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Abstract.  In this work, the two-dimensional generalized magneto-thermoelastic problem of a fiber-reinforced 
anisotropic material is investigated under Green and Naghdi theory of type III. The solution will be obtained for a 
certain model when the half space subjected to ramp-type heating and traction free surface. Laplace and exponential 
Fourier transform techniques are used to obtain the analytical solutions in the transformed domain by the eigenvalue 
approach. The inverses of Fourier transforms are obtained analytically. The results have been verified numerically 
and are represented graphically. Comparisons are made with the results predicted by the presence and absence of 
reinforcement and magnetic field. 
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1. Introduction 
 

The theory of generalized thermoelasticity has drawn attention of researchers due to its 
applications in various diverse fields such as nuclear reactor’s design, earthquake engineering, 
high energy particle accelerators, etc. The first of such modeling is the extended thermoelasticity 
theory (L-S) of Lord and Shulman (1967), who established the generalized of thermoelasticity 
with one relaxation time by postulating a new law of heat conduction to replace the classical 
Fourier law. Green and Lindsay (1972) proposed the temperature rate dependent thermoelasticity 
(G-L) theory with two relaxation time. The theory was extended for anisotropic body by Dhaliwal 
and Sherief (1980). Green and Naghdi (1991, 1993) proposed a new generalized thermoelasticity 
theory by including the thermal-displacement gradient among the independent constitutive 
variables. 

Fiber-reinforced thermoelastic materials are the composite materials which shows highly 
anisotropic elastic behavior such that the elastic parameters have an extension in the fiber direction 
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which are of the order of 50 or more time larger than their parameter in the transverse direction. 
These composite materials are light weight, having high resistance, strength, stiffness at a high 
temperature. Due to theoretical and practical importance, many problems on waves and vibrations 
in fiber-thermoelastic materials have been investigated. (Singh 2002) showed that, for wave 
propagation in fiber-reinforced anisotropic media, this decoupling cannot be achieved by the 
introduction of the displacement potentials. (Sengupta and Nath 2001) discussed the problem of 
surface waves in fiber-reinforced anisotropic elastic media. Hashin and Rosen (1964) gave the 
elastic moduli for fiber-reinforced materials. 

(Abbas 2012, 2013, 2015a, Abbas and Othman 2012, Zenkour and Abbas 2014b, Hussein et al. 
2015, Said and Othman 2016) investigated different problems for the thermoelastic interaction in a 
fiber-reinforced materials using finite element method. Also, different researches have studied the 
source problem in fiber-reinforced thermoelastic media by using the different mathematical 
techniques as in (Kumar and Gupta 2010, Abbas et al. 2011, Othman and Said 2012, 2013, 2014, 
Gupta and Gupta 2013, Lotfy and Hassan 2013, Othman and Lotfy 2013, Sarkar and Lahiri 2013). 
Note that in most of the earlier studies mechanical or thermal loading on the boundary surface was 
considered to be in the form of a shock. (Abbas 2015b) studied the fractional order generalized 
magneto-thermoelastic medium due to moving heat source using eigenvalue approach. (Zenkour 
and Abbas 2014a) investigated finite element analyses in magneto-thermoelastic interaction in an 
infinite FG cylinder. (Othman et al. 2014) used the normal mode method to investigate the initial 
stress and gravitational effect on generalized magneto-thermo- microstretch elastic solid for the 
different theories. (Lotfy and Othman 2014) studied the effect of magnetic field for a mode-I crack 
on a two-dimensional problem fiber-reinforced in generalized thermoelasticity. 

In this paper, the analytical expressions for displacement components, temperature and the 
components of stress are obtained in the physical domain by using the eigenvalue approach. The 
non-dimensional equations are handled by employing an analytical-numerical technique based on 
Fourier and Laplace transform and eigenvalues approach. The results have been verified 
numerically and are represented graphically. 
 
 
2. Basic equation and formulation of the problem 
 

We consider the problem of a thermoelastic half-space (x ≥ 0). A magnetic field with constant 
intensity H = (0, 0, H0), acting parallel to the boundary plane (taken as the direction of the z-axis). 
The surface of the half-space is subjected to a thermal shock which is a function of y and t. Thus, 
all the quantities considered will be functions of the time variable t, and of the coordinates x and y. 
We begin our consideration with linearized equations of electro-dynamics of slowly moving 
medium 

,curl 0 mEhJ   (1)
 

,curl 0hE   (2)
 

.0.  h  (3)
 

),(0 HuE    (4)
 
These equations are supplemented by the displacement equations of the theory of elasticity, 
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taking into consideration the Lorentz force Fi to give 
 

,)  J?(F 0 ii   (5)
 

,F, iijij u   (6)
 

where h is the induced magnetic field vector; μ0 is magnetic permeability; E is the induced electric 
field vector; ε0 is the electric permeability; J is the current density vector and u  is the particle 
velocity of  the  medium. Following (Green and Naghdi 1991, 1993) and (Singh 2006), the 
equation of heat conduction for fiber-reinforced material in the absence of heat sources are 
considered as 

