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Abstract. This work presents a bending, buckling, and vibration analysis of functionally graded plates by
employing a novel higher-order shear deformation theory (HSDT). This theory has only four unknowns, which is
even less than the first shear deformation theory (FSDT). A shear correction coefficient is, thus, not needed. Unlike
the conventional HSDT, the present one has a new displacement field which introduces undetermined integral
variables. Equations of motion are obtained by utilizing the Hamilton’s principles and solved via Navier’s procedure.
The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the
efficacy of the model.
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1. Introduction

In 1984, the concept of functionally graded materials (FGMs) was first proposed. FGM is a
class of composite material in which material characteristics continuously change between two
surfaces, thus eliminating the stress concentration phenomenon, which is a characteristic
phenomenon found in laminated composite materials. FGMs are widely used in many engineering
applications such as spacecraft industry, mechanics, civil engineering, aerospace, nuclear,
automotive and so on (Lu et al. 2009, Liang et al. 2014, 2015, Bouguenina et al. 2015, Pradhan
and Chakraverty 2015, Sofiyev and Kuruoglu 2015, Kar and Panda 2015, Kirkland and Uy 2015,
Ebrahimi and Dashti 2015, Ebrahimi and Habibi 2016, Cunedioglu 2015, Meradjah et al. 2015,
Bouguenina et al. 2015, Darilmaz 2015, Bellifa et al. 2016). Presenting new characteristics, FGMs
have also attracted intensive research interests, which were mainly focused on their bending,
buckling and vibration characteristics of functionally graded (FG) structures (Neves et al. 2013,
Eltaher et al. 2013a, b, 2014a, b, Swaminathan and Naveenkumar 2014, Bousahla et al. 2014,
Akbas 2015, Tung 2015, Ait Yahia ef al. 2015, Bourada et al. 2015, Ait Amar Meziane et al. 2014,
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Al-Basyouni ef al. 2015, Arefi 2015, Belabed et al. 2014, Larbi Chaht et al. 2015). Indeed, many
computational theories have been proposed for investigating the behavior of FG structures. In
general, these mathematical models can be defined into three main categories: classical plate
theory (CPT); first-order shear deformation theory (FSDT); and higher-order shear deformation
theory (HSDT).

The CPT, which ignores the transverse shear deformation influences, produces reasonable
results for thin plates. The CPT has been employed for the bending, buckling, and vibration
investigations of plates via analytical formulation (Leissa 1973, Leissa and Kang 2002, Kang and
Leissa 2005) and numerical formulation (Eisenberger and Alexandrov 2003, Wang et al. 2006, Liu
and Li 2010). For moderately thick plates, the CPT under-predicts deflections and over-predicts
buckling loads as well as natural frequencies. The FSDT considers the transverse shear
deformation influence, but introduces a shear correction parameter to respect the free transverse
shear stress conditions on the external surfaces of the plate (Della Croce and Venini 2004,
Ganapathi et al. 2006, Zhao and Liew 2009, Zhao et al. 2009, Lee et al. 2010, Hosseini-Hashemi
et al. 2010, 2011a). Although the FSDT predicts a reasonable description of behavior for thin to
moderately thick plates, it is not practical to employ due to difficulty in assessing of correct value
of the shear correction parameter. To overcome the employ of shear correction parameter, many
HSDTs were proposed with the pretention of nonlinear distributions of in-plane displacements
within the plate thickness, notable among them are Reddy (2000), Karama et al. (2003), Xiao et al.
(2007), Matsunaga (2008), Pradyumna and Bandyopadhyay (2008), Fares et al. (2009), Talha and
Singh (2010, 2011), Bouderba et al. (2013), Hebali et al. (2014), Mabhi et al. (2015), Bennai et al.
(2015), Xiang et al. (2011), Tounsi et al. (2013), Zidi et al. (2014), Bounouara et al. (2016),
Bousahla et al. (2016), Boukhari et al. (2016) and Bouderba et al. (2016). Carrera et al. (2010)
presented refined and advanced models for multilayered plates and shells embedding functionally
graded material layers. Cinefra and Soave (2011) proposed an accurate vibration analysis of
multilayered plates made of functionally graded materials. Ait Atmane et al. (2015) presented a
computational shear displacement model for vibrational analysis of FG beams with porosities.
Akavci (2015) presented an efficient shear deformation theory for free vibration of FG thick
rectangular plates on elastic foundation. Using various four variable refined plate theories, Attia et
al. (2015) studied the free vibration analysis of FG plates with temperature-dependent properties.
Bakora and Tounsi (2015) investigated the thermo-mechanical post-buckling behavior of thick FG
plates resting on elastic foundations. Beldjelili et al. (2016) analyzed the hygro-thermo-mechanical
bending response of S-FGM plates resting on variable elastic foundations using a four-variable
trigonometric plate theory. Belkorissat et al. (2015) discussed the vibration properties of FG nano-
plate using a new nonlocal refined four variable model. Hamidi et al. (2015) developed a
sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of
FG sandwich plates. Bennoun et al. (2016) presented a novel five variable refined plate theory for
dynamic analysis of FG sandwich plates. Recently, Tounsi et al. (2016) proposed a new 3-
unknowns non-polynomial plate theory for buckling and vibration of FG sandwich plate. In the
same way, Houari et al. (2016) proposed also a novel simple three -unknown sinusoidal shear
deformation theory for FG plates.

