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Abstract.    The objective of this paper is to investigate buckling behavior of composite laminated cylinders by 
using semi-analytical finite strip method. The shell is subjected to deformation-dependent loads which remain normal 
to the shell middle surface throughout the deformation process. The load stiffness matrix, which is responsible for 
variation of load direction, is also throughout the deformation process. The shell is divided into several closed strips 
with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on the 
first-order shear deformation theory with Sanders-type of kinematic nonlinearity. Displacements and rotations of the 
shell middle surface are approximated by combining polynomial functions in the meridional direction and truncated 
Fourier series along with an appropriate number of harmonic terms in the circumferential direction. The load stiffness 
matrix, which is responsible for variation of load direction, is also derived for each strip and after assembling, global 
load stiffness matrix of the shell is formed. The numerical illustrations concern the pressure stiffness effect on 
buckling pressure under various conditions. The results indicate that considering pressure stiffness causes buckling 
pressure reduction which in turn depends on various parameters such as geometry and lay-ups of the shell. 
 

Keywords:    deformation-dependent loads; finite strip method; buckling behavior; laminated composite; 
cylindrical shells 
 
 
1. Introduction 
 

Structures are subjected to wide variety of forces, which can be classified into two categories, 
including: conservative and non-conservative forces. Stability of structures, under deformation-
dependent loads, depends on the loading type, body attached or space attached, load distribution; 
moreover, shell boundary conditions, can be categorized under conservative or non-conservative 
title. In the case of conservative loads, static criterion (divergence) can be used to produce 
symmetric global stiffness matrix. Non-conservative loads can divide the system into purely and 
hybrid non-conservative systems. The first group only fails by flutter and so the kinetic criterion, 
which connects computing buckling loads to vibration equation of structure, governs. In the hybrid 

                                          
Corresponding author, Ph.D., E-mail: dpoorveis@scu.ac.ir 
a M.Sc. Student, E-mail: khayatmajid@yahoo.com 
b Ph.D., E-mail: moradis@scu.ac.ir 

301



 
 
 
 
 
 

Majid Khayat, Davood Poorveis and Shapour Moradi 

case, both criteria, static or kinetic, can dominate the problem (Datta and Biswas 2011, Argyris and 
Symeonidis 1981). Displacement-dependent loads can be caused by contact of structures with 
liquid or gaseous media resulting in pressure forces acting normal to the contact surfaces and 
forces acting tangential to the surfaces. 

The buckling phenomenon consists of a sudden change of equilibrium configuration at a certain 
critical load. Buckling has a crucial role in the behavior of thin-walled structures such as plates and 
shells. Since the load carrying capacity of thin-walled members is frequently dependent on 
buckling phenomena, the ability to calculate the associated elastic critical loads is of great 
importance. If a linear initial equilibrium path is also assumed, linearized stability analysis reduces 
the determination of the critical load to a linear eigenvalue problem (Euler’s method) (Nali et al. 
2011). 

Anastasiadis and Simitses (1993) compared the classical theories, first order and higher order 
shear deformations shell theories, to calculate buckling load of composite cylindrical shells under 
axial and lateral pressures; furthermore, they checked the effects of different parameters on 
buckling load calculated by different theories. In Shen’s (1988) study, post-buckling analysis was 
presented for a shear deformable cross-ply laminated cylindrical shell of finite length subjected to 
combined loading of external pressure and axial compression. The governing equations in this 
paper are based on Reddy’s higher order shear deformation shell theory. Matsunaga (2007) 
analyzed natural frequencies and buckling stresses of cross-ply laminated composite circular 
cylindrical shells by considering the effects of higher-order deformations. Therefore, the 
investigator used power series expansion to describe displacement components. Ovesy and Fazilati 
(2009) presented finite strip method to analyze linear and non-linear buckling of composite plate 
and cylindrical shell. They used Sanders’s theory for linear and Donnell’s theory for non-linear 
analyses. In Li and Lin’s (2010) study, a post-buckling analysis was presented for a shear 
deformable anisotropic laminated cylindrical shell with stiffeners; moreover, the researchers used 
higher order shear deformation shell theory with von Karman-Donnell-type of kinematic 
nonlinearity and stiffener modeling by considering the smeared method. Zielnica (2012) studied 
the buckling loads and stability paths of a sandwich conical shell with unsymmetrical faces under 
combined loads based on the assumptions of moderately large deflections. Tornabene et al. (2014) 
evaluated the free vibration of free-form doubly-curved shells made of functionally graded 
materials using higher-order equivalent single layer theories. Tornabene et al. (2015) estimated the 
behavior of doubly-curved composite deep shells with variable radii of curvature under 
concentrated loads by a new approach. The paper showed convergence, stability and accuracy of 
the presented approach when applied to beams, plates and doubly-curved thin and thick shells. 
Jung et al. (2016) presented post-buckling behavior of laminated composite plates and shells, 
subjected to various shear loadings, using a modified finite element method. 

