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Plane waves in an anisotropic thermoelastic 
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1. Introduction 
 

The problem of elastic wave propagation in different media is an important phenomenon in the 
field of seismology, earthquake engineering and geophysics. The elastic wave propagating through 
the earth (seismic waves) have to travel through different layers and interfaces. These waves have 
different velocities and are influenced by the properties of the layer through which they travel. The 
signals of these waves are not only helpful in providing information about the internal structures of 
the earth but also helpful in exploration of valuable materials such as minerals, crystals and metals 
etc. This technique is one of the most suitable in terms of time saving and economy. 
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Abstract.  The present investigation is to study the plane wave propagation and reflection of plane waves in a 
homogeneous transversely isotropic magnetothermoelastic medium with two temperature and rotation in the context 
of GN Type-II and Type-III (1993) theory of thermoelasticity. It is found that, for two dimensional assumed model, 
there exist three types of coupled longitudinal waves, namely quasi- longitudinal wave (QL), quasi- transverse wave 
(QTS) and quasi -thermal waves (QT). The different characteristics of waves like phase velocity, attenuation 
coefficients, specific loss and penetration depth are computed numerically and depicted graphically. The 
phenomenon of reflection coefficients due to quasi-waves at a plane stress free with thermally insulated boundary is 
investigated. The ratios of the linear algebraic equations. These amplitude ratios are used further to calculate the 
shares of different scattered waves in the energy of incident wave. The modulus of the amplitude and energy ratios 
with the angle of incidence are computed for a particular numerical model. The conservation of energy at the free 
surface is verified. The effect of energy dissipation and two temperatures on the energy ratios are depicted graphically 
and discussed. Some special cases of interest are also discussed. 
 

Keywords:  phase velocity; attenuation coefficients; specific loss; penetration depth; reflection; energy ratios 

As the importance of anisotropic devices has increased in many fields of optics and 
microwaves, wave propagation in anisotropic media has been widely studied over in the last 
decades. The anisotropic nature basically stems from the polarization or magnetization that can 
occur in materials when external fields pass by. Mathematical modeling of plane wave propagation 
along with the free boundary of an elastic half-space has been subject of continued interest for 
many years. Keith and Crampin (1977) derived a formulation for calculating the energy division 
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among waves generated by plane waves incident on a boundary of anisotropic media. Wave 
propagation in a microstretch thermoelastic diffusion solid has been investigated by Kumar (2015). 
Reflection of plane waves at the free surface of a transversely isotropic thermoelastic diffusive 
solid half-space has been discussed by Kumar and Kansal (2011). Wave propagation has remained 
the study of concern of many researchers (Kumar and Mukhopadhyay 2010, Lee and Lee 2010, 
Kumar and Gupta 2013, Othman 2010, Kaushal et al. 2011, Kumar et al. 2008). 

Chen and Gurtin (1968) and Chen et al. (1968, 1969) have formulated a theory of heat 
conduction in deformable bodies which depends upon two distinct temperatures, the conductive 
temperature 𝜑𝜑 and the thermo dynamical temperature T. For time independent situations, the 
difference between these two temperatures is proportional to the heat supply, and in absence of 
heat supply, the two temperatures are identical. For time dependent problems, the two 
temperatures are different, regardless of the presence of heat supply. The two temperatures T, 
𝜑𝜑 and the strain are found to have representations in the form of a travelling wave plus a response, 
which occurs instantaneously throughout the body (Boley and Tolins 1962). The wave propagation 
in two temperature theory of thermoelasticity was investigated by Warren and Chen (1973). 

Green and Naghdi (1991) postulated a new concept in thermoelasticity theories and proposed 
three models which are subsequently referred to as GN-I, II, and III models. The linearised version 
of model-I corresponds to classical thermoelastic model (based on Fourier’s law). The linearised 
version of model-II and III permit propagation of thermal waves at finite speed. Green-Naghdi’s 
second model (GN-II), in particular exhibits a feature that is not present in other established 
thermoelastic models as it does not sustain dissipation of thermal energy (Green and Naghdi 1993). 
In this model, the constitutive equations are derived by starting with the reduced energy equation 
and by including the thermal displacement gradient among other constitutive variables. Green-
Naghdi’s third model (GN-III) admits dissipation of energy. In this model the constitutive 
equations are derived by starting with the reduced energy equation, where the thermal 
displacement gradient in addition to the temperature gradient, are among the constitutive variables. 
Green and Naghdi (1992) included the derivation of a complete set of governing equations of a 
linearised version of the theory for homogeneous and isotropic materials in terms of the 
displacement and temperature fields and a proof of the uniqueness of the solution for the 
corresponding initial boundary value problem. 

A comprehensive work has been done in thermoelasticity theory with and without energy 
dissipation and thermoelasticity with two temperature. Youssef (2011) constructed a new theory of 
generalized thermoelasticity by taking into account two-temperature generalized thermoelasticity 
theory for a homogeneous and isotropic body without energy dissipation. Several researchers 
studied various problems involving two temperature (e.g., Youssef 2006, Sharma and Marin 2013, 
Sharma and Bhargav 2014, Sharma et al. 2013, Sharma and Kumar 2013). 

In view of the fact that most of the large bodies like the earth, the moon and other planets have 
an angular velocity, as well as earth itself behaves like a huge magnet, it is important to study the 
propagation of thermoelastic waves in a rotating medium under the influence of magnetic field. So, 
the attempts are being made to study the propagation of finite thermoelastic waves in an infinite 
elastic medium rotating with angular velocity. Several authors (Das and Kanoria 2014, Atwa and 
Jahangir 2014, Marin 1995, 2010, Marin and Marinescu 1998) have studied various problems in 
generalized thermoelasticity to study the effect of rotation. 

Here in this paper, we analyse the reflection of plane waves incident at the stress free, thermally 
insulated surface of a homogeneous, transversely isotropic magnetothermoelastic solid with two 
temperature along with rotation in the context of GN Type-II and Type-III theory of thermo- 
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elasticity. The graphical representation is given for amplitude and energy ratios of various reflected 
waves to that of incident waves for different values of incident angle. Also phase velocity and 
attenuation coefficients of plane waves are computed and presented graphically for different values 
of wave frequency. 
 
 
2. Basic equations 
 

Following Zakaria (2014), the simplified Maxwell’s linear equation of electrodynamics for a 
slowly moving and perfectly conducting elastic solid are 

 

curl ℎ�⃗ =  𝐽𝐽 + 𝜀𝜀0
𝜕𝜕𝐸𝐸�⃗
𝜕𝜕𝜕𝜕

 (1) 

 

curl𝐸𝐸�⃗  =  −𝜇𝜇0
𝜕𝜕ℎ�⃗
𝜕𝜕𝜕𝜕

 (2) 

 

𝐸𝐸�⃗ = −𝜇𝜇0  �
𝜕𝜕𝑢𝑢�⃗  
𝜕𝜕𝜕𝜕

× 𝐻𝐻0����⃗ � (3) 

 

divℎ�⃗ = 0 (4) 
 
Maxwell stress components are given by 
 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜇𝜇0(𝐻𝐻𝑖𝑖ℎ𝑗𝑗 + 𝐻𝐻𝑗𝑗ℎ𝑖𝑖 − 𝐻𝐻𝑘𝑘ℎ𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 ) (5) 
 

where 𝐻𝐻0����⃗ − the external applied magnetic field intensity vector, ℎ�⃗ − the induced magnetic field 
vector, 𝐸𝐸�⃗ −  the induced electric field vector, 𝐽𝐽 −  the current density vector, 𝑢𝑢�⃗ −  is the 
displacement vector, 𝜇𝜇0 and 𝜀𝜀0 − the magnetic and electric permeabilities respectively, 𝑇𝑇𝑖𝑖𝑖𝑖 − 
the component of Maxwell stress tensor and 𝛿𝛿𝑖𝑖𝑖𝑖 − the Kronecker delta. 

The constitutive relations for a transversely isotropic thermoelastic medium are given by 
 

𝑡𝑡𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑘𝑘𝑘𝑘 − 𝛽𝛽𝑖𝑖𝑖𝑖 𝑇𝑇 (6) 
 
Equation of motion for a transversely isotropic thermoelastic medium rotating uniformly with 

an angular velocity 𝛀𝛀 = Ω𝑛𝑛, where n is a unit vector representing the direction of axis of rotation 
and taking into account Lorentz force 

 

 𝑡𝑡𝑖𝑖𝑖𝑖 ,𝑗𝑗 + 𝐹𝐹𝑖𝑖  =  𝜌𝜌{𝑢̈𝑢𝑖𝑖 + �𝛀𝛀 × (𝛀𝛀 × 𝑢𝑢)�𝑖𝑖 + (2𝛀𝛀 × 𝑢̇𝑢)𝑖𝑖  (7) 
 
The heat conduction equation following Chandrasekharaiah (1998) and Youssef (2011) is 
 

𝐾𝐾𝑖𝑖𝑖𝑖 𝜑𝜑,𝑖𝑖𝑖𝑖 + 𝐾𝐾𝐼𝐼𝐼𝐼∗ 𝜑̇𝜑𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑖𝑖 𝑇𝑇0𝑒𝑒𝑖𝑖𝑖𝑖̈ + 𝜌𝜌𝐶𝐶𝐸𝐸𝑇̈𝑇 (8) 
 
The strain displacement relations are 
 

𝑒𝑒𝑖𝑖𝑖𝑖 =
1
2
�𝑢𝑢𝑖𝑖 ,𝑗𝑗 + 𝑢𝑢𝑗𝑗 ,𝑖𝑖�          𝑖𝑖, 𝑗𝑗 = 1,2,3 
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where 𝐹𝐹𝑖𝑖 = 𝜇𝜇0(𝐽𝐽 × 𝐻𝐻0����⃗ )𝑖𝑖  are the components of Lorentz force. 
 