In the present work, a new displacement field is proposed by considering higher-order
variations of in-plane displacements through the plate thickness and the novel constructed
displacement field is applied to investigate the bending, buckling, and vibration response of FG
plates. The incorporation of the integral term in the plate kinematics led to a reduction in the
number of variables and equations of motion. Numerical results are considered to check the
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accuracy of the developed theory in predicting the bending, buckling, and vibration behaviors of
FG plates.

2. Theory and formulation

The FG plate is composed by a mixture of ceramic and metal components whose material
characteristics change across the plate thickness with a power law distribution of the volume
fractions of the constituents of the two materials as

1 =z

p
P(z):Pm+(g—Pm)(5+Zj )]

where P denotes the effective material characteristic such as Young’s modulus £ and mass density
p subscripts m and ¢ denote the metallic and ceramic components, respectively; and p is the power
law exponent. The value of p equal to zero indicates a fully ceramic plate, whereas infinite p
represents a fully metallic plate. Since the influences of the variation of Poisson’s ratio v on the
behavior of FG plates are very small (Yang et al. 2005, Kitipornchai et al. 2006), it is supposed to
be constant for convenience.

2.1 Kinematics and strains

In this article, further simplifying supposition are made to the conventional HSDT so that the
number of unknowns is reduced. The displacement field of the conventional HSDT is given by
(Bouchafa et al. 2015)

.20 =t ) = 250 @0 2a)
ow,

v(x,y,z,l‘)=vo(x,y,t)—Zg+f(z)¢y(x,y,t) (2b)

w(x,y,z,t)zwo(x,y,t) (2C)

where uo; vo; Wo, ¢x, @, are five unknown displacements of the mid-plane of the plate, f(z) denotes
shape function representing the variation of the transverse shear strains and stresses within the

thickness. By considering that ¢, =I¢9(x, y)dx and ¢, =Il9(x, y)dy, the displacement field of

the present model can be expressed in a simpler form as (Bourada et al. 2016)

u(x, ,2,0) =y (x, y,t) — Z% +hk f(2) j O(x, y,t)dx (3a)
X
(20 =3 (0= T ks 10 vy (3b)

w(x,y,z,t)zwo(x,y,t) (3C)
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In this work, the present higher-order shear deformation plate theory is obtained by setting
5 522
Z)=z| ———— 4
/() ( YRETY J “)

It can be seen that the displacement field in Eq. (3) introduces only four unknowns (g, vo, Wy
and ). The nonzero strains associated with the displacement field in Eq. (3) are

&, &g’ k? kS
_ 0 + kb +f k? 7)/2 yvz
&, =16, z9 ky (2) , 2(2) 5)
0 kb ks yxz 7/):2
]/xy 7Xy Xy Xy
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uy AL
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k; k0 o k J 0dy
sl V=l _ "2
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oy ox
and
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The integrals defined in the above equations shall be resolved by a Navier type method and can
be written as follows

2 2
_Igd A,60 9 gdyzg'ﬂ, Iad A,&H J‘Hd B,649 @)
ooy’ ox Ox0y ox’ oy’

where the coefficients 4" and B’ are expressed according to the type of solution used, in this case
via Navier. Therefore, A’, B', k| and k, are expressed as follows

