 
Suspension Bridge connects Europe to Asia in Istanbul is selected as a numerical example. The bridge has steel 
towers that are flexible, inclined hangers and a steel box-deck of 1074 m main span, with side spans of 231 and 255 
m on the European and Asian sides, respectively. For the ground motion the filtered white noise model is considered 
and applied in the vertical direction, the intensity parameter of this model is obtained by using the S16E component 
of Pacoima Dam record of 1971 San Fernando earthquake. An analytically simple model called as filtered white 
noise ground motion model is chosen to represent the earthquake ground motion. When compared with the uniform 
ground motion case, the results obtained from the spatial variability models with partial correlation outline the 
necessity to include the spatial variability of ground motions in the stochastic dynamic analysis of suspension bridges. 
It is observed that while the largest response values are obtained for the model proposed by Harichandran and 
Vanmarcke, the model proposed by Uscinski produces the smallest responses among the considered partially 
correlated ground motion models. The response values obtained from the uniform ground motion case are usually 
smaller than those of the responses obtained from the partially correlated ground motion cases. While the response 
values at the flexible parts of the bridge are totally dominated by the dynamic component, the pseudo-static 
component also has significant contributions for the response values at the rigid parts of the bridge. The results also 
show the consistency of the spatial variability models, which have different characteristics, considered in this study. 
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1. Introduction 
 

Because dynamic loads like earthquake motions are random, there is a need to a process, which 
takes into account the uncertainty of the dynamic loading in the analysis. The analysis due to the 
random loading is defined as stochastic analysis and should be considered in the earthquake 
response analysis of structural systems if a realistic analysis is desired. 

Suspension bridges consist of elements like tower, cable, hanger and deck; the behaviour of 
each one is different. Under the effect of external forces, especially cables and hangers are 
subjected to large tensional forces and these forces have important effects on the element stiffness 
matrices. This characteristic, called as geometric nonlinearity of the structural elements, should be 
taken into account in the analysis of suspension bridges. 

Support points of long-span suspension bridges will be subjected to differential ground motions 
during the spatially varying earthquake ground motions, because of their extended lengths. One 
component considering the spatial variability of the ground motion is the loss of coherency 
(incoherence effect), which results from the reflections and refractions of seismic waves through 
the soil layers during their propagation. 

The effects of spatial variability of ground motions between the supports of lifeline structures 
have drawn the attention of researchers, and various structural configurations subjected to 
stochastic seismic ground motions have been analysed. In a previously conducted study, Button et 
al. (1981) developed a computer programme called STOCAL for the stochastic seismic analysis of 
structural systems. This program is capable of analysing structural systems subjected to uniform 
ground motions. Adanur et al. (2003) investigated the stochastic analysis of suspension bridges for 
different correlation functions. One of the leading studies considering the effect of the multiple-
support excitation on long span bridges was performed by Soyluk (2004). Dumanoglu and Severn 
(1990), Bryja (2009) analysed the stochastic response of suspension bridges to earthquake ground 
motions. These studies ignored the spatial variability of ground motions at the support points and 
uniform ground motion model were assumed. The effect of the spatially varying ground motions 
on the random vibration responses of lifeline structures has been of considerable concern in the 
last decade (Chen and Harichandran 2001, Soyluk and Dumanoglu 2004, Ateş et al. 2006, Zhang 
et al. 2009, Bi and Hao 2013, Li and Chouw 2014, Shrestha et al. 2014, Dong et al. 2015). All 
these studies mostly performed on long span bridges underline the importance of the spatial 
variability of earthquake ground motions. The nonlinear deterministic analyses of suspension 
bridges to uniform dynamic effects were also carried out over the past two decades (Brownjohn 
1994). Also, some paper recently published about the construction stage, probabilistic sensitivity, 
reliability analysis and cable tension force estimation of suspension bridges (Atmaca and Ateş 
2012, Cheng and Liu 2012, Cavdar 2013, Günaydin et al. 2014, Wang et al. 2015, Adanur et al. 
2016). 