𝛽𝛽𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖     and     𝑇𝑇 = 𝜑𝜑 − 𝑎𝑎𝑖𝑖𝑖𝑖 𝜑𝜑,𝑖𝑖𝑖𝑖  

𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖 ,     𝐾𝐾𝑖𝑖𝑖𝑖 = 𝐾𝐾𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖 ,     𝐾𝐾𝑖𝑖𝑖𝑖 ∗ = 𝐾𝐾𝑖𝑖∗𝛿𝛿𝑖𝑖𝑖𝑖 ,          𝑖𝑖  is not summed 
 
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 � are elastic parameters, 𝛽𝛽𝑖𝑖𝑖𝑖  is the thermal tensor, 𝑇𝑇 is the 

temperature, 𝑇𝑇0 is the reference temperature, 𝑡𝑡𝑖𝑖𝑖𝑖  are the components of stress tensor, 𝑒𝑒𝑘𝑘𝑘𝑘  are the 
components of strain tensor, 𝑢𝑢𝑖𝑖  are the displacement components, 𝜌𝜌 is the density, 𝐶𝐶𝐸𝐸  is the 
specific heat, 𝐾𝐾𝑖𝑖𝑖𝑖  is the materialistic constant, 𝐾𝐾𝐼𝐼𝐼𝐼∗  is the thermal conductivity, 𝑎𝑎𝑖𝑖𝑖𝑖  are the two 
temperature parameters, 𝛼𝛼𝑖𝑖𝑖𝑖  is the coefficient of linear thermal expansion, Ω is the angular 
velocity of the solid. 
 
 
3. Formulation and solution of the problem 
 

We consider a homogeneous perfectly conducting transversely isotropic magnetothermoelastic 
medium with two temperature and rotation in the context of GN Type-II and Type-III theory of 
thermoelasticity initially at a uniform temperature 𝑇𝑇0. The origin of rectangular Cartesian co-
ordinate system (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) is taken at any point on the plane horizontal surface. We take 𝑥𝑥3 − 
axis along the axis material symmetry and pointing vertically downwards into the medium, which 
is thus represented by 𝑥𝑥3 ≥ 0. The surface (𝑥𝑥3  = 0) is subjected to stress free, thermally insulated 
boundary conditions. We choose 𝑥𝑥1 − axis in the direction of wave propagation so that all 
particles on a line parallel to 𝑥𝑥2 − axis are equally displaced. Therefore, all the field quantities 
will be independent of 𝑥𝑥2 − co-ordinate. Following Slaughter (2002), using appropriate 
transformations, on the set of Eqs. (6)-(7), we derive the basic equations for transversely isotropic 
thermoelastic solid. The components of displacement vector 𝑢𝑢�⃗  and conductive temperature 𝜑𝜑 for 
the two dimensional problem have the form 

 
𝑢𝑢�⃗ (𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡)  = (𝑢𝑢1, 0,𝑢𝑢3),          and      𝜑𝜑 = 𝜑𝜑(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡) (9) 

 
We also assume that 
 

𝛀𝛀 = (0,Ω, 0) (10) 
 
From the generalized Ohm’s law 
 

𝐽𝐽2 = 0 (11) 
 

the current density components 𝐽𝐽1 and 𝐽𝐽3 are given as 
 

𝐽𝐽1 = −𝜀𝜀0𝜇𝜇0𝐻𝐻0
𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑡𝑡2  (12) 

 

𝐽𝐽3 = 𝜀𝜀0𝜇𝜇0𝐻𝐻0
𝜕𝜕2𝑢𝑢1

𝜕𝜕𝑡𝑡2  (13) 
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Eqs. (7) and (8) with the aid of Eqs. (9)-(13), yield 
 

𝑐𝑐11
𝜕𝜕2𝑢𝑢1

𝜕𝜕𝑥𝑥1
2 + 𝑐𝑐13

𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥3
+ 𝑐𝑐44 �

𝜕𝜕2𝑢𝑢1

𝜕𝜕𝑥𝑥3
2 +

𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥3
� 

−𝛽𝛽1
𝜕𝜕
𝜕𝜕𝑥𝑥1

�𝜑𝜑 − �𝑎𝑎1
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 + 𝑎𝑎3
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2�� − 𝜇𝜇0𝐽𝐽3𝐻𝐻0 = 𝜌𝜌 �
𝜕𝜕2𝑢𝑢1

𝜕𝜕𝑡𝑡2 − 𝛺𝛺2𝑢𝑢1 + 2𝛺𝛺
𝜕𝜕𝑢𝑢3

𝜕𝜕𝜕𝜕
� 

(14) 

 

(𝑐𝑐13 + 𝑐𝑐44)
𝜕𝜕2𝑢𝑢1

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥3
 + 𝑐𝑐44

𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑥𝑥1
2 + 𝑐𝑐33

𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑥𝑥3
2 − 𝛽𝛽3

𝜕𝜕
𝜕𝜕𝑥𝑥3

�𝜑𝜑 − �𝑎𝑎1
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 + 𝑎𝑎3
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2�� 

+𝜇𝜇0𝐽𝐽1𝐻𝐻0 = 𝜌𝜌 �
𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑡𝑡2 − 𝛺𝛺2𝑢𝑢3 − 2𝛺𝛺
𝜕𝜕𝑢𝑢1

𝜕𝜕𝜕𝜕
� 

(15) 

 

�𝑘𝑘1 + 𝑘𝑘1
∗ 𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 + �𝑘𝑘3 + 𝑘𝑘3
∗ 𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2 = 𝑇𝑇0
𝜕𝜕2

𝜕𝜕𝜕𝜕2 �𝛽𝛽1
𝜕𝜕𝑢𝑢1

𝜕𝜕𝑥𝑥1
 + 𝛽𝛽3

𝜕𝜕𝑢𝑢3

𝜕𝜕𝑥𝑥3
� + 𝜌𝜌𝐶𝐶𝐸𝐸𝑇̈𝑇 (16) 

 
and 

 
𝑡𝑡11 = 𝑐𝑐11𝑒𝑒11 + 𝑐𝑐13𝑒𝑒33 − 𝛽𝛽1𝑇𝑇 (17) 

 
𝑡𝑡33 = 𝑐𝑐13𝑒𝑒11 + 𝑐𝑐33𝑒𝑒33 − 𝛽𝛽3𝑇𝑇 (18) 

 
𝑡𝑡13 = 2𝑐𝑐44𝑒𝑒13 (19) 

 
where 𝑇𝑇 = 𝜑𝜑 − �𝑎𝑎1

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕1

2 + 𝑎𝑎3
𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕3

2� ,   𝛽𝛽1 = (𝑐𝑐11+𝑐𝑐12)𝛼𝛼1 + 𝑐𝑐13𝛼𝛼3,    𝛽𝛽3 = 2𝑐𝑐13𝛼𝛼1 + 𝑐𝑐33𝛼𝛼3. 

In the above equations we use the contracting subscript notations (11 → 1,22 → 2,33 →
3,23 → 4,31 → 5,12 → 6) to relate 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑡𝑡𝑡𝑡 𝑐𝑐𝑚𝑚𝑚𝑚 . 

To facilitate the solution, following dimensionless quantities are introduced 
 

𝑥𝑥1
′ =

𝑥𝑥1

𝐿𝐿
,   𝑥𝑥3

′ =
𝑥𝑥3

𝐿𝐿
,   𝑢𝑢1

′ =
𝜌𝜌𝑐𝑐1

2

𝐿𝐿𝛽𝛽1𝑇𝑇0
𝑢𝑢1,   𝑢𝑢3

′ =
𝜌𝜌𝑐𝑐1

2

𝐿𝐿𝛽𝛽1𝑇𝑇0
𝑢𝑢3,   𝑇𝑇′ =

𝑇𝑇
𝑇𝑇0

,   𝑡𝑡′ =
𝑐𝑐1

𝐿𝐿
𝑡𝑡,   𝑡𝑡11

′ =
𝑡𝑡11

𝛽𝛽1𝑇𝑇0
, 

𝑡𝑡33
′ =

𝑡𝑡33

𝛽𝛽1𝑇𝑇0
,   𝑡𝑡31

′ =
𝑡𝑡31

𝛽𝛽1𝑇𝑇0
,   𝜑𝜑′ =

𝜑𝜑
𝑇𝑇0 

,   𝑎𝑎1
′ =

𝑎𝑎1

𝐿𝐿
,   𝑎𝑎3

′ =
𝑎𝑎3

𝐿𝐿
,   ℎ′ =

ℎ
𝐻𝐻0

,   Ω′ =
𝐿𝐿
𝐶𝐶1

Ω 
(20) 