A':—_, B,:__ klza: k2:ﬂ2 (8)

where a and £ are defined in expression (24).
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For elastic and isotropic FGMs, the constitutive relations can be expressed as

o] [C,C, 0 0 0 ]fe,
o, Ch Cy 0 0 0 |e,
T,0=| 0 0 C4q 0 0 [y, 9)
T, 0 0 0 Cy 0 ||,
Ty L0 0 0 0 Cs||Ve

where (0y, 0y, Ty, T2, Tiz) and (&, &, Yy» )= Yx:) are the stress and strain components, respectively.
Using the material properties defined in Eq. (1), stiffness coefficients, Cj, can be given as

E(2) v E(z) E(z)
G, =Cy =m, G, =w, Cyy =Css =Cy =2(l—+v)’ (10)
2.2 Equations of motion
Hamilton’s principle is herein utilized to determine the equations of motion
t
O=J.(§U+§V—§K)dt (11)
0

where dU is the variation of strain energy; 0V is the variation of the external work done by external
load applied to the plate; and JK is the variation of kinetic energy.
The variation of strain energy of the plate is given by

oU = J.[O'xé‘ &, +O'y5 &, +rxy§ Yy +z'yz5 e +7,0 yxz]dV
V

=[N, 660+ N8 &0+ N5+ MES kS + MES KD + ML S KL, (12)
A
s s K s s K s K s 0 _
FMISK +MIS K + MGk, +S55y +555y0 Jda=0

where 4 is the top surface and the stress resultants N, M, and S are defined by

hl/2 h/2
(Ni’Mib’Mis): I(Lzsf)o-idz’ (i=x,y,xy) and ( ;z’S;z): J.g(sz,Tyz)dZ (13)
—h/2 —h/2

The variation of the external work can be expressed as

ow, 00 0 00 0 00
5V =—[gswoaa—[| NOEZLEET0 ot CEREO T N0 ET EO T gy (g
v y ox  Ox ox 0oy dy Oy

where g and (N°,N g,N By) are transverse and in-plane applied loads, respectively.

The variation of kinetic energy of the plate can be expressed as
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5K=j[u5a+v'5v'+w5w] o(z)dV
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where dot-superscript convention indicates the differentiation with respect to the time variable z;
p(2) is the mass density given by Eq. (1); and (Z;, J;, K;) are mass inertias expressed by

h/2

(o, 1,,1,)= f(laz,zz)p(z)dz (16a)
—h/2
hl2
(1 /5.K,) = j(f,zf,fz)p(z)dz (16b)
—h/2

By substituting Egs. (12), (14) and (15) into Eq. (11), the following can be derived
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Substituting Eq. (5) into Eq. (9) and the subsequent results into Egs. (13), the stress resultants

are obtained in terms of strains as following compact form

N A B B (¢
M=\ B D D*[Jk’}, S=A,
M B D* H'||k*

in which

N={N.N,N,J, Mt ={ut bt M= e
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and stiffness components are given as

—_—

4, By, Dy B, Dy, Hj h2
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(19a)

(19b)

(19¢)

(19d)

(19¢)

(20a)

(20b)

(20¢)

Introducing Eq. (18) into Eq. (17), the equations of motion can be expressed in terms of

displacements (ug, vo, Wy, ) and the appropriate equations take the form

Ay dyug + Ags doptg + (AIZ + Age )dlz"o = Byydy Wy — (Blz +2Bg )dlzzwo
+ (B, (ly d'+ky B)) i@ + (Biyk, + B ky ) d,0 = Liiy — 1 dyivy + J, A'kd,

(21a)
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Ay, dyyvy + Agg dy vy + (Al2 + Aﬁé) dyyug = Byy dyyy Wy — (B12 + 2866) dy Wy

. . .. (21b)
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c
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where dj;, d;; and dj;,, are the following differential operators

2 3 4
d; = 0 . d,, 28—’ dy za—’
Ox,0x Ox,0x ;0x, Ox,0x ;0x,0x,,

0
dA:—, i, ',l,mzl,Z .
= (i, ] ) (22)

2.3 Analytical solution for simply-supported FG plates

The Navier solution method is employed to determine the analytical solutions for which the
displacement variables are written as product of arbitrary parameters and known trigonometric
functions to respect the equations of motion and boundary conditions