In this study, stochastic response of a suspension bridge subjected to the partially correlated 
seismic ground motions is carried out considering the geometric nonlinearity. The spatial 
correlation function is represented by a term that characterizes the loss of coherency. To account 
for the spatial variability of ground motions, the widely used four loss of coherency models in the 
literature has been considered in this study. These models are proposed by Harichandran and 
Vanmarcke (1986), Abrahamson (1993), Hindy and Novak (1980) and Uscinski (1977). Each of 
these models has its own characteristics. As Harichandran and Vanmarcke’s model is based on the 
recordings of SMART-1 array, Hindy and Novak as well as Uscinski have used loss of coherency 
models of the form of exponential functions. Some other loss of coherency models like 
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Abrahamson’s model seems to be more complex. Due to remarkable differences of these models, it 
is intended to determine the sensitivity of a suspension bridge due to this loss of coherency models 
representing the spatial variability of ground motions. As a numerical example Bosporus 
Suspension Bridge built in Istanbul is chosen. Filtered white noise ground motion model modified 
by Clough and Penzien (1993) is used in this study as ground motion model. The intensity 
parameter for filtered white noise model is obtained by equating the variance of this model to the 
variance of the two thirds of the S16E component of Pacoima Dam record of 1971 San Fernando 
earthquake. 
 
 
2. Formulation 
 

2.1 Stochastic analysis 
 
2.1.1 Pseudo-static response component 
Pseudo-static component of spectral density function can be expressed as 
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where r is the number of support degrees-of-freedom, Al and Am are static displacements for unit 
displacements assigned to each support point and Slm() is the cross spectral density function of 
accelerations between supports l and m. 

The variance of the pseudo-static response component is obtained in the following form 
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2.1.2 Dynamic response component 
Dynamic component of spectral density function in the case of spatially varying ground motion 

can be written as 
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where n is the number of modes, [] is the eigenvectors, [] is the modal participation factor and 
H() is the frequency response function. 

The variance of the dynamic response component will be 
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2.1.3 Covariance of pseudo-static and dynamic response component 
Cross-spectral density function of pseudo-static and dynamic components is defined as 
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The covariance between the pseudo-static and dynamic components is therefore 
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2.1.4 Total response 
The variance of total response can be computed by the addition of the pseudo-static, dynamic 

and covariance response components as 
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2.1.5 Mean of maximum value 
The mean of maximum value in stochastic analysis is given by 
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where p is a peak factor and σz is standard deviation of the total response. 
 
2.2 Stochastic analysis 
 
The cross spectral density function of the accelerations at two support points l and m is written 

as 
)()()(  lmlm SS   (9)

 
where  is the circular frequency, S() is the power spectral density function of ground 
acceleration and lm() is the coherency function (Zerva 1992). 

The power spectral density function of ground acceleration related to the filtered white noise 
ground motion model modified by Clough and Penzien is in the following form 
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where S0 is an intensity factor; g, ξg and f, ξf are the first and second filter natural frequencies 
and damping ratios, respectively. In this study, firm soil type is used and as filter parameters the 
values proposed by Der Kiureghian and Neuenhofer (1991) are utilized: g = 15.0 rad/s, ξg = 0.6, 
f = 1.5 rad/s, ξf = 0.6. S0 is obtained for the firm soil type by equating the variance of the filtered 
white noise ground motion model to the variance of S16E component of Pacoima Dam record of 
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1971 San Fernando earthquake acceleration. The calculated value of the intensity parameter for 
firm soil type is S0(firm) = 0.009715 m²/s³. The S16E component of Pacoima Dam record of 1971 
San Fernando earthquake acceleration, the corresponding power spectral density function of the 
earthquake motion and the acceleration power spectral density function of the filtered white noise 
ground motion model for firm soil type are presented in Fig. 1. 

The analyses included in this study are performed for four different spatial correlation functions 
(loss of coherency) as described below (Chen and Harichandran 2001). 