 
Making use of Eq. (20) in Eqs. (14)-(16), after suppressing the primes, yield 
 

𝜕𝜕2𝑢𝑢1

𝜕𝜕𝑥𝑥1
2 + 𝛿𝛿4

𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥3
+ 𝛿𝛿2 �

𝜕𝜕2𝑢𝑢1

𝜕𝜕𝑥𝑥3
2 +

𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥3
� −

𝜕𝜕
𝜕𝜕𝑥𝑥1

�𝜑𝜑 − �
𝑎𝑎1

𝐿𝐿
 
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 +
𝑎𝑎3

𝐿𝐿
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2�� 

= �
𝜀𝜀0𝜇𝜇0

2 𝐻𝐻0
2

𝜌𝜌
+ 1�

𝜕𝜕2𝑢𝑢1

𝜕𝜕𝑡𝑡2 − 𝛺𝛺2𝑢𝑢1 + 2𝛺𝛺
𝜕𝜕𝑢𝑢3

𝜕𝜕𝜕𝜕
 

(21) 

 

571



 
 
 
 
 
 

Parveen Lata, Rajneesh Kumar and Nidhi Sharma 

𝛿𝛿1
𝜕𝜕2𝑢𝑢1

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥3
+ 𝛿𝛿2

𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑥𝑥1
2 + 𝛿𝛿3

𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑥𝑥3
2 −

𝛽𝛽3

𝛽𝛽1

𝜕𝜕
𝜕𝜕𝑥𝑥3

�𝜑𝜑 − �
𝑎𝑎1

𝐿𝐿
 
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 +
𝑎𝑎3

𝐿𝐿
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2�� 

= �
𝜀𝜀0𝜇𝜇0

2 𝐻𝐻0
2

𝜌𝜌
+ 1�

𝜕𝜕2𝑢𝑢3

𝜕𝜕𝑡𝑡2 − 𝛺𝛺2𝑢𝑢3 − 2𝛺𝛺
𝜕𝜕𝑢𝑢1

𝜕𝜕𝜕𝜕
 

(22) 

 

𝜀𝜀1 �1 +
𝜀𝜀3

𝜀𝜀1

𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 + 𝜀𝜀2 �1 +
𝜀𝜀4

𝜀𝜀2

𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2 

=  𝜀𝜀5
′𝛽𝛽1

2 𝜕𝜕2

𝜕𝜕𝜕𝜕2 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

+
𝛽𝛽3

𝛽𝛽1

𝜕𝜕𝑢𝑢3

𝜕𝜕𝑥𝑥3
�  +  

𝜕𝜕2

𝜕𝜕𝜕𝜕2 ��𝜑𝜑 −
𝑎𝑎1

𝐿𝐿
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥1

2 +
𝑎𝑎3

𝐿𝐿
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥3

2�� 

(23) 

 

𝛿𝛿1 =
(𝑐𝑐13 + 𝑐𝑐44)

𝑐𝑐11
,    𝛿𝛿2 =

𝑐𝑐44

𝑐𝑐11
,    𝛿𝛿3 =

𝑐𝑐33

𝑐𝑐11
,    𝛿𝛿4 =

𝑐𝑐13

𝑐𝑐11
, 

𝜀𝜀1 =
𝑘𝑘1

𝜌𝜌𝜌𝜌𝐸𝐸𝑐𝑐1
2 ,   𝜀𝜀2 =

𝑘𝑘3

𝜌𝜌𝜌𝜌𝐸𝐸𝑐𝑐1
2 ,   𝜀𝜀3 =

𝑘𝑘1
∗

𝐿𝐿𝜌𝜌𝜌𝜌𝐸𝐸𝑐𝑐1
,   𝜀𝜀4 =

𝑘𝑘3
∗

𝐿𝐿𝜌𝜌𝜌𝜌𝐸𝐸𝑐𝑐1
,   𝜀𝜀5

′ =
𝑇𝑇0

𝜌𝜌2𝐶𝐶𝐸𝐸𝑐𝑐1
2 

 
 
4. Plane wave propagation 
 

We seek plane wave solution of the equations of the form 
 

�
𝑢𝑢1
𝑢𝑢3
𝜑𝜑
� = �

𝑈𝑈1
𝑈𝑈3
𝜑𝜑∗
� exp⁡{𝑖𝑖�𝜔𝜔𝜔𝜔 − 𝜉𝜉(𝑥𝑥1sin𝜃𝜃 − 𝑥𝑥3cos𝜃𝜃)�} (24) 

 
where (sin𝜃𝜃, cos𝜃𝜃) denotes the projection of the wave normal onto the 𝑥𝑥1 − 𝑥𝑥3 plane, 𝜉𝜉 and 𝜔𝜔 
are respectively the wave number and angular frequency of plane waves propagating in 𝑥𝑥1 − 𝑥𝑥3 
plane. 

Upon using Eq. (24) in Eqs. (21)-(23) and then eliminating 𝑈𝑈1,𝑈𝑈3 and 𝜑𝜑∗ from the resulting 
equations yields the following characteristic equation 

 
𝐴𝐴𝜉𝜉6 + 𝐵𝐵𝜉𝜉4 + 𝐶𝐶𝜉𝜉2 + 𝐷𝐷 = 0 (25) 

 
Where 𝐴𝐴 = 𝜁𝜁4𝜁𝜁5𝜁𝜁6 − 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 𝜁𝜁2𝜁𝜁7𝑝𝑝1 − 𝛿𝛿1𝜁𝜁8

2𝜁𝜁1𝜁𝜁4 +  𝜁𝜁2𝜁𝜁7𝜁𝜁8 +  𝜁𝜁2𝜁𝜁7𝜁𝜁8
2𝜁𝜁1 

𝐵𝐵 = −𝜁𝜁1𝜁𝜁4𝜁𝜁6 − 𝜁𝜁1𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 𝜁𝜁2𝜁𝜁7𝑝𝑝1 + 𝜔𝜔2𝜁𝜁6𝜁𝜁5 − 𝜁𝜁4𝜁𝜁5𝜁𝜁1 + 𝜁𝜁5𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 𝜁𝜁7𝑝𝑝1 − 𝛿𝛿1𝜁𝜁4𝜁𝜁3𝜁𝜁8 

         +𝜁𝜁2𝜁𝜁7𝜁𝜁8 − 𝛿𝛿1𝜔𝜔2𝜁𝜁1𝜁𝜁8
2 +  𝜁𝜁3𝜁𝜁8𝜁𝜁1𝜁𝜁4 − 𝜁𝜁18

2𝜁𝜁1𝜁𝜁7 − 𝜁𝜁2𝜁𝜁8𝜁𝜁3𝜁𝜁7 + 𝛿𝛿1𝜁𝜁8𝜁𝜁7 

         +𝑝𝑝1𝜁𝜁7𝜁𝜁6𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 − 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 𝜁𝜁2𝜁𝜁7𝑝𝑝1 

𝐶𝐶 = −𝜁𝜁5𝜁𝜁1𝜔𝜔2 − 𝜁𝜁1𝜁𝜁6𝜔𝜔2 + 𝜁𝜁1
2𝜁𝜁4 − 𝜁𝜁1𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 𝜁𝜁7𝑝𝑝1 − 𝜁𝜁3𝛿𝛿1𝜔𝜔2𝜁𝜁8 + 𝜁𝜁3

2𝜁𝜁4 

         +𝜁𝜁8𝜁𝜁3𝜁𝜁1𝜔𝜔2 − 𝜁𝜁1 𝜀𝜀5
′𝛽𝛽1

2𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 
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𝐷𝐷 = 𝜔𝜔2(𝜁𝜁1
2 − 𝜁𝜁3

2) 

𝜁𝜁1 = �
𝜀𝜀0𝜇𝜇0

2 𝐻𝐻0
2

𝜌𝜌
+ 1�𝜔𝜔2 + 𝛺𝛺2, 𝜁𝜁2 =

𝑎𝑎1

𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 +

𝑎𝑎3

𝐿𝐿
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃,   𝜁𝜁3 = 2𝑖𝑖𝑖𝑖Ω, 

𝜁𝜁4 = 𝜁𝜁2𝜔𝜔2 − 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃(𝜀𝜀1 + 𝑖𝑖𝜀𝜀3) − 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 (𝜀𝜀2 + 𝑖𝑖𝜀𝜀4),    𝜁𝜁5 = 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 + 𝛿𝛿2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃, 

𝜁𝜁6 = 𝛿𝛿2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 + 𝛿𝛿3𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃,    𝜁𝜁7 = 𝜀𝜀5
′𝜔𝜔2𝛽𝛽1𝛽𝛽3,    𝜁𝜁8 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,    𝑝𝑝5 =

𝛽𝛽3

 𝛽𝛽1
 

 
The roots of Eq. (25) gives six values of 𝜉𝜉, in which we are interested to those roots whose 

imaginary parts are positive. Corresponding to these roots, there exists three waves corresponding 
to decreasing orders of their velocities, namely quasi-longitudinal, quasi-transverse and quasi-
thermal waves. The phase velocities, attenuation coefficients, specific loss and penetration depth 
of these waves are obtained by the following expressions. 

 
(i) Phase velocity 
The phase velocity is given by 

 

𝑉𝑉𝑗𝑗 =  
𝜔𝜔

�𝑅𝑅𝑅𝑅(𝜉𝜉𝑗𝑗 )�
,         𝑗𝑗 = 1, 2, 3 

 
where 𝑉𝑉𝑗𝑗 , j=1,2,3 are the phase velocities of QL, QTS and QT waves respectively. 