U, U, e cos(a x)sin(f y)
2 |V, e sin(a x)cos
— W, sin(a x)sin(fS )
(9 X, € sin(a x)sin(f y)
where w is the frequency of free vibration of the plate, Ji=-1 the imaginary unit.
with
a=mrnla gpnd B=nzlb (24)
The transverse load ¢ is also expanded in the double-Fourier sine series as
q(x,) =D > 0, sin(@ x)sin(4 y), (25)

m=1 n=1
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where

q, for sinusolidally distributed load

—16%2 for uniformly distributed load (26)

ab

0, == [ [q(x.y)sin(a v)sin(B y) dsdy =
ab s

mnrwrx

Considering that the plate is subjected to in-plane compressive loads of form: N°=yN,.,

N ;’ =7,N,, N fy =0 (here y; and y, are non-dimensional load parameters).
Substituting Eq. (23) into Eq. (22), the following problem is obtained
S S Sz Si my 0 my my |||U,, 0
S, S S S 0 my, my m V 0
12 22 23 24 _ 0)2 22 23 24 mn (27)
Si3 Sy Sythk Sy My Myy My My ||| W, Oun
Sy S24 Sz Su Mg Moy My Myy | )X, 0

where
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Sy = Bll,By + kB —(k Ak, B)Ba?) Sy =—(Dy@* +2(Dy, + 2Dy o> 5% + Dy B,
S5, =—k (Dlslaz + Dlszﬂz)“‘ z(klA""szv)Dgéazﬂz —k, (Dzszﬂz + Dlszaz)v (28)

Sis =~k (Hlslkl +Hk, )_ (kA'+k,B') Hyeo’ B2 ~ k, (HISZkl + HZSZkZ)

, k=N, (71052"‘72:32)
W gs 2 N2 s 2 e
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my==ly, my=al,, m,==Jkd'a, my=-Iy, my=pFI1, my=-kB"pJ,

myy =—1, —12(a2 +ﬂ2)a nyy =J, (k1 Ao’ +k, Bvﬂz)a my, ==K, ((k1 A,)zaz +(k2 B')Zﬂz)

3. Numerical examples and discussions

In this section, various numerical examples are presented and discussed to check the accuracy
of present HSDT in investigating the bending, buckling, and vibration behaviors of simply
supported FG plates. For proposed examples, an AI/Al,O; plate fabricated of aluminum (as metal)
and alumina (as ceramic) is examined. The Young’s modulus and density of aluminum are E,, = 70
GPa and p,, = 2702 kg/m’, respectively, and those of alumina are £, = 380 GPa and p, = 3800
kg/m’, respectively. For validation purpose, the computed quantities are compared with those
reported utilizing various existing plate models. The description of various plate theories is
illustrated in Table 1. In all examples, a shear correction coefficient of 5/6 is employed for FSDT
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Table 1 Displacement models

Model Theory Unknowns
CPT Classical plate theory 3
FSDT First-order shear deformation theory 5
TSDT Third-order shear deformation theory 5
HySDT Hyperbolic shear deformation theory 5
SSDT Sinusoidal shear deformation theory 5
Present New higher shear deformation theory 4

and the rotary inertias are incorporated in all models. The Poisson’s ratio of the plate is considered
to be constant across the thickness and equal to 0.3. For convenience, the following dimensionless
quantities are employed in illustrating the numerical results in graphical and tabular form

— 10Ech3w(a bj - h (a b hJ - h (a b hj

w= 4 PP Ox=—"" x| Ao A0~ P Oy __O-y PPN )
q,a 22 goa \2 22 ga \223

;xy :ery (O’O’_ﬁ]’ ;xz :erz (O,Q,O} ;yz :Lryz E,O,ﬁ} (29)
q,a 3 q,a 2 q,a 2 6

ERW ~ — a
D= , N=—<— N= ,  @O=whyp./E,, =w—./p./E,
12(1-1?) 7*D E W p CEOTNP

3.1 Bending problem

Example 1: Table 2 presents the comparison of non-dimensional transverse displacements and
stresses of square FG plate subjected to uniformly distributed load (a/4# = 10). The computed
results are compared with those reported by Zenkour (2006) based on sinusoidal shear deformation
theory (SSDT). It can be observed that a good agreement is demonstrated for all values of power
law exponent p. It should be signaled that the developed novel HSDT involves four variables as
against five in case of SSDT (Zenkour 2006).