 
 Harichandran and Vanmarcke (1986) proposed a model, called as Model 1 in this study, 

based on the analysis of recordings made by the SMART-1 seismograph array in Lotung, 
Taiwan and defined as 
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where dlm is the distance between support points l and m, () is frequency-dependent spatial scale 
of fluctuation 
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where A, , k, f0 and b are model parameters. In this study, the values obtained by Harichandran et 
al. (1996) are used (A = 0.636,  = 0.0186, k = 31200, f0 = 1.51 Hz and b = 2.95) 

 
 Abrahamson (1993) proposed a relatively complex model, defined as Model 2, based on 

the earthquake events recorded in California and Taiwan, and given by 
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     lmlmlm dddc 0018.0105.0exp36   (17)
 
where hlm() is the plane wave factor 
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 Hindy and Novak (1980) proposed a model, called as Model 3, is expressed as 
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where  and  are model parameters and considered as = 3.007 × 10-4 and  = 0.9. 

 
 Uscinski (1977) proposed a model, defined as Model 4, based on wave propagation in 

random media and expressed as 
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where  is a spatial incoherence parameter and vs is the shear wave velocity. Luco and Wong 
(1986) used this model in a civil engineering context and in this study the value of (/vs) = 2 × 10-4 
s/m is employed. 

The variations of spatial variability (loss of coherency) models depending on the frequency are 
shown in Figs. 2 through 5. While full correlation is observed for Model 2 through Model 4 at low 
frequencies, Model 1 produces partial correlation even at zero frequency. It can also be observed 
that while Model 4 rapidly approaches to zero at relatively small frequencies and large separation 
distances, the coherency still exists for Model 1 even at higher frequencies. From these figures, it 
is obvious that all the considered loss of coherency models tend to decrease with increasing 
frequencies and separation distances between the support points. 

 
2.3 Geometric nonlinear behaviour 
 
In geometric nonlinear behaviour, total stiffness matrix of the system is obtained as 
 

GE KKK   (22)
 

where KE and KG are the elastic and the geometric stiffness matrices, respectively. 
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(a) 

 

 

(b) 
 

 

(c) 

Fig. 1 (a) Acceleration time history of S16E component of Pacoima Dam record; (b) Acceleration 
power spectral density function of Pacoima Dam record; (c) Acceleration power spectral 
density function of filtered white noise model 
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Fig. 2 Harichandran and Vanmarcke’s coherency model (Model 1) 
 
 
3. Bosporus suspension bridge 
 

In this study, the Bosporus Suspension Bridge built in Turkey and connects Europe to Asia in 
Istanbul is chosen as an example (Fig. 6). The bridge opened to the traffic in 1973 has steel towers 
that are flexible, inclined hangers and a steel box-deck of 1074 m main span, with side spans of 
231 and 255 m on the European and Asian sides, respectively. The horizontal distance between the 
cables is 28 m and the roadway is 21 m wide, accommodating three lanes each way. The roadway 
at the mid-span of the bridge is approximately 64 m above the sea level. Schematic representation 
of Bosphorus Suspension Bridge including the dimensions is given in Fig. 7. 

 
 

 

Fig. 3 Abrahamson’s coherency model (Model 2) 
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Fig. 4 Hindy and Novak’s coherency model (Model 3) 
 
 

 

Fig. 5 Uscinski’s coherency model (Model 4) 
 
 

Fig. 6 Bosphorus Suspension Bridge 
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Fig. 7 Schematic representation including dimension 
 
 

 

Fig. 8 Two-dimensional finite element model of Bosporus Suspension Bridge subjected to 
vertical ground motion 

 
 
The deck was constituted considering aerodynamic form to reduce of the wind affect along the 

bridge deck. The aerodynamic steel box girder deck of the bridge consist of 60 box girder deck 
pieces of 17.9 m long 3 m deep prefabricated sections 33 m wide. The top of each box section 
constitutes an orthotropic plate on which 35 mm thickness mastic asphalt surfacing is laid. The 
bridge has slender steel towers of 165 m high. The tower legs are 5.20 × 7.00 m at the bottom and 
they become 3.00 × 7.00 m at the top. Vertical tower legs are connected by tree horizontal portal 
beams. Main cables of the bridge are built up parallel wire, 5mm in diameter over the hot dipped 
galvanizing. Each main cable consists of 19 strands extending between towers and contains 548 
parallel wires, with other four stands each of which contains 192 wires in the backstays. 