 
(ii) Attenuation coefficient 
The attenuation coefficient is defined by 

 

𝑄𝑄𝑗𝑗 = 𝐼𝐼𝐼𝐼�𝜉𝜉𝑗𝑗 �,         𝑗𝑗 = 1, 2, 3 
 
where 𝑄𝑄𝑗𝑗 , 𝑗𝑗 = 1, 2, 3 are the attenuation coefficients of QL, QTS and QT waves respectively. 

 
(iii) Specific loss 
The specific loss is the ratio of energy (∆𝑤𝑤) dissipated in taking a specimen through a stress 
cycle, to the elastic energy (w) stored in the specimen when the strain is maximum. The 
specific loss is the most direct method of defining internal fraction of a material. For a 
sinusoidal plane wave of small amplitude, the specific loss �∆𝑤𝑤

𝑤𝑤
�  equals 4𝜋𝜋  times the 

absolute value of the imaginary part of 𝜉𝜉 to the real part of 𝜉𝜉, i.e. 
 

𝑅𝑅𝑖𝑖 = �
∆𝑤𝑤
𝑤𝑤
�
𝑗𝑗

= 4𝜋𝜋 �
𝐼𝐼𝐼𝐼(𝜉𝜉𝑗𝑗 )
𝑅𝑅𝑅𝑅(𝜉𝜉𝑗𝑗 )

� ,         𝑗𝑗 = 1, 2, 3 

 
where 𝑅𝑅1,𝑅𝑅2,𝑅𝑅3 are the specific losses of QL, QTS and QT waves respectively. 

 
(iv) Penetration depth 
The penetration depth is defined by 

 
where 𝑆𝑆1  is the penetration depth of QL (quasi longitudinal ) 
wave, 𝑆𝑆2 is the penetration depth of QTS (quasi transverse ) wave, 𝑆𝑆3 is the penetration depth 
of QT (quasi thermal) wave. 

𝑆𝑆𝑗𝑗 =
1

�𝐼𝐼𝐼𝐼(𝜉𝜉𝑗𝑗 )�
, 𝑗𝑗 = 1, 2, 3 
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Fig. 1 Geometry of the problem 

 
 
5. Reflection and transmission at the boundary surfaces 
 

We consider a homogeneous transversely isotropic magnetothermoelastic half-space occupying 
the region 𝑥𝑥3 ≥ 0. Incident quasi-longitudinal or quasi-transverse or quasithermal waves at the 
stress free, thermally insulated surface (𝑥𝑥3 = 0) will generate reflected QL, reflected QTS and 
reflected QT waves in the half-space 𝑥𝑥3 > 0. The total displacements, conductive temperature are 
given by 

 

𝑢𝑢1 = � 𝐴𝐴𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗
6

𝑗𝑗=1
,   𝑢𝑢3 = � 𝑑𝑑𝑗𝑗𝐴𝐴𝑗𝑗 𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗

6

𝑗𝑗=1
,   𝜑𝜑 = � 𝑙𝑙𝑗𝑗𝐴𝐴𝑗𝑗 𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗

6

𝑗𝑗=1
,     𝑗𝑗 = 1, 2. . . , 6 (26) 

 
where 

 
𝑀𝑀𝑗𝑗 = 𝜔𝜔𝜔𝜔 − 𝜉𝜉𝑗𝑗 �𝑥𝑥1𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗 − 𝑥𝑥3𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 �,         𝑗𝑗 = 1, 2, 3 

 
𝑀𝑀𝑗𝑗 = 𝜔𝜔𝜔𝜔 − 𝜉𝜉𝑗𝑗 �𝑥𝑥1𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗 + 𝑥𝑥3𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 �,          𝑗𝑗 = 4, 5, 6 

 
Here subscripts j = 1, 2, 3 respectively denote the quantities corresponding to incident QL, QTS 

and QT-mode, whereas the subscripts j=4,5,6 denote the corresponding reflected waves, 𝜉𝜉𝑗𝑗  are the 
roots obtained from Eq. (25). 

 

𝑑𝑑𝑗𝑗 =
𝜉𝜉𝑗𝑗4�𝜁𝜁8𝑗𝑗 𝜁𝜁2𝑗𝑗 𝜁𝜁7𝑗𝑗 − 𝛿𝛿1𝜁𝜁8𝑗𝑗 𝜁𝜁4𝑗𝑗 � + 𝜉𝜉𝑗𝑗2𝜁𝜁8𝑗𝑗 �𝜁𝜁7𝑗𝑗 − 𝛿𝛿1𝜔𝜔2� + 𝜁𝜁3𝑗𝑗 𝜔𝜔2(1 + 𝜁𝜁4𝑗𝑗 )

−𝜉𝜉𝑗𝑗4�𝜁𝜁6𝑗𝑗 𝜁𝜁4𝑗𝑗 + 𝜁𝜁7𝑗𝑗 𝜁𝜁2𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2 𝑝𝑝1� + 𝜉𝜉𝑗𝑗2(𝜁𝜁4𝑗𝑗 𝜁𝜁1𝑗𝑗 − 𝜁𝜁7𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2 𝑝𝑝1 −𝜔𝜔2𝜁𝜁6𝑗𝑗 )
,    𝑗𝑗 = 1, 2, 3 

 

𝑙𝑙𝑗𝑗 =
−𝑖𝑖𝜉𝜉𝑗𝑗3𝜁𝜁7𝑗𝑗 �𝜁𝜁8𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 𝛿𝛿1 − 𝑝𝑝1𝜁𝜁6𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗 � + 𝑖𝑖𝜉𝜉𝑗𝑗 𝜁𝜁7𝑗𝑗 �𝜁𝜁3𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 + 𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗 𝜁𝜁1𝑗𝑗 �
−𝜉𝜉𝑗𝑗4�𝜁𝜁6𝑗𝑗 𝜁𝜁4𝑗𝑗 + 𝜁𝜁7𝑗𝑗 𝜁𝜁2𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2 𝑝𝑝1� + 𝜉𝜉𝑗𝑗2(𝜁𝜁4𝑗𝑗 𝜁𝜁1𝑗𝑗 − 𝜁𝜁7𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2 𝑝𝑝1 − 𝜔𝜔2𝜁𝜁6𝑗𝑗 )

,    𝑗𝑗 = 1, 2, 3 

 

𝑑𝑑𝑗𝑗 =
𝜉𝜉𝑗𝑗4�−𝜁𝜁8𝑗𝑗 𝜁𝜁2𝑗𝑗 𝜁𝜁7𝑗𝑗 + 𝛿𝛿1𝜁𝜁8𝑗𝑗 𝜁𝜁4𝑗𝑗 � − 𝜉𝜉𝑗𝑗2𝜁𝜁8𝑗𝑗 �𝜁𝜁7𝑗𝑗 − 𝛿𝛿1𝜔𝜔2� + 𝜁𝜁3𝑗𝑗 𝜔𝜔2(1 + 𝜁𝜁4𝑗𝑗 )
−𝜉𝜉𝑗𝑗4�𝜁𝜁6𝑗𝑗 𝜁𝜁4𝑗𝑗 + 𝜁𝜁7𝑗𝑗 𝜁𝜁2𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2 𝑝𝑝1� + 𝜉𝜉𝑗𝑗2(𝜁𝜁4𝑗𝑗 𝜁𝜁1𝑗𝑗 − 𝜁𝜁7𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2 𝑝𝑝1 −𝜔𝜔2𝜁𝜁6𝑗𝑗 )

,    𝑗𝑗 = 4, 5, 6 
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𝑙𝑙𝑗𝑗 =
−𝑖𝑖𝜉𝜉𝑗𝑗3𝜁𝜁7𝑗𝑗 �−𝜁𝜁8𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 𝛿𝛿1 − 𝑝𝑝1𝜁𝜁6𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗 � + 𝑖𝑖𝜉𝜉𝑗𝑗 𝜁𝜁7𝑗𝑗 �−𝜁𝜁3𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 + 𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗 𝜁𝜁1𝑗𝑗 �
−𝜉𝜉𝑗𝑗4�𝜁𝜁6𝑗𝑗 𝜁𝜁4𝑗𝑗 + 𝜁𝜁7𝑗𝑗 𝜁𝜁2𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2 𝑝𝑝1� + 𝜉𝜉𝑗𝑗2(𝜁𝜁4𝑗𝑗 𝜁𝜁1𝑗𝑗 − 𝜁𝜁7𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2 𝑝𝑝1 −𝜔𝜔2𝜁𝜁6𝑗𝑗 )

,   𝑗𝑗 = 4, 5, 6 

 
 

6. Boundary conditions 
 
The dimensionless boundary conditions at the free surface 𝑥𝑥3 = 0, are given by 
 

(𝑖𝑖)     𝑡𝑡33 = 0 (27) 
 

(𝑖𝑖𝑖𝑖)    𝑡𝑡31 = 0 (28) 
 

(𝑖𝑖𝑖𝑖𝑖𝑖)   
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥3

= 0 (29) 
 