3. 2, 1,,          ,,,,
*  jiuTTcTKTK jiijoeijijij    (7)

 
The stress-strain relation for a fiber-reinforced linearly thermoelastic medium with respect to 

the reinforcement direction medium unit vector a will be as follows 
 

3, 2, 1,,,,                                         ,)(       

))((2)(2





mkjiTTaaeaa

eaaeaaeaaeaaee

ijoijjikmmk

kikjkjkiTLkkjiijkmmkijTijkkij




 (8)

 

where ui the displacement vector components; T the temperature change of a material particle; ρ is 
the mass density; eij the strain tensor; σij the stress tensor; βij the thermal elastic coupling tensor; To 
the reference uniform temperature of the body; λ, μT are elastic parameters; ce the specific heat at 
constant strain; K* the material constant, characteristic of the theory; α, β, (μL ‒ μT) are the 
parameters of reinforced elastic; δij is the Kronecker delta and Kij the thermal conductivity. The 
comma notation is used for spatial derivatives and superimposed dot represents time 
differentiation and a ≡ (a1, a2, a3), a

2
1 + a2

2 + a2
3 = 1. All the considered functions will be depend on 

the time t and the coordinates x and y as in Fig. 1. Thus, the displacement vector ui will have the 
components 

.0          ),,,(          ),,,( 321  uwtyxvuvtyxuuu  (9)
 
We choose the fiber-direction as a ≡ (1, 0, 0) so that the preferred direction is the x-axes, Eqs. 

(5)-(8) simplifies, as given below 
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where b11 = λ + 2 (α + μT) + 4(μL ‒ μT) + β, b12 = α + λ + μL, b13 = μL, b22 = λ + 2μT, ,
2
002


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c  β11 = (2λ + 3α + 4μL ‒ 2μL + β) α11 + (λ + α) α22, β22 = (2λ + α) α11 + (λ + 2μT) α22 and 

α11, α22 are the linear thermal expansion coefficients. It is convenient to change the preceding 
equations into the dimensionless forms. To do this, the dimensionless parameters are introduced as 
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3. Initial and boundary conditions 
 

In order to solve the problem, both the initial and boundary conditions should be considered. 
The initial conditions of the problem are taken as 
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The boundary conditions of the problem are taken as 
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 where H is the Heaviside unit step 

function and T1 is a constant and t0 is a constant and is called the ramping time parameter. This 
means that heat is applied on the surface of the half-space on a narrow band of width L 
surrounding the y-axis to keep it at temperature To, while the rest of the surface is kept at zero 
temperature. 

 
 

Fig. 1 Schematic of the half-space 
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4. Formulation in the laplace transform domain 
 

We will apply Laplace transform defined as 
 

  ,)()()(
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Hence, the above equations will take the forms 
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5. Formulation in the fourier transform domain 
 

We will apply Fourier transform defined as 
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Let us now proceed to solve the coupled differential Eqs. (32), (33) and (34) by the eigenvalue 
approach proposed by (Das et al. 1997, Abbas 2014). Eqs. (32-34) can be written in a vector-
matrix differential equation as follows 

 

,
 


M
dx

d
 (37)

 

where 
T

dx

Td

dx

vd

dx

ud
Tvu 










***
***           


and .

000

000

000

100000

010000

001000

646362

545352

464541





























mmm

mmm

mmm
M  

The characteristic equation of the matrix M takes the form 
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,644663544552411 mmmmmmmF   
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The roots of the characteristic Eq. (38) which are also the eigenvalues of matrix M are of the 
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From Eq. (39), we can easily calculate the eigenvector ,jY
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2, 3, 4, 5, 6. For further reference, we shall use the following notations 
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The solution of Eq. (37) can be written from as follows 
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where the terms containing exponentials of growing nature in the space variable x have been 
discarded due to the regularity condition of the solution at infinity, B1, B2 and B3 are constants to 
be determined from the boundary condition of the problem. 

 
 

6. Inversion of double transform 
 
The expression for functions ),,( sqx


 in Fourier transform domain can be given as 
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Thus, the field variables can be written for x, y and s as 
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where uj, vj, Tj, j = 1, 2, 3 are the corresponding eigenvectors components of variables. 

In the time domain t and spaces x and y, for the final solution of displacement components, 
temperature and stress components distributions we adopt a numerical inversion method based on 
the Stehfest (1970). In this method, the inverse f(t) of the Laplace transform f(s) is approximated 
by the relation 

,
2ln2ln

)(
1











N

j
j j

t
FV

t
tf  (49)

 
Where Vj is given by the following equation 
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The parameter N is the number of terms used in the summation in Eq. (49) and should be 

optimized by trial and error. Increasing N increases the accuracy of the result up to a point, and 
then the accuracy declines because of increasing round-off errors. An optimal choice of 10 ≤ N ≤ 
14 has been reported by Lee et al. for some problem of their interest (Lee et al. 1984). 