It was shown that a two-dimensional analysis of suspension bridges provides natural 
frequencies and mode shapes which are in close agreement with those obtained by the three-
dimensional analysis. So, two-dimensional finite element model is used for the present 
calculations. The fact that this two-dimensional model has a relatively small number of degrees of 
freedom makes it more attractive by saving on computer time. Obviously, if actual design values 
for the responses are desired three-dimensional models should be taken into account. The selected 
finite element model of the bridge is represented by 202 nodal points, 195 beam elements and 118 
truss elements as shown in Fig. 8. 

This model has three degrees of freedom at each nodal point, namely, two translational degrees 
of freedom in vertical and longitudinal axes and one rotational degree of freedom. So, the finite 
element model of the bridge is decreased to 475 degrees of freedom and therefore a two-
dimensional analysis is adopted in the vertical plane of the Bosporus Suspension Bridge for the 
stochastic response analysis when subjected to uniform and partially correlated seismic ground 
motions. 
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The filtered white noise ground motion model modified by Clough and Penzien (1993) is used 
as a ground motion model in which the spectral density function intensity parameter is determined 
according to the S16E component of the Pacoima dam record of the San Fernando earthquake in 
1971. The analyses performed in this study are carried out with a newly developed computer code 
SVEM (Dumanoglu and Soyluk 2002) based on STOCAL (Button et al. 1981). The analyses are 
obtained for 2.5% damping ratio and first 15 modes. 

Since the primary objective of this study is to perform a parametrical study associated with the 
stochastic response of a suspension bridge subjected to uniform and partially correlated seismic 
ground motions; the soil-structure interaction is not considered. Although the soil-structure 
interaction is important for bridge structures (Callisto et al. 2013, Erhan and Dicleli 2014, Ghotbi 
2016), the non-consideration of the soil-structure interaction in this study is caused by the 
avoidance to model absorbing boundaries in the dynamic analysis. 
 
 
4. Numerical results 
 

Because the numerically chosen bridge is approximately symmetric, results obtained from 
stochastic analyses are presented only for the bridge deck and for the Asian side tower. 

 
4.1 Mean of maximum responses 
 
Mean of maximum values of vertical total deck displacements and total deck bending moments 

calculated for uniform and correlated ground motion cases are compared in Figs. 9 and 10, 
respectively. As can be observed from both figures the uniform ground motion case causes closer 
response values to those of the correlated ground motion cases except Model 1. 

Figs. 11 and 12 illustrate the mean of maximum values of horizontal total tower displacements 
and total tower bending moments, respectively. At the tower the correlated ground motion cases 

 
 

 

Fig. 9 Mean of maximum vertical total deck displacements 
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Fig. 10 Mean of maximum total deck bending moments 
 
 

yield remarkably larger response values when compared with the uniform ground motion case. The 
responses obtained for Model 1 are larger than the response values obtained from other spatial 
variability models both at the tower and deck. This difference can be attributed to the frequency 
contents of the spatial variability models. As can be observed only Model 1 shows a coherency 
loss even at zero frequency. Model 4 seems to provide the smallest response values among the 
spatial variability models considered in this study. If the variation of Model 4 over frequency is 
investigated, it can be observed that this spatial variability model approaches rapidly to zero 
especially for large separation distances. Because the fundamental frequency wg = 15.0 rad/s of the 
considered ground motion model is largely beyond the frequency range where the spatial 
variability model has some contributions, this model causes usually smaller response values. So, 
the behaviour of each spatial variability model especially at the low-frequency range seems to 
control the structural responses. The response values obtained from Model 2 and Model 3 are 
usually in between the results obtained from Model 1 and Model 4. 

It is also observed that the response values obtained from the correlated ground motion cases 
are generally higher than those of the uniform ground motion case which assumes full correlation 
between the ground motions applied to the support points. 