Making use of Eq. (26) into the boundary conditions Eqs. (27)-(29), we obtain 
 

� (−𝑖𝑖𝜉𝜉𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗
3

𝑗𝑗=1

𝑐𝑐13

𝜌𝜌𝑐𝑐1
2 + 𝑖𝑖𝑑𝑑𝑗𝑗 𝜉𝜉𝑗𝑗

𝑐𝑐33

𝜌𝜌𝑐𝑐1
2 − 𝑝𝑝1𝑙𝑙𝑗𝑗 (1 + 𝑎𝑎1𝜉𝜉𝑗𝑗2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗

2 + 𝑎𝑎3𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2)) 𝐴𝐴𝑗𝑗 𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗 (𝑥𝑥1,0) 

+� (−𝑖𝑖𝜉𝜉𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗
6

𝑗𝑗=4

𝑐𝑐13

𝜌𝜌𝑐𝑐1
2 − 𝑖𝑖𝑑𝑑𝑗𝑗 𝜉𝜉𝑗𝑗

𝑐𝑐33

𝜌𝜌𝑐𝑐1
2 − 𝑝𝑝1𝑙𝑙𝑗𝑗 (1 + 𝑎𝑎1𝜉𝜉𝑗𝑗2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗

2 + 𝑎𝑎3𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2)) 𝐴𝐴𝑗𝑗 𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗 (𝑥𝑥1,0) = 0 
(30) 

 

� (−𝑖𝑖𝜉𝜉𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗
3

𝑗𝑗=1
+ 𝑖𝑖𝑑𝑑𝑗𝑗 𝜉𝜉𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 ) 𝐴𝐴𝑗𝑗 𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗 (𝑥𝑥1,0) 

+� (−𝑖𝑖𝜉𝜉𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗
6

𝑗𝑗=4
− 𝑖𝑖𝑑𝑑𝑗𝑗 𝜉𝜉𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 ) 𝐴𝐴𝑗𝑗 𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗 (𝑥𝑥1,0) = 0 

(31) 

 

� (𝑖𝑖𝜉𝜉𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗
3

𝑗𝑗=1
𝑙𝑙𝑗𝑗 + ℎ1𝑙𝑙𝑗𝑗 ) 𝐴𝐴𝑗𝑗 𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗 (𝑥𝑥1,0) + � (−𝑖𝑖𝜉𝜉𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗

6

𝑗𝑗=4
𝑙𝑙𝑗𝑗 + ℎ1𝑙𝑙𝑗𝑗 ) 𝐴𝐴𝑗𝑗 𝑒𝑒𝑖𝑖𝑖𝑖𝑗𝑗 (𝑥𝑥1,0) = 0 (32) 

 
The Eqs. (30)-(32) are satisfied for all values of 𝑥𝑥1, therefore we have 
 

𝑀𝑀1(𝑥𝑥1, 0) = 𝑀𝑀2(𝑥𝑥1, 0) = 𝑀𝑀3(𝑥𝑥1, 0) = 𝑀𝑀4(𝑥𝑥1, 0) = 𝑀𝑀5(𝑥𝑥1, 0) = 𝑀𝑀6(𝑥𝑥1, 0) (33) 
 
From Eqs. (26) and (33), we obtain 
 

𝜉𝜉1𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1 = 𝜉𝜉2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃2 = 𝜉𝜉3𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃3 = 𝜉𝜉4𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃4 = 𝜉𝜉5𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃5 = 𝜉𝜉6𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃6 (34) 
 

which is the form of Snell’s law for stress free, thermally insulated surface of transversely 
isotropic magnetothermoelastic medium with rotation. Eqs. (30)-(32) and (34) yield 

 

� 𝑋𝑋𝑖𝑖𝑖𝑖𝐴𝐴𝑞𝑞 + � 𝑋𝑋𝑖𝑖𝑖𝑖 𝐴𝐴𝑗𝑗 = 0,
6

𝑗𝑗=4

3

𝑞𝑞=1
          (𝑖𝑖 = 1, 2, 3) (35) 
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where 
 

𝑋𝑋1𝑞𝑞 = −𝑖𝑖𝜉𝜉𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑞𝑞
𝑐𝑐13

𝜌𝜌𝑐𝑐1
2 + 𝑖𝑖𝑑𝑑𝑞𝑞𝜉𝜉𝑞𝑞

𝑐𝑐33

𝜌𝜌𝑐𝑐1
2 − 𝑝𝑝1𝑙𝑙𝑞𝑞�1 + 𝑎𝑎1𝜉𝜉𝑞𝑞2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑞𝑞2 + 𝑎𝑎3𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑞𝑞2�, 𝑞𝑞 = 1, 2, 3 

𝑋𝑋2𝑞𝑞 = −𝑖𝑖𝜉𝜉𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑞𝑞 + 𝑖𝑖𝑑𝑑𝑞𝑞𝜉𝜉𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑞𝑞 ,         𝑞𝑞 = 1, 2, 3 

𝑋𝑋3𝑞𝑞 = 𝑖𝑖𝜉𝜉𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑞𝑞𝑙𝑙𝑞𝑞 + ℎ1𝑙𝑙𝑞𝑞 ,                      𝑞𝑞 = 1, 2, 3 

𝑋𝑋1𝑗𝑗 = −𝑖𝑖𝜉𝜉𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗
𝑐𝑐13

𝜌𝜌𝑐𝑐1
2 − 𝑖𝑖𝑑𝑑𝑗𝑗 𝜉𝜉𝑗𝑗

𝑐𝑐33

𝜌𝜌𝑐𝑐1
2 − 𝑝𝑝1𝑙𝑙𝑗𝑗 (1 + 𝑎𝑎1𝜉𝜉𝑗𝑗2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗

2 + 𝑎𝑎3𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 2,         𝑗𝑗 = 4, 5, 6 

𝑋𝑋2𝑗𝑗 = −𝑖𝑖𝜉𝜉𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗  – 𝑖𝑖𝑑𝑑𝑗𝑗 𝜉𝜉𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 ,             𝑗𝑗 = 4, 5, 6 

𝑋𝑋3𝑗𝑗 = −𝑖𝑖𝜉𝜉𝑗𝑗 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 𝑙𝑙𝑗𝑗 + ℎ1𝑙𝑙𝑗𝑗 ,                     𝑗𝑗 = 4, 5, 6 

(36) 

 
Incident QL-wave 
In case of quasi-longitudinal wave, the subscript q takes only one value, that is q=1, which 

means 𝐴𝐴2 = 𝐴𝐴3 = 0. Dividing the set of equations (35) throughout by 𝐴𝐴1, we obtain a system of 
three homogeneous equations in three unknowns which can be solved by Cramer’s rule and we 
have 

𝐴𝐴1𝑖𝑖 =
𝐴𝐴𝑖𝑖+3

𝐴𝐴1
=
∆𝑖𝑖1

∆
,         𝑖𝑖 = 1, 2, 3 (37) 

 
Incident QTS-wave 
In case of quasi-transverse wave, the subscript q takes only one value, that is q=2, which means 

𝐴𝐴1 = 𝐴𝐴3 = 0. Dividing the set of equations (35) throughout by 𝐴𝐴2, we obtain a system of three 
homogeneous equations in three unknowns which can be solved by Cramer’s rule and we have 

 

𝐴𝐴2𝑖𝑖 =
𝐴𝐴𝑖𝑖+3

𝐴𝐴2
=
∆𝑖𝑖1

∆
,         𝑖𝑖 = 1, 2, 3 (38) 

 
Incident QT-wave 
In case of quasi-thermal wave, the subscript q takes only one value, that is q = 3, which means 

𝐴𝐴1 = 𝐴𝐴2 = 0. Dividing the set of Eq. (35) throughout by 𝐴𝐴3 , we obtain a system of three 
homogeneous equations in three unknowns which can be solved by Cramer’s rule and we have 

 

𝐴𝐴3𝑖𝑖 =
𝐴𝐴𝑖𝑖+3

𝐴𝐴3
=
∆𝑖𝑖1

∆
,         𝑖𝑖 = 1, 2, 3 (39) 

 
where 𝑍𝑍𝑖𝑖  (i = 1, 2, 3) are the amplitude ratios of the reflected QL, reflected QTS, reflected QT -
waves to that of the incident QL-(QTS or QT) waves respectively. 

Here ∆=  |𝐴𝐴𝑖𝑖𝑖𝑖+3|3×3 and ∆𝑖𝑖
𝑝𝑝  (i=1,2,3 ) can be obtained by replacing, respectively, the 1st, 2nd 

and 3rd columns of ∆ by �−𝑋𝑋1𝑝𝑝 ,−𝑋𝑋2𝑝𝑝 ,−𝑋𝑋3𝑝𝑝�
𝑡𝑡
. 

Following Achenbach (1973), the energy flux across the surface element, which is the rate at 
which the energy is communicated per unit area of the surface is represented as 

 
𝑃𝑃∗ = 𝑡𝑡𝑙𝑙𝑙𝑙 𝑛𝑛𝑚𝑚𝑢̇𝑢𝑙𝑙  (40) 

576



 
 
 
 
 
 

Plane waves in an anisotropic thermoelastic 

where 𝑡𝑡𝑙𝑙𝑙𝑙  is the stress tensor, 𝑛𝑛𝑚𝑚  are the direction cosines of the unit normal and 𝑢̇𝑢𝑙𝑙  are the 
components of the particle velocity. 