Example 2: The second example is performed for square FG plate subjected to sinusoidally
distributed load (a/A# = 10). In Table 3 the comparison of non-dimensional deflections and stresses
determined by present model with those provided by Benyoucef et al. (2010) based on the
hyperbolic shear deformation theory (HySDT) is carried out. It can be confirmed that an excellent
agreement is proved for all values of power law exponent p. It is remarked that the stresses for a
fully ceramic plate are identical to those for a fully metal plate. This is due to the fact that the
structure for these two cases is fully homogenous and the non-dimensional stresses are not related
to the value of the elastic modulus.

To demonstrate the validity of the present model for large range of power law exponent and
thickness ratio a/h, the variations of non-dimensional transverse displacement w as a function of
the power law index p and thickness ratio a/h are shown in Figs. 1 and 2 respectively, for square
FG plate under sinusoidally distributed load. The curves determined from the proposed model are
compared with the curves determined of the CPT and the TSDT developed by Reddy (2000).



A novel four variable refined plate theory for bending, buckling, and vibration of... 483
Table 2 Comparison of non-dimensional deflection and stresses of square plate
under uniformly distributed load (m, n = 100 term series, a = 10 h)
V4 Method w o, o, T, T, T,
i SSDT @ 0.4665 2.8932 1.9103 1.2850 0.4429 0.5114
Coramic  poesent 04666 28917 19107 12850 04422 04975
) SSDT @ 0.9287 4.4745 2.1962 1.1143 0.5446 0.5114
Present 0.9288 4.4720 2.1697 1.1143 0.5437 0.4975
) SSDT @ 1.1940 5.2296 2.0338 0.9907 0.5734 0.4700
Present 1.1940 5.2262 2.0345 0.9909 0.5700 0.4552
; SSDT @ 1.3200 5.6108 1.8593 1.0047 0.5629 0.4367
Present 1.3197 5.6066 1.8603 1.0050 0.5570 0.4211
A SSDT @ 1.3890 5.8915 1.7197 1.0298 0.5346 0.4204
Present 1.3884 5.8868 1.7209 1.0302 0.5276 0.4042
5 SSDT @ 1.4356 6.1504 1.6104 1.0451 0.5031 0.4177
Present 1.4349 6.1454 1.6117 1.0456 0.4959 0.4011
SSDT @ 1.4727 6.4043 1.5214 1.0536 0.4755 0.4227
6 Present 1.4719 6.3991 1.5227 1.0541 0.4688 0.4060
; SSDT @ 1.5049 6.6547 1.4467 1.0589 0.4543 0.4310
Present 1.5042 6.6494 1.4479 1.0593 0.4483 0.4143
g SSDT @ 1.5343 6.8999 1.3829 1.0628 0.4392 0.4399
Present 1.5337 6.8946 1.3841 1.0632 0.4339 0.4234
9 SSDT @ 1.5617 7.1883 1.3283 1.0620 0.4291 0.4481
Present 1.5612 7.1332 1.3295 1.0666 0.4245 0.4319
10 SSDT @ 1.5876 7.3689 1.2820 1.0694 0.4227 0.4542
Present 1.5872 7.3638 1.2831 1.0698 0.4187 0.4393
Metal SSDT @ 2.5327 2.8932 1.9103 1.2850 0.4429 0.5114
Present 2.5329 2.8917 1.9106 1.2850 0.4422 0.4975
@ Taken from Zenkour (2006)
Table 3 Comparison of non-dimensional deflection and stresses of square plate
under sinusoidally distributed load (a = 10 h)
)4 Method w o, o, 7T, 7T, T.
Ceramic HySDT @ 0.2960 1.9955 1.3121 0.7065 0.2132 0.2462
Present 0.2960 1.9943 1.3124 0.7067 0.2121 0.2386
i HySDT ® 0.5889 3.0870 1.4894 0.6110 0.2622 0.2462
Present 0.5889 3.0850 1.4898 0.6111 0.2608 0.2386
) HySDT ® 0.7573 3.6094 1.3954 0.5441 0.2763 0.2265
Present 0.7573 3.6067 1.3960 0.5442 0.2737 0.2186
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Table 3 Continued