Bolotin (1963) was one of the pioneering researchers who studied the effects of load behavior 
on structures stability. He categorized loads in to dead and follower types. In dead loads, both 
magnitude and direction of load remain constant during loading process. However, in the case of 
follower loads, the magnitude is constant but the direction changes. He also extracted conditions 
for uniformly distributed load over the external surface of a body in which remains normal to the 
deformed surface in order to be conservative. In addition, it has been concluded that if the forces 
are non-conservative, the form, which the loss of stability is assumed, requires special 
investigation in each problem. Both instability types are possible in this case. In many problems, 
based on the relations which exist between the parameters, the minimum critical loads correspond 
to either the static or the oscillatory (flutter) stability loss. Another research which studied 
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conservativeness of a normal pressure field acting on a shell, has been accomplished by Cohen 
(1966). He not only confirmed the Bolotin’s research for flat plates but also generalized the results 
to a non-uniform continuous normal pressure field acting on an arbitrary shell. Afterwards, he 
modified the potential energy of loading to incorporate shells of arbitrary curvature. Romano 
(1971) extracted through the potential operator theory to present the correct proof of 
conservativeness condition. The analysis was performed in the large (finite deformation) obtaining 
a general condition for conservativeness of pressure loading. Sheinman and Tene (1974) 
emphasized on the functional potential energy derived by Cohen (1966); however, they suggested 
another expression for the normal pressure potential energy. Hibbitt (1979) extracted the 
contribution of follower forces to the tangent stiffness matrix which can be called load stiffness 
matrix. Generally, this matrix is un-symmetric but in special cases, it can appear as a symmetrical 
matrix. Due to non-uniform pressure, the investigator also demonstrated that the magnitude of 
non-symmetric matrix can be decreased by refining meshes while other aspects of non-symmetry 
are not dependent on element sizes. Schweizerhof and Ramm (1984) studied displacement-
dependent pressure loads in nonlinear finite element analysis. They evaluated specific conditions 
when a pressure load is conservative and vice versa. The important part of their work was to 
propose a load classification into body attached and space attached loads. In the body attached 
case, load stiffness matrix was divided into four parts so that three parts including two parts 
containing integrals along boundaries and the other related to variation of loading magnitude in the 
domain were skew-symmetric matrices. In the case of uniform pressure, the potential conditions 
were similar to those obtained by other researches. Altman et al. (1988, 1990) studied vibration 
and stability of cylindrical shell panels under follower forces. The obtained solution (Eigen curves) 
was used in conjunction with the dynamic criterion of stability to find the critical values of the 
frequency and loading parameters. Iwata et al. (1991) derived a symmetric load-stiffness matrix 
for buckling analysis of shell structures under uniform pressure loads. It should be noted that in 
finite element method, in order to execute large deformation analysis and to calculate the buckling 
load, it is necessary to introduce a load-stiffness or load correction matrix as well as the 
conventional linear and geometrically non-linear (initial stress) stiffness matrices. Therefore, they 
used the results obtained by Schweizerhof and Ramm (1984). Park and Kim (2002) tried to 
reasonably simulate behavior of rockets or missile. They analyzed dynamic stability of completely 
free cylindrical shells under axial follower force for a specific situation in which the edge of shell 
is movable but not freely deformable. By executing geometric nonlinear analysis, Lazzari et al. 
(2003) carried out the study of large lightweight roof structures under the dynamic effects of the 
turbulent actions caused by wind. The wind loads were considered as deformation-dependent 
forces. Wang (2003) studied a beam structure subjected to a static follower force. The beam was 
fixed in the transverse direction and constrained by a rotational spring at one end, and by a 
translational spring and a rotational spring at the other end. Poorveis and Kabir (2006) estimated 
buckling of discretely stringer-stiffened composite cylindrical shells under combined axial 
compression and external pressure in the form of live (follower) pressure. Cagdas and Adali (2011) 
investigated buckling of cross-ply cylinders under hydrostatic pressure by considering pressure 
stiffness (PS) and regarding semi-analytical finite element method. Khayat et al. (2016) 
investigated the effect of pressure stiffness on buckling of thick deep shells. 