The time average of 𝑃𝑃∗ over a period, denoted by < 𝑃𝑃∗ >, represents the average energy 
transmission per unit surface area per unit time and is given at the interface 𝑥𝑥3 = 0 as 

 
< 𝑃𝑃∗ > =< 𝑅𝑅𝑅𝑅 (𝑡𝑡13).𝑅𝑅𝑅𝑅 (𝑢̇𝑢1) + 𝑅𝑅𝑅𝑅(𝑡𝑡33)𝑅𝑅𝑅𝑅(𝑢̇𝑢3) > (41) 

 
Following Achenbach (1973), for any two complex functions f and g, we have 
 

< 𝑅𝑅𝑅𝑅(𝑓𝑓) >< 𝑅𝑅𝑅𝑅(𝑔𝑔) > =
1
2
𝑅𝑅𝑅𝑅(𝑓𝑓𝑔̅𝑔). (42) 

 
The expressions for energy ratios 𝐸𝐸𝑖𝑖 , (𝑖𝑖 = 1,2,3) for reflected QL, QT, QTH-wave are given 

as 
(i) In case of incident QL- wave 
 

𝐸𝐸1𝑖𝑖 =
< 𝑃𝑃𝑖𝑖+3

∗ >
< 𝑃𝑃1

∗ >
,         𝑖𝑖 = 1, 2, 3 (43) 

 
(ii) In case of incident QTS- wave 
 

𝐸𝐸2𝑖𝑖 =
< 𝑃𝑃𝑖𝑖+3

∗ >
< 𝑃𝑃2

∗ >
,         𝑖𝑖 = 1, 2, 3 (44) 

 
(iii) In case of incident QT- wave 
 

𝐸𝐸3𝑖𝑖 =
< 𝑃𝑃𝑖𝑖+3

∗ >
< 𝑃𝑃3

∗ >
,         𝑖𝑖 = 1, 2, 3 (45) 

 
Where < 𝑃𝑃𝑖𝑖∗ >, i = 1, 2, 3 are the average energies transmission per unit surface area per unit 

time corresponding to incident QL, QTS, QT waves respectively and < 𝑃𝑃𝑖𝑖+3
∗ >, i = 1, 2, 3 are the 

average energies transmission per unit surface area per unit time corresponding to reflected QL, 
QTS, QT waves respectively. 

 
 

7. Particular cases 
 
(1) If 𝑘𝑘1

∗ = 𝑘𝑘3
∗ = 0, then we obtain the resulting expressions for transversely isotropic 

thermoelastic solid with rotation and without energy dissipation and with two temperature. 
(2) If Ω = 0, then we obtain the resulting expressions for transversely isotropic thermoelastic 

solid with and without energy dissipation and with two temperature without rotation. 
(3) If 𝑎𝑎1 = 𝑎𝑎3 = 0, then we obtain the corresponding expressions for displacements, and 

stresses and conductive temperature for transversely isotropic thermoelastic solid with 
rotation and with and without energy dissipation. 

(4) If we take 𝑐𝑐11 = λ + 2𝜇𝜇 = 𝑐𝑐33 , 𝑐𝑐12 = 𝑐𝑐13 = λ , 𝑐𝑐44 = 𝜇𝜇 , 𝛽𝛽1 = 𝛽𝛽3 =  𝛽𝛽 , 𝛼𝛼1 = 𝛼𝛼3 = 𝛼𝛼 , 
𝐾𝐾1 = 𝐾𝐾3 = 𝐾𝐾,𝑎𝑎1 = 𝑎𝑎3 = 𝑎𝑎, we obtain the corresponding expressions for displacements, 
and stresses and conductive temperature for isotropic thermoelastic solid with combined 
effects of rotation, two temperature and with and without energy dissipation. 
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8. Numerical results and discussion 
 
For the purpose of numerical calculation, we consider the cases of incident QL,QTS, QT waves 

respectively and take the stress free thermally insulated boundary conditions. Copper material is 
chosen for the purpose of numerical calculation (Dhaliwal and Singh 1980) with numerical values 
as 

𝑐𝑐11 = 18.78 × 1010 𝐾𝐾𝐾𝐾𝑚𝑚−1𝑠𝑠−2,    𝑐𝑐12 = 8.76 × 1010 𝐾𝐾𝐾𝐾𝑚𝑚−1𝑠𝑠−2, 

𝑐𝑐13 = 8.0 × 1010 𝐾𝐾𝐾𝐾𝑚𝑚−1𝑠𝑠−2,    𝑐𝑐33 = 17.2 × 1010 𝐾𝐾𝐾𝐾𝑚𝑚−1𝑠𝑠−2, 

𝑐𝑐44 = 5.06 × 1010 𝐾𝐾𝐾𝐾𝑚𝑚−1𝑠𝑠−2,    𝐶𝐶𝐸𝐸 = 0.6331 × 103𝐽𝐽𝐽𝐽𝑔𝑔−1𝐾𝐾−1, 

𝛼𝛼1 = 2.98 × 10−5𝐾𝐾−1,    𝛼𝛼3 = 2.4 × 10−5𝐾𝐾−1,    𝜌𝜌 = 8.954 × 103𝐾𝐾𝐾𝐾𝑚𝑚−3, 

𝐾𝐾1
∗ = 0.433 × 103𝑊𝑊𝑚𝑚−1𝐾𝐾−1,    𝐾𝐾3

∗ = 0.450 × 103𝑊𝑊𝑚𝑚−1𝐾𝐾−1, 

𝐾𝐾1 = 0.02 × 102𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠−2𝑑𝑑𝑑𝑑𝑑𝑑−1,    𝐾𝐾3 = 0.04 ×  102𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠−2𝑑𝑑𝑑𝑑𝑑𝑑−1. 
 
The values of two temperatures, frequency 𝜔𝜔, rotation Ω, magnetic effect 𝐻𝐻0, are taken as 

0.03,0.06, 10𝑆𝑆−1, 4.0,1.2 respectively. 
The software Matlab 8.0.4 has been used to determine the values of phase velocity, attenuation 

coefficient, specific loss, penetration depth, energy ratios and amplitude ratios of reflected QL, 
QTS and QT waves with respect to incident QL, QTS, and QT waves respectively. The variations 
of phase velocity, attenuation coefficients, specific loss and penetration depth with respect to 
frequency are shown in Figs. 2-13. The variation of magnitude of energy ratios of reflected waves 
subject to incident waves have been plotted in the Figs. 14-22 with respect to angle of incidence. 
The variation of magnitude of amplitude ratios have been plotted in the Figs. 23-31 with respect to 
angle of incidence. 

A comparison has been made to show the effect of energy dissipation and two temperature on 
the various quantities. 

(1) Solid line corresponds to the case of with and without energy dissipation (GN III) 
(2) Small dashed line corresponds to case without two temperature i.e. when 𝑎𝑎1 = 0 = 𝑎𝑎3. 
(3) Solid line with centre symbol circle corresponds to the case of without energy dissipation 

(GN II) 
 

Phase velocity 
Figs. 2-4 indicate the variations of phase velocities 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3 with respect to frequency 𝜔𝜔 

respectively. From Fig. 2, we notice that the variations of phase velocity 𝑉𝑉1 decrease for the range 
1 ≤ 𝜔𝜔 ≤ 4 and increase monotonically in the rest. We also notice that the values of phase velocity 
𝑉𝑉1 corresponding to GN II are maximum whereas are minimum corresponding to GN III for the 
whole range. Variations are similar corresponding to GN II and GN III whereas are somewhat 
different in absence of two temperature parameter. Fig. 3, exhibits the variations of phase velocity 
𝑉𝑉2 with respect to frequency 𝜔𝜔. Here, we notice that variations steadily decrease and approach 
boundary surface with increase in wave number. Fig. 4, shows variations of phase velocity 𝑉𝑉3 
with respect to frequency 𝜔𝜔. Here we notice that the values of phase velocity are increasing 
monotonically with similar trends corresponding to all the cases with change in magnitude. Phase 
velocity 𝑉𝑉3  attains maximum values corresponding to GN III and attains minimum values 
corresponding to GN II whereas the values corresponding to 𝑎𝑎1 = 0 = 𝑎𝑎3 lie in between these 
two. 
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Fig. 2 Variations of phase velocity 𝑉𝑉1 with 

respect to frequency 𝜔𝜔 
Fig. 3 Variations of phase velocity 𝑉𝑉2 with 

respect to frequency 𝜔𝜔 
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Fig. 4 Variations of phase velocity 𝑉𝑉3 with 

respect to frequency 𝜔𝜔 
Fig. 5 Variations of attenuation coefficient 𝑄𝑄1  

with respect to frequency 𝜔𝜔 
 
 
Attenuation coefficients 
Fig. 5 shows that the values of attenuation coefficient 𝑄𝑄1 increase monotonically with respect 