Method

p w Ex O-y Txy Tyz fxz
HySDT @ 0.8377 3.8742 1.2748 0.5525 0.2715 0.2107
Present 0.8375 3.8709 1.2756 0.5526 0.2677 0.2024
A HySDT @ 0.8819 4.0693 1.1783 0.5667 0.2580 0.2029
Present 0.8815 4.0655 1.1794 0.5669 0.2537 0.1944
5 HySDT @ 09118 42488 1.1029 0.5755 0.2429 0.2017
Present 09114 42447 1.1041 0.5758 0.2385 0.1930
6 HySDT @ 0.9356 4.4244 1.0417 0.5803 0.2296 0.2041
Present 0.9351 4.4201 1.0428 0.5806 0.2256 0.1954
. HySDT @ 0.9562 4.5971 0.9903 0.5834 0.2194 0.2081
Present 0.9558 4.5928 0.9915 0.5836 0.2157 0.1994
g HySDT @ 0.9750 4.7661 0.9466 0.5856 0.2121 0.2124
Present 0.9746 47619 0.9477 0.5858 0.2088 0.2037
0 HySDT @ 0.9925 4.9303 0.9092 0.5875 0.2072 0.2164
Present 0.9921 4.9261 0.9103 0.5878 0.2042 0.2078
0 HySDT @ 1.0089 5.0890 0.8775 0.5894 0.2041 0.2198
Present 1.0087 5.0849 0.8785 0.5896 0.2014 0.2114
Metal HySDT @ 1.6070 1.9955 1.3121 0.7065 0.2132 0.2462

cta

Present 1.6072 1.9943 1.3124 0.7067 0.2121 0.2386

@ Taken from Benyoucef et al. (2010)
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Fig. 1 Comparison of the variation of non-dimensional deflection w of square FG plate
under sinusoidally distributed load versus power law index p (a/h =5 h)



A novel four variable refined plate theory for bending, buckling, and vibration of... 485

1,5
—mrmee CPT
----TSDT
1,2 - Present -
p=10
0,9 1 _
0,6 L p=1
0,3 ¥ p=0
0,0 T T T T T T T T T
0 10 20 gh 30 40 50

Fig. 2 Comparison of the variation of non-dimensional deflection w of square FG
plate under sinusoidally distributed load versus thickness ratio a/h

It can be observed that the curves of present model and TSDT are almost identical, and the CPT
underestimates the transverse displacement of plate. Since the transverse shear deformation
influences are not included in CPT, the values of non-dimensional transverse displacement w
computed by CPT are not affected by the variation of thickness ratio a/4 (see Fig. 2). Thus, in
general, the present model is successfully checked.

3.2 Buckling problem

Example 3: Table 4 presents the values of the non-dimensional buckling loads N of isotropic
plate (p = 0) under various loading cases for various values of aspect ratio a/b and thickness ratio
h/b. The computed values are compared with the results reported by Shufrin and Eisenberger
(2005) based on FSDT and TSDT. An excellent agreement is proved for all types ranging from
moderately thick to very thick plates.

Table 4 Comparison of non-dimensional critical buckling load N of isotropic plate
under different loading types (p = 0)

Loading type (71, y2)

alb h/b Method

(1,0) 0,1) (LD
FSDT @ 3.7865 3.7865 1.8932
0.1 TSDT @ 3.7866 3.7865 1.8933
| Present 3.7866 3.7865 1.8933
FSDT ©@ 3.2638 3.2637 1.6319
0.2 TSDT @ 3.2653 3.2653 1.6327

Present 3.2653 3.2653 1.6327
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Table 4 Continued

Loading type (1, 72)

alb h/b Method

(1,0) (0,1) (1,1)
FSDT ® 2.6533 2.6533 1.3266
0.3 TSDT @ 2.6586 2.6586 1.3293
| Present 2.6586 2.6586 1.3293
FSDT ® 1.9196 1.9196 1.0513
0.4 TSDT @ 1.9550 1.9550 1.0567
Present 1.9550 1.9550 1.0567
FSDT @ 4.0250 2.0048 1.3879
0.1 TSDT @ 4.0253 2.0048 1.3879
Present 4.0253 2.0048 1.3879
FSDT @ 3.3048 1.7941 1.2421
0.2 TSDT @ 3.3077 1.7946 1.2424
15 Present 3.3077 1.7946 1.2424
' FSDT @ 2.5457 1.5267 1.0570
0.3 TSDT @ 2.5545 1.5285 1.0582
Present 2.5545 1.5285 1.0582
FSDT @ 1.9196 1.2632 0.8745
0.4 TSDT @ 1.9421 1.2670 0.8772
Present 1.9421 1.2670 0.8772
FSDT @ 3.7865 1.5093 1.2074
0.1 TSDT @ 3.7866 1.5093 1.2075
Present 3.7866 1.5093 1.2074
FSDT ® 3.2637 1.3694 1.0955
0.2 TSDT @ 3.2654 1.3697 1.0958
5 Present 3.2654 1.3697 1.0958
FSDT @ 2.5726 1.1862 0.9490
0.3 TSDT @ 2.5839 1.1873 0.9498
Present 2.6539° 1.1873 0.9498
FSDT ® 1.9034 0.9991 0.7992
0.4 TSDT @ 1.9230 1.0015 0.8012
Present 1.9230¢ 1.0015 0.8012