The present paper is concerned with study on the linear buckling analysis of laminated 
composite cylindrical shells by semi-analytical finite strip method. First, the fundamental 
equations for the buckling analysis of shell segments based on shell theory and adjacent 
equilibrium criterion have been derived. Then, the exact expression for calculating the pressure 
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stiffness matrix due to the follower pressure for cylindrical shell has been developed. Finally, the 
effects of various parameters such as lengths to radius ratio and thickness of shell, shell boundary 
conditions and shell lay-up on the buckling pressure of the cylindrical shells have been discussed. 
 
 

2. Methodology 
 

2.1 Shell geometry and coordinates system 
 

The position of a shell point is given by: (θ) as the circumferential coordinate, (s) as the 
meridional coordinate and (z) as the coordinate in the normal to the middle surface that are shown 
in Fig. 1. 

It should be noted that, owing to weakness of composite material in shear rigidity, in this article, 
the first-order shear deformation theory has been utilized. Therefore, the displacement field 
corresponding to the first order shear deformation theory is given as 
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where: u, v and w are displacements in the middle surface of the laminate and βs, βθ are the 
rotations of the normal vector of the middle plane around the θ and s axes, respectively. 

 

2.2 Semi-analytical finite strip method 
 

The shell is divided into several closed strips with alignment of their nodal lines in the 
circumferential direction. Displacements and rotations in the shell middle surface are 
approximated by combining polynomial functions in the meridional direction and truncated 
Fourier series with an appropriate number of harmonic terms in the circumferential direction. The 
circumferential variation of the displacements u, v and w and rotations βs and βθ can be described 

 
 

Fig. 1 Coordinates system 
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by a suitable Fourier series expansion which in general consists of both symmetric and anti-
symmetric terms 
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where θ and s stand for circumferential and meridional coordinates, respectively. k represents a 
coefficient and NH is the number of terms in the truncated series. Superscript co exhibits 
contribution of axisymmetric part of displacements and rotations while cn and sn emphasize on 
presence of cosine and sine functions in the shell deformations and ncr is the circumferential wave 
number. The displacement and rotation expansions apply for both pre-buckling state and buckling 
modes. The number of harmonics used in the analyses depends on the subjected loads as well as 
material anisotropy. In the case of uniform axisymmetric, axial or lateral pressure and material 
isotropy, only axisymmetric terms are active in the pre-buckling state. On the other hand, for 
buckling mode, only one wave number which leads to the minimum buckling loads is involved in 
the analysis. Generally, when a shell made by coupling material stiffness is subjected to partial 
deformation dependent loadings, full expansions are required for both pre-buckling and buckling 
states. 

 

2.3 Strain-displacement relations 
 

The generalized strain vector can be written as follows 
 

 T
ss s ss s sz z                              (3)

 

The strain-displacement relations at an arbitrary point of the shell thickness can be expressed as 
follows 

ss ss ss s s szk zk zk                  (4)
 

where linear strain-displacement relations are (Teng and Hong 1998) 
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moreover, the transverse shear strains can be calculated as follows 
 

sz s z

w 1 w v

s R R 

 
        

 
 (6)
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where the bending curvatures, kss, kθθ and torsional curvature ksθ are expressed as 
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The nonlinear strain-displacement relations can be calculated based on Sanders’s non-linear 
shell theory as below 
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2.4 Constitutive equations 
 
The vector of stress resultants is defined as Eq. (9) 
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Nss, Nθθ and Nsθ a are designated as the in-plane meridional and circumferential normal stress 

resultants and shear stress resultant respectively. Mss, Mθθ and Msθ are the analogous couples, while 
Qsz and Qθz represent the transverse shear stress resultants. The constitutive equations relate 
internal stress resultants and internal couples with generalized strain components on the middle 
surface 
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Aij stands for extensional stiffness, Bij is called as bending-extensional coupling stiffness and Dij 

represent bending stiffness which are defined as follows 
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In addition, c denote the transformed reduced stiffness coefficients. The material properties are 
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assumed to be identical in all layers and the fiber orientations may be different among the layers. K 
in the above equations is shear correction coefficient, typically taken at 5/6. 

 
2.5 Linear elastic and geometric stiffness matrices 
 
The linear part of internal virtual work of shell of revolution is as follows 
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Integration of Eq. (12) in the thickness direction and by using Eq. (10), the internal virtual work 

can be written 
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In which lo is the length of shell meridian. Discretization of 
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In this equation, Δj contains all unknown coefficients of displacements and rotations of jth strip 

and δΔj represents its virtual counterpart, also Kej is the linear stiffness matrix of jth strip. To form 
geometric or initial stress stiffness matrix, it is required to carry out a pre-buckling static analysis 
to obtain in-plane forces, ,o

ssN  ,oN  and 
o
sN   for each strip in the gauss points. Then the internal 

virtual works of these real membrane forces in non-linear virtual strains are in the form 
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Discretization of nL

intW  by using Eqs. (2) and (15) gives 
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In which KGj represents the geometric stiffness matrix of jth strip. Assembling of Kej and KGj of 

all strips result in global linear elastic stiffness matrix, Ke and global geometric stiffness matrix, KG 
for the shell of revolution. 