to frequency 𝜔𝜔. Maximum values are obtained corresponding to GN II and minimum are obtained 
for GN III. Trends of variations are noticed similar while investigating all the cases. Fig. 6 exhibits 
the trends of attenuation coefficient 𝑄𝑄2 with respect to frequency 𝜔𝜔. Initially, the difference in 
values corresponding to all the cases is negligible but a significant difference is noticed with 
increase of wave number. Corresponding to GN II and GN III, initially, there is an increase for the 
range 2 ≤ 𝜔𝜔 ≤ 3, followed by a decrease for the range 3 ≤ 𝜔𝜔 ≤ 4 and increase in the rest. 
Corresponding to GN II, variations are noticed maximum. For, absence of two temperature, the 
values of 𝑄𝑄2 increase monotonically. Fig. 7 represents the variations of attenuation coefficient 
𝑄𝑄3 with respect to frequency 𝜔𝜔 . Here, corresponding to all the cases, variations increase 
monotonically with maximum variations corresponding to GN II and minimum corresponding to 
absence of two temperature. 
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Specific loss 
Fig. 8 exhibits the variations of Specific loss 𝑅𝑅1 with respect to frequency 𝜔𝜔. Here, we notice 

that the variations increase monotonically corresponding to all the cases. Fig. 9 shows Variations 
of Specific loss 𝑅𝑅2  with respect to frequency 𝜔𝜔 . Here the trends are similar to Fig8 
corresponding to GN II and absence of two temperature whereas corresponding to GN III, we 
notice that a decrease for the range 1 ≤ 𝜔𝜔 ≤ 2  is followed by an increase for the range 
2 ≤ 𝜔𝜔 ≤ 4,  and after achieving maximum value at 𝜔𝜔 = 4,  a smooth decrease follows 
approaching boundary surface. Fig. 10 shows Variations of Specific loss 𝑅𝑅3 with respect to 
frequency 𝜔𝜔. Here, we notice that, variations increase smoothly corresponding to the case GN III 
whereas opposite trends are noticed corresponding to 𝑎𝑎1 = 0 = 𝑎𝑎3 and GN II. 

 
Penetration depth 
Fig. 11 shows the variations of penetration depth 𝑆𝑆1 with respect to frequency 𝜔𝜔. Here,we 

notice that there is a sharp decrease in the values of 𝑆𝑆1 corresponding to all the cases for the range 
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Fig. 6 Variations of attenuation coefficient 

𝑄𝑄2 with respect to frequency 𝜔𝜔 
Fig. 7 Variations of attenuation coefficient 

𝑄𝑄3 with respect to frequency 𝜔𝜔 
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Fig. 8 Variations of specific loss 𝑅𝑅1  with respect 

to frequency 𝜔𝜔 
Fig. 9 Variations of specific loss 𝑅𝑅2  with respect 

to frequency 𝜔𝜔 
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Fig. 10 Variations of specific loss 𝑅𝑅3 with 

respect to frequency 𝜔𝜔 
Fig. 11 Variations of penetration depth 𝑆𝑆1 with 

respect to frequency 𝜔𝜔 
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Fig. 12 Variations of penetration depth 𝑆𝑆2 

with respect to frequency 𝜔𝜔 
Fig. 13 Variations of penetration depth 𝑆𝑆3 

with respect to frequency 𝜔𝜔 
 
 

1 ≤ 𝜔𝜔 ≤ 3, and the variations approach the boundary surface by decreasing slowly and smoothly 
in the rest. Fig. 12 shows the variations of penetration depth 𝑆𝑆2 with respect to frequency 𝜔𝜔. We 
notice that, initially, the values are constant and there is a sharp decrease afterwards which is 
followed by smooth decrease approaching the boundary surface in all the cases. Fig. 13 shows the 
variations of penetration depth 𝑆𝑆3 with respect to 𝜔𝜔.Here the variations are similar as discussed 
in Fig. 11. 

 
Energy ratios 
Incident QL wave 
Fig. 14 depicts the Variations of Energy ratio 𝐸𝐸11 with respect to angle of incidence 𝜃𝜃. It 

shows that the values of 𝐸𝐸11  increase slowly and smoothly corresponding to the cases of GN II 
and absence of two temperature whereas trends are opposite corresponding GN III. Also maximum 
values are noticed in case of absence of two temperature. Fig. 15 shows the variations of energy 
ratio 𝐸𝐸12 with respect to angle of incidence 𝜃𝜃. Here the variations are similar as discussed in Fig. 
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Fig. 14 Variations of energy ratio 𝐸𝐸11 with 

respect to angle of incidence 𝜃𝜃 
Fig. 15 Variations of energy ratio 𝐸𝐸12 with 

respect to angle of incidence 𝜃𝜃 
 

0 20 40 60 80 100
Angle of incidence θ

0.32

0.36

0.4

0.44

0.48

0.52

0.56

En
er

gy
 ra

tio
 E

13

GN III
a1=0=a3

GN II

 

 

0 20 40 60 80 100
Angle of incidence θ

0.76

0.8

0.84

0.88

0.92

En
er

gy
 ra

tio
 E

21

GN  III
a1=0=a3

GN II

 
Fig. 16 Variations of energy ratio 𝐸𝐸13  with 

respect to angle of incidence 𝜃𝜃 
Fig. 17 Variations of energy ratio 𝐸𝐸21  with 

respect to angle of incidence 𝜃𝜃 
 
 

14. Fig. 16 depicts the Variations of Energy ratio 𝐸𝐸13  with respect to angle of incidence 𝜃𝜃. It is 
noticed that the values of 𝐸𝐸13  have minimum variations nearly remain constant throughout the 
range. 

 
Incident QTS wave 
Fig. 17 depicts the Variations of Energy ratio 𝐸𝐸21 with respect to angle of incidence 𝜃𝜃. Here 

corresponding to all the cases, we notice similar slowly decreasing trends with difference in 
magnitudes for the whole range. Fig. 18 depicts the Variations in Energy ratio 𝐸𝐸22  with respect to 
angle of incidence 𝜃𝜃. Here corresponding to all the cases, trends are opposite as discussed in Fig. 
17. Variations of Energy ratio 𝐸𝐸23  with respect to angle of incidence 𝜃𝜃are shown in Fig. 19. Here, 
we notice small variations corresponding to all the cases. 

 
Incident QT wave 
Figs. 20-22 depict the Variations of Energy ratios 𝐸𝐸31,  𝐸𝐸32,  𝐸𝐸33  with respect to angle of 

582



 
 
 
 
 
 

Plane waves in an anisotropic thermoelastic 

0 20 40 60 80 100
Angle of incidence θ

0.14

0.16

0.18

0.2

0.22

0.24

En
er

gy
 ra

tio
 E

22

GN  III
a1=0=a3

GN II

 0 20 40 60 80 100
Angle of incidence θ

0.06

0.08

0.1

0.12

0.14

En
er

gy
 ra

tio
 E

23

GN  III
a1=0=a3

GN II

 
Fig. 18 Variations of energy ratio 𝐸𝐸22  with 

respect to angle of incidence 𝜃𝜃 
Fig. 19 Variations of energy ratio 𝐸𝐸23  with 

respect to angle of incidence 𝜃𝜃 
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Fig. 20 Variations of Energy ratio 𝐸𝐸31  with 

respect to angle of incidence 𝜃𝜃 
Fig. 21 Variations of Energy ratio 𝐸𝐸32  with 

respect to angle of incidence 𝜃𝜃 
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Fig. 22 Variations of energy ratio 𝐸𝐸33  with 

respect to angle of incidence 𝜃𝜃 
Fig. 23 Variations of amplitude ratio 𝐴𝐴11 with 

respect to angle of incidence 
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incidence 𝜃𝜃. Here, in all the figures, similar trends of small variations are noticed with change in 
magnitude corresponding to different cases. 

 
Amplitude ratios 
Incident QL wave 
Fig. 23 shows variations of amplitude ratio 𝐴𝐴11  with respect to angle of incidence 𝜃𝜃. Here, we 

notice that, initially, there is a sharp increase in the values of 𝐴𝐴11  for the range 00 ≤ 𝜃𝜃 ≤ 100 
corresponding to the cases of GN II and GN III, and afterwards the values have only small 
variations. Opposite trends are noticed for the case of absence of two temperature. Fig. 24 depicts 
variations of amplitude ratio 𝐴𝐴12  with respect to angle of incidence 𝜃𝜃. Here, we notice that, the 
values of amplitude ratio increase monotonically for the range 00 ≤ 𝜃𝜃 ≤ 400 and after achieving 
maximum value at 400, the values start decreasing and approach boundary surface. Variations of 
amplitude ratio 𝐴𝐴13  with respect to angle of incidence 𝜃𝜃 are shown in Fig. 25. Here, we notice 
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Fig. 24 Variations of amplitude ratio 𝐴𝐴12  with 

respect to angle of incidence 
Fig. 25 Variations of amplitude ratio 𝐴𝐴13  with 

respect to angle of incidence 
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Fig. 26 Variations of amplitude ratio 𝐴𝐴21  with 

respect to angle of incidence 
Fig. 27 Variations of amplitude ratio 𝐴𝐴22  with 

respect to angle of incidence 
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that a sharp decrease in the beginning is followed by a linear decrease and in the last phase, the 
values increase monotonically corresponding to all the cases GN II, GN III, and 𝑎𝑎1 = 0 = 𝑎𝑎3. 

 
Incident QTS wave 
Fig. 26 depicts the variations of amplitude ratio 𝐴𝐴21  with respect to angle of incidence 𝜃𝜃. 