 
 

7. Numerical results and discussion 
 
We assume that the plate is made of fiber-reinforced material. The physical constants are listed 

below (Othman and Said 2015) 
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The computations were carried out for a value of time t = 0.3 and the ramping time parameter t0 

= 0.5. The variation of the temperature T, displacement components u, v and stress components 
σxx, σxy and σyy with distance x in the plane y = 0.25 for the problem under consideration based on 
Green and Naghdi theory. Calculated results for all the non-dimensional variables of the plate are 
shown in Figs. 2-19. 

The first group (Figs. 2-7) represent the behavior of the field quantities under fiber-reinforced 
with magnetic field (RH = 0.2) at different time (t = 0.1, t = 0.2, t = 0.3). 

The second group (Figs. 8-13) shows the differences between the case of the presence of fiber-
reinforced (with fiber), and the case of the absence of fiber-reinforced (without fiber) with 
magnetic field (RH = 0.2) at (t = 0.3). 

The last group (Figs. 14-19) demonstrate the variations of the physical quantities under fiber-
reinforced respect to the distance x in the case of the absence of the magnetic field (RH = 0.0), and 
the case of the presence of magnetic field (RH = 0.2, RH = 0.4). It is easy to see that, the presence of 
a magnetic field has very small effect on the temperature while, it has a significant effect on the 
other field quantities. 

Fig. 2 shows the temperature variation with respect to x and it indicates that temperature field 
has maximum value at the boundary and then decreases to zero. Fig. 4 displays the variation of 
horizontal displacement with respect to x and it indicates that the magnitude of the displacement 
increases with time. It is apparent that when the surface of the half-space is taken to be traction 
free, and the ramp-type heating applied on the surface, the displacement at different values of time 
shows a negative value at the boundary of the half space and it attains a stationary maximum value 
after some distance and after that, it decreases to zero value. Fig. 5 shows the variation of vertical 
displacement with respect to x for different values of time in which we observed that, significant 
difference in the value of displacement is noticed for the different value of t. Figs. 5-7 display the 
stress distribution with distance x for different values of time. We observe that stress components 

 
 

Fig. 2 Temperature distributions T for different time and y = 0.25 
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Fig. 3 Horizontal displacement distributions u for different time and y = 0.25 
 
 

Fig. 4 Vertical displacement distributions V for different time and y = 0.25 
 
 

Fig. 5 The distribution of stress component σxx for different time and y = 0.25 
 
 

σxx and σxy, always starts from the zero value and terminates at the zero value to obey the boundary 
conditions. In Figs. 2-7, the time parameter t has significant effects on all physical quantities 
distribution. 
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Fig. 6 The distribution of stress component σxy for different time and y = 0.25 
 
 

Fig. 7 The distribution of stress component σyy for different time and y = 0.25 
 
 

Fig. 8 The distribution of temperature T with and without fiber-reinforced for y = 0.25 and t = 0.3 
 
 
The effect of fiber-reinforcement is given in Figs. 8-13, it is to be noted that the solid line 

( ) refer to the absence of fiber-reinforced (i.e., α = 0, β = 0 and μL ‒ μT = 0) while dashed 
line (---------) refer to the presence of fiber-reinforced. All variable quantities are very sensitive to 
the temperature-dependent on material properties. 
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8  

Fig. 9 The distribution of Horizontal displacement u with and without fiber-reinforced for y = 
0.25 and t = 0.3 

 
 

Fig. 10 The distribution of Horizontal displacement V with and without fiber-reinforced 
for y = 0.25 and t = 0.3 

 
 

Fig. 11 The distribution of stress component σxx with and without fiber-reinforced for y = 0.25 
and t = 0.3 
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Fig. 12 The distribution of stress component σxy with and without fiber-reinforced 
for y = 0.25 and t = 0.3 

 
 
 

Fig. 13 The distribution of stress component σyy with and without fiber-reinforced 
for y = 0.25 and t = 0.3 

 
 
 

Fig. 14 Temperature distributions T for different values of RH at t = 0.3 and y = 0.25 
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Fig. 15 Horizontal displacement distributions u for different values of RH at t = 0.3 and y = 0.25 
 
 
 

Fig. 16 Vertical displacement distributions V for different values of RH at t = 0.3 and y = 0.25 
 
 
 

Fig. 17 The distributions of stress component σxx for different values of RH at t = 0.3 and y = 0.25 
 

383



 
 
 
 
 
 

Faris S. Alzahrani and Ibrahim A. Abbas 

Fig. 18 The distributions of stress component σxy for different values of RH at t = 0.3 and y = 0.25 
 
 

Fig. 19 The distributions of stress component σyy for different values of RH at t = 0.3 and y = 0.25 
 
 

8. Conclusions 
 
In this work, the effect of magnetic field and reinforcement of the temperature, displacement 

components and the stress components have been studying for a two-dimensional problem of a 
anisotropic material is considered within the context of the GN-III theory. It is easy to see that, the 
reinforcement has a significant effect on all field quantities as expected. The fiber-reinforced 
material properties act to reduce the magnitudes of the considered variables, which may be 
significant in some practical applications, can easily be taken under consideration and accurately 
assessed i.e., the fiber-reinforced material has a high strength. 
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