 
2.6 Displacement-dependent pressure 
 
As it is mentioned before, Schweizerhof and Ramm (1984) divided loads into two groups, 

including: body attached and space attached. Space attached loads are the forces which both 
direction and magnitude of pressure change during acting force; while for body attached loads 
only directions are changed (Fig. 2). 
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(a) Un-deformed (b) Deformed (c) Deformed 

 Body attached Space attached load 

Fig. 2 Loads definition 
 
 

(a) Un-deformed (b) Deformed (a) Un-deformed (b) Deformed 

Non-follower Follower 

Fig. 3 Definition of follower and non-follower forces 
 
 
The pressure stiffness matrix for the structures subjected to follower loads represents the effects 

of the change of loading direction and loaded area during their deformation, which can be 
formulated on the basis of the principle of virtual work. To calculate pressure stiffness for 
cylindrical shell, the following assumptions are adopted: 

 

(1) Loading on the shell is perpendicular to the shell before and after deformation (Fig. 3) 
(2) Loading acts on the shell middle surface. 
(3) Shell deformations are small. 
(4) Pressures are considered as body attached. 
 

Position vector of an arbitrary point in the middle surface of shell of revolution is denoted r


 

and U


 represents displacement vector of the point. Hence, the position vector in the deformed 
state is written as 

*r r U 
 

 (17)
 

The components of r


 and U


 in terms of cylindrical coordinate system are as follows 
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r (R cos )i (R sin ) j (Z)k    
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 (18)
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The external virtual work, due to the follower forces, can be calculated based on the Eq. (20) 
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in which, p1 can be non-uniform in both directions, s and θ, but it is assumed to be continuous 
function of them. dS* is elemental area in the deformed state and 
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

defines unit normal vector to 
the deformed shell middle surface. In addition, δU reflects infinitesimal virtual displacement 
vector of shell middle surface. According to vector analysis, the product of normal vector and 
differential element of deformed mid-surface area can be written as 
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using Eqs. (21) and (20), the virtual work created by follower force is calculated as below 
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wZ u ws s s[ ] w}Rdsd
s s R R R R R

           
                          


     
                
 

   (22)

 
In addition, potential operator is used to separate symmetric parts of total pressure stiffness 

matrix. It should be mentioned that the second order terms of displacements are removed because 
they have a little effect on the pressure stiffness matrix. Therefore, after integration by parts of Eq. 
(22), the virtual work of a cylindrical shell under follower forces is 

 

 l
22 2

lP l l
ext 0

0

l l

v u v
W P ( )(  w w )

w
s, sdsd P ( ) w uR

2R 2R s

P P
Rw udsd w vdsd

,

(s, ) (s,

s

)

 
        

 

 
    

 









  

   
 (23)

 
Fig. 4 presents a physical comprehension for different boundaries and loading conditions. Figs. 

4(a) and (b) represent a non-conservative system because load is non-uniform and end of shell can 
move along horizontal direction. For the second structure; while Fig. 4(c) has support conditions 
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(a) Non-conservative (Boundary conditions 
+ load distribution boundary) 

(b) Non-conservative (Boundary-condition) 
 

 

 

 

 

(c) non-conservative (Load distribution) (d) Conservative 

Fig. 4 Boundary and load conditions 
 
 

leading to vanishing boundary terms according to Eq. (23), it should be noted that it is still a non-
conservative system due to non-uniform distributed load. Fig. 4(d) also describes a conservative 
system since the free boundary is unloaded and the boundary integral in Eq. (23) vanishes. 

If the pressure stiffness matrix is symmetric, it can be introduced as conservative system. 
Otherwise, if the pressure stiffness matrix is un-symmetric, it is called non-conservative system. In 
the case of conservative loads, static criterion (divergence) can be used which finally produces 
symmetric global stiffness matrix. In addition, non-conservative loads can cause system to be 
divided into purely or hybrid non-conservative system. The first group only fails by flutter and so 
the kinetic criterion, which connects computing buckling loads to vibration equation of structure, 
governs. In the hybrid case, both criteria, static or kinetic, can dominate the problem. In 
commercial programs such as Abaqus, pressure stiffness matrix is stored symmetrically (Goyal