Here, we notice that a sharp decrease in the values of amplitude ratios in the beginning is followed 
by a slow and small increasing variations. We notice these trends while investigating the effect of 
GN II, GN III, and 𝑎𝑎1 = 0 = 𝑎𝑎3. Fig. 27 shows the variations of amplitude ratio 𝐴𝐴22  with 
respect to angle of incidence 𝜃𝜃. Here, we notice that a smooth increase in the variations of 
amplitude ratio is followed by a smooth decrease corresponding to the cases GN II and 𝑎𝑎1 = 0 =
𝑎𝑎3 whereas, we notice small variations corresponding to the case of GN III. Fig. 28 shows the 
variations in amplitude ratio 𝐴𝐴23  with respect to angle of incidence 𝜃𝜃. The variations in this 
figure are similar as discussed in Fig. 26 with change in magnitude. 

 
 

0 20 40 60 80 100
Angle of incidence θ

0

2

4

6

8

10

Am
pli

tu
de

 ra
tio

 A
23

GN III

GN II

a1=0=a3

 0 20 40 60 80 100
Angle  of incidence θ 

0

2

4

6

Am
pl

itu
de

 ra
tio

 A
31

GN  III

GN II

a1=0=a3

 
Fig. 28 Variations of amplitude ratio 𝐴𝐴23  

with respect to angle of incidence 
Fig. 29 Variations of amplitude ratio 𝐴𝐴31  

with respect to angle of incidence 
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Fig. 30 Variations of amplitude ratio 𝐴𝐴32  

with respect to angle of incidence 
Fig. 31 Variations of amplitude ratio 𝐴𝐴33  with 

respect to angle of incidence 
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Incident QT wave 
Fig. 29-31 show the variations of amplitude ratios 𝐴𝐴31, 𝐴𝐴32 and 𝐴𝐴33  with respect to angle of 

incidence 𝜃𝜃 respectively. Here, the variations in Figs. 29 and 31 are similar as discussed in Fig. 
26 whereas Fig. 30 shows different trends. Here, we notice that corresponding to GN II and 
𝑎𝑎1 = 0 = 𝑎𝑎3, the trends are smoothly increasing whereas corresponding to GN III, we notice that 
sharp increase in the beginning is followed by a smooth decrease. 

 
 

8. Conclusions 
 
From the graphs, we observe that while investigating the surface of earth having different 

layers (anisotropy) and interfaces, elastic waves propagating through the earth have different 
velocities and are influenced by the properties of the layer through which they travel. Frequency of 
waves produced in the material have significant impact on the phase velocity, attenuation 
coefficients, specific loss and penetration depth of various kinds of waves. Also the magnitude of 
energy ratios is in the impact of angle of incidence. As angle of incidence increases, we notice less 
variation in the magnitudes of energy ratios. Two temperature parameter changes the magnitude of 
waves. The signals of these waves are not only helpful in providing information about the internal 
structures of the earth but also helpful in exploration of valuable materials such as minerals, 
crystals and metals etc. 

 
 

References 
 
Achenbach, J.D. (1973), Wave Propagation in Elastic Solids, Elsevier, North-Holland, Amsterdam, The 

Netherlands. 
Atwa, S.Y. and Jahangir, A. (2014), “Two temperature effects on plane waves in generalized thermo-

microstretch elastic solid”, Int. J. Thermophys., 35(1), 175-193. 
Boley, B.A. and Tolins, I.S. (1962), “Transient coupled thermoelastic boundary value problem in the half 

space”, J. Appl. Mech., 29(4), 637-646. 
Chandrasekharaiah, D.S. (1998), “Hyperbolic thermoelasticity: A review of recent literature”, Appl. Mech. 

Rev., 51(12), 705-729. 
Chen, P.J. and Gurtin, M.E. (1968), “On a theory of heat conduction involving two parameters”, Zeitschrift 

für angewandte Mathematik und Physik (ZAMP), 19, 614-627. 
Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), “A note on simple heat conduction”, J. Appl. Math. 

Phys. (ZAMP), 19(6), 969-970. 
Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), “On the thermodynamics of non simple elastic 

materials with two temperatures”, J. Appl. Math. Phys. (ZAMP), 20(1), 107-112. 
Das, P. and Kanoria, M. (2014), “Study of finite thermal waves in a magnetothermoelastic rotating medium”, 

J. Therm. Stress., 37(4), 405-428. 
Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustance Publisher Corp., 

New Delhi, India, 726 p. 
Green, A.E. and Naghdi, P.M. (1991), “A re-examination of the basic postulates of thermomechanics”, 

Proceedings of Royal Soc. A - London Ser., 432(1885), pp. 171-194. 
Green, A.E. and Naghdi, P.M. (1992), “On undamped heat waves in an elastic solid”, J. Therm. Stress., 

15(2), 253-264. 
Green, A.E. and Naghdi, P.M. (1993), “Thermoelasticity without energy dissipation”, J. Elast., 31(3), 189-

208. 
Kaushal, S., Sharma, N. and Kumar, R. (2010), “Propagation of waves in generalized thermoelastic continua 

586



 
 
 
 
 
 

Plane waves in an anisotropic thermoelastic 

with two temperature”, Int. J. Appl. Mech. Eng., 15(4), 1111-1127. 
Kaushal, S., Kumar, R. and Miglani, A. (2011), “Wave propagation in temperature rate dependent 

thermoelasticity with two temperatures”, Math. Sci., 5(2), 125-146. 
Keith, C.M. and Crampin, S. (1977), “Seismic body waves in anisotropic media, reflection and refraction at 

a plane interface”, Geophys. J. R. Astr. Soc., 49(1), 181-208. 
Kumar, R. (2015), “Wave propagation in a microstretch thermoelastic diffusion solid”, VERSITA, 23(1), 

127-169. 
Kumar, R. and Gupta, V. (2013), “Plane wave propagation in an anisotropic thermoelastic medium with 

fractional order derivative and void”, J. Thermoelast., 1(1), 21-34. 
Kumar, R. and Kansal, T. (2011), “Reflection of plane waves at the free surface of a transversely isotropic 

thermoelastic diffusive solid half-space”, Int. J. Appl. Math. Mech., 7(14), 57-78. 
Kumar, R. and Mukhopdhyay, S. (2010), “Effects of thermal relaxation times on plane wave propagation 

under two temperature thermoelasticity”, Int. J. Eng. Sci., 48(2), 128-139. 
Kumar, R., Sharma, N. and Ram, P. (2008), “Reflection and transmission of micropolar elastic waves at an 

imperfect boundary”, Multidiscipl. Model. Mater. Struct., 4(1), 15-36. 
Lee, J. and Lee, S. (2010), “General solution of EM wave propagation in anisotropic media”, J. Kor. Phys. 

Soc., 57(1), 55-60. 
Marin, M. (1995), “On existence and uniqueness in thermoelasticity of micropolar bodies”, Comptes Rendus, 

Acad. Sci. Paris, Serie II, 321(12), 475-480. 
Marin, M. (1996), “Some basic theorems in elastostatics of micropolar materials with voids”, J. Comp. Appl. 

Math., 70(1), 115-126. 
Marin, M. (2010), “Lagrange identity method for microstretch thermoelastic materials”, J. Math. Anal. Appl., 

363(1), 275-286. 
Marin, M. and Marinescu, C. (1998), “Thermoelasticity of initially stressed bodies. Asymptotic equipartition 

of energies”, Int. J. Eng. Sci., 36(1), 73-86. 
Othman, M.I.A. (2010), “Generalized Electro-Magneto-Thermoelasticity in case of thermal shock wavesfor 

a finite conducting half-space with two relaxation times”, Mech. Mech. Eng., 14(1), 5-30. 
Sharma, K. and Bhargava, R.R. (2014), “Propagation of thermoelastic plane waves at an imperfect boundary 

of thermal conducting viscous liquid/generalized thermolastic solid”, Afrika Mathematika, 25(1), 81-102. 
Sharma, K. and Kumar, P. (2013), “Propagation of plane waves and fundamental solution in 

thermoviscoelastic medium with voids”, J. Therm. Stress., 36(2), 94-111. 
Sharma, K. and Marin, M. (2013), “Effect of distinct conductive and thermodynamic temperatures on the 

reflection of plane waves in micropolar elastic half-space”, U.P.B. Sci. Bull Series, 75(2), 121-132. 
Sharma, S., Sharma, K. and Bhargava, R.R. (2013), “Effect of viscousity on wave propagation in anisotropic 

thermoelastic with Green-Naghdi theory type-II and type-III”, Mater. Phys. Mech., 16(2), 144-158. 
Singh, S.S. and Krosspanie, L. (2013), “Phase velocity of harmonic waves in monoclinic anisotropic 

medium”, Sci. Vis., 13(3), 133-136. 
Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Birkhausar. 
Warren, W.E. and Chen, P.J. (1973), “Wave propagation in the two temperature theory of thermoelasticity”, 

J. Acta Mech., 16(1), 21-33. 
Youssef, H.M. (2006), “Theory of two temperature generalized thermoelasticity”, IMA J. Appl. Math., 71(3), 

383-390. 
Youssef, H.M. (2011), “Theory of two - temperature thermoelasticity without energy dissipation”, J. Therm. 

Stress., 34(2), 138-146. 
Zakaria, M. (2014), “Effect of hall current on generalized magneto thermoelastic micropolar solid subjected 

to ramp type heating”, Int. Appl. Mech., 50(1), 92-104. 
 
CC 
 

587