 
4.2 Variances of response components 
 
The relative contributions of pseudo-static, dynamic and covariance components to the total 

vertical displacement responses along the bridge deck are presented in Figs. 13 and 14 for uniform 
and correlated (Model 1) ground motion cases, respectively. The normalization is performed by 
dividing the variance values by the maximum total response. For uniform ground motion model 
acting in the vertical direction, the pseudo-static displacement component is constant because of 
the rigid body motion as presented in Fig. 13. At the bridge deck where maximum total 
displacement takes place it can be observed that the dynamic component contributes 101%, the 
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Fig. 11 Mean of maximum horizontal total tower displacements 
 
 

 

Fig. 12 Mean of maximum total tower bending moments 
 
 

pseudo-static component contributes 3%, and the covariance component contributes -4% for both 
uniform and correlated (Model 1) excitation cases. The contribution of the pseudo-static and the 
covariance components to the total deck displacement response can be neglected for both uniform 
and correlated ground motion cases. This fact is caused by the flexible nature of the considered 
suspension bridge deck. 

Figs. 15 and 16 show the relative contributions of the response components to the horizontal 
tower displacements for uniform and correlated (Model 1) ground motion cases. In the case of 
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uniform ground motion model, the total tower displacements are completely dominated by the 
dynamic component. 

For the correlated (Model 1) ground motion case the dynamic component contributes 74%, the 
pseudo-static component contributes 31%, and the covariance component contributes -5% at the 
top of the tower. As the correlated ground motion and uniform ground motion cases cause very 
close vertical displacements at the deck which are totally dominated by the dynamic component, 
tower displacements have important contributions from the pseudo-static component for the 
correlated ground motion case. 

 
 

 

Fig. 13 Normalized displacement variances of the deck for uniform ground motion 
 
 

 

Fig. 14 Normalized displacement variances of the deck for correlated (Model 1) ground motion 
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Fig. 15 Normalized displacement variances of the tower for uniform ground motion 
 
 

 

Fig. 16 Normalized displacement variances of the tower for correlated (Model 1) ground motion 
 
 
5. Conclusions 
 

In this study, stochastic analysis of a suspension bridge subjected to the partially correlated 
seismic ground motions are carried out considering the geometric nonlinearity and four different 
spatial variability models proposed by Harichandran and Vanmarcke (Model 1), Abrahamson 
(Model 2), Hindy and Novak (Model 3) and Uscinski (Model 4). Because each of the loss of 
coherency models has its own characteristics, it is intended to determine the sensitivity of a 
suspension bridge due to these loss of coherency models which represent the spatial variability of 
ground motions. 
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Mean of maximum response values calculated for the spatial variability models are compared 
with each other and with those of the uniform ground motion model. It is observed that while the 
largest response values are obtained for Model 1, Model 4 produces the smallest responses among 
the considered partially correlated ground motion models. Model 2 and Model 3 yield response 
values in between the responses obtained from Model 1 and Model 4. These variations are mainly 
caused due to the different frequency contents of the spatial variability models especially at the 
low-frequency range that controls the responses. While Model 1 induces partial correlation at low 
frequencies, Model 2 through Model 4 exhibit full correlation even at zero frequency. Model 4 
rapidly approaches to zero at the frequency range that is very close to the fundamental frequency 
region of the earthquake ground motion model to which the bridge is subjected. The response 
values obtained from the uniform ground motion case are usually smaller than those of the 
responses obtained from the partially correlated ground motion cases. 

The contributions of the pseudo-static, dynamic and covariance components to the total 
responses are also investigated for uniform and correlated ground motion cases (Model 1). While 
the response values obtained at the flexible parts of the bridge from both models are totally 
dominated by the dynamic component, the pseudo-static component also has significant 
contributions for the response values at the rigid parts of the bridge although those are mostly 
dominated by the dynamic component for the correlated ground motion case. 

Although spatial variability models of Model 2 to 4 resulted very close responses to those of 
the uniform ground motion case, this result cannot be generalized to all suspension bridges. The 
reason behind this conclusion can be attributed to the fact that structural responses depend largely 
on the relation of the frequency contents of the bridge, the ground motion model and the spatial 
variability model. To be able to generalize these results different suspension bridges with different 
fundamental frequencies should be investigated underground motions with different frequency 
contents. 

As it is obvious from the obtained results, spatial variability of ground motions should be taken 
into account while analysing long-span suspension bridges. However, which model to be selected 
as the spatial variability model is still a challenging task, because each method is based on a 
different approximation. However, the consistency observed for the results indicates that all the 
considered loss of coherency models are somehow representative of the spatial variability of 
ground motions. 
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