@ Taken from Shufrin and Eisenberger (2005)

Figs. 3 and 4 present the variations of non-dimensional critical buckling load N as a function
of the power law exponent p and thickness ratio a/ A, respectively, for square FG plate under
biaxial compression. It is demonstrated that the present novel four variable refined plate theory and
TSDT predict almost the same values, and CPT over-estimates the buckling loads of plate due to
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Fig. 4 Comparison of the variation of non-dimensional critical buckling load N of square
plate under biaxial compression versus thickness ratio a/h

neglecting transverse shear deformation influences. The difference between CPT and shear
deformation models diminishes when the side-to-thickness ratio a/ % increases (see Fig. 4).
3.3 Free vibration problem

Example 4: Table 5 presents the results of non-dimensional fundamental frequencies @ of
square FG plate for various values of thickness ratio 4/ a and power law exponent p. The

10
Fig. 3 Comparison of the variation of non-dimensional critical buckling load N of square
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computed data are compared with those calculated by and Hosseini-Hashemi et a/. (2011a) based
on FSDT and and Hosseini-Hashemi et al. (2011b) based on TSDT. It is concluded from Table 5
that there is an excellent agreement between the results determined by present model, FSDT

(Hosseini-Hashemi et al. 2011a), and TSDT (Hosseini-Hashemi et al. 2011Db).

Example 5: The comparison presented in Table 6 is performed to check the higher order modes
of vibration. For this end, the first four non-dimensional frequencies @ are given in Table 6 for
rectangular FG plate (b = 2a) with different values of thickness ratio and power law exponent. The
non-dimensional frequencies determined by employing the developed model and TSDT (2000) are
compared with those reported by Hosseini-Hashemi et al. (2011a) based on FSDT. It is remarked
that there is a good agreement between the values computed by the present model, FSDT

(Hosseini-Hashemi et al. 2011a), and TSDT for all modes of vibration of thin to thick plates.

Table 5 Comparison of non-dimensional fundamental frequency @ of FG plate

Power law exponent (p)

alh Method
0.5 1 4 10
FSDT @ 0.2112 0.1805 0.1631 0.1397 0.1324
5 HSDT ® 0.2113 0.1807 0.1631 0.1378 0.1301
Present 0.2113 0.1807 0.1631 0.1378 0.1301
FSDT @ 0.0577 0.0490 0.0442 0.0382 0.0366
10 HSDT ® 0.0577 0.0490 0.0442 0.0381 0.0364
Present 0.0577 0.0490 0.0442 0.0381 0.0364
FSDT @ 0.0148 0.0125 0.0113 0.0098 0.0094
20 HSDT ® 0.0148 0.0125 0.0113 0.0098 0.0094
Present 0.0148 0.0125 0.0113 0.0098 0.0094
@ Taken from Hosseini-Hashemi ef al. (2011a)
® Taken from Hosseini-Hashemi et al. (2011b)
Table 6 Comparison of the first four non-dimensional fundamental frequencies @ of
rectangular FG plate (b = 2a)
ulh Mode Method Power law exponent ( P)
(m, n) 0 0.5 1 2 5 8 10
FSDT® 34409 29322 26473 24017 22528 2.1985  2.1677
1(1,1)  TSDT  3.4412 29347 26475 23949 22272  2.1697  2.1407
Present  3.4412 29347 2.6475 23949 22272 2.1697  2.1407
FSDT® 52802 4.5122 4.0773  3.6953 3.4492 33587  3.3094
5 2(12) TSDT 52813 45180 4.0781 3.6805 3.3938 32964  3.2514
Present 52813  4.5180 4.0781 3.6805 3.3938 32964  3.2514
FSDT® 80710 6.9231 62636 56695 52579  5.1045  5.0253
3(1,3) TSDT  8.0749 6.9366 62663 56390 51425 49758  4.9055
Present  8.0749  6.9366 62663  5.6390  5.1425 49758  4.9055
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Table 6 Continued
I Mode Method Power law exponent ( P)
(m, n) 0 0.5 1 2 5 8 10
FSDT® 97416 8.6926  7.8711  7.1189 65749 59062  5.7518
5  4(,21) TSDT 10.1164 8.7138 7.8762 7.0751 64074 6.1846  6.0954
Present  10.1164 8.7138  7.8762  7.0751 64074  6.1846  6.0954
FSDT®  3.6518 3.0983 27937 2.5386  2.3998 23504 23197
1(1,1)  TSDT  3.6518 3.0990 27937 25364 23916 23411 23110
Present  3.6518  3.0990  2.7937 25364 23916 23411 23110
FSDT® 57693 4.8997 44192 40142 3.7881 3.7072  3.6580
2(1,2)  TSDT 57694 49014 44192 4.0090 3.7682  3.6846  3.6368
10 Present  5.7694 49014 44192  4.0090 3.7682  3.6846  3.6368
FSDT® 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887  5.8086
3(1,3) TSDT  9.1887 7.8189  7.0515 63886 59765 58341  5.7575
Present  9.1887  7.8189  7.0515 63886 59765 5.8341  5.7575
FSDT® 11.8310 10.0740 9.0928 82515  7.7505  7.5688  7.4639
4(2,1) TSDT 11.8315 10.0810 9.0933 82309 7.6731  7.4813  7.3821
Present  11.8315 10.0810 9.0933 82309 7.6731  7.4813  7.3821
FSDT® 37123  3.1456  2.8352 25777 24425 23948 23642
1(1,1)  TSDT  3.7123  3.1458 2.8352 25771 24403 23923 23619
Present  3.7123  3.1458  2.8352 25771 24403 23923 23619
FSDT® 59198 50175 4.5228 4.1115 3.8939 38170  3.7681
2(1,2)  TSDT 59199 50180 45228 4.1100 3.8884 38107  3.7622
20 Present 59199 5.0180 4.5228  4.1100 3.8884  3.8107  3.7622
FSDT® 95668 8.1121 73132  6.6471 62903  6.1639  6.0843
3(1,3) TSDT  9.5669 8.1133 73132  6.6433 62760 6.1476  6.0690
Present  9.5669  8.1133 73132  6.6433 62760  6.1476  6.0690
FSDT® 124560 10.5660 9.5261  8.6572  8.1875  8.0207  7.9166
4(2,1) TSDT 124562 10.5677 9.5261 8.6509 8.1636  7.9934  7.8909
Present  12.4562 10.5677 9.5261  8.6509  8.1636  7.9934  7.8909

@ Taken from Hosseini-Hashemi ef al. (2011a)

The variations of non-dimensional fundamental frequency @ of square FG plate as a function
of the power law exponent p and thickness ratio a/#h are presented in Figs. 5 and 6, respectively.
The curves plotted by using the present theory are compared with the curves plotted by employing
the CPT and the TSDT (Reddy 2000). From this investigation can be observed that the resulting
curves are very close to the curves plotted by employing a TSDT (Reddy 2000) and the CPT
overestimates the results of thick plate. Thus, in general, the present model is successfully

validated.
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Fig. 6 Comparison of the variation of non-dimensional fundamental frequency @
of square FG plate versus thickness ratio a/

4. Conclusions

A novel higher-order shear deformation theory is developed for bending, buckling, and
vibration of FG plates. By considering further simplifying suppositions to the existing HSDT, with
the incorporation of an undetermined integral term, the number of variables and equations of
motion of the present HSDT are diminished by one, and hence, make this model simple and
efficient to employ. The equations of motion are determined by utilizing the Hamilton’s principle
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and then are solved using Navier’s procedure. The exactitude of the developed model has been
checked for the bending, buckling, and free vibration responses of FG plates. All comparison
investigations demonstrate that the deflection, stress, buckling load, and natural frequency
determined by the developed model with four variables are almost close to those obtained by other
shear deformation theories containing five variables. In conclusion, it can be deduced from this
work that the developed theory is accurate and efficient in investigating the bending, buckling, and
vibration behaviors of FG plates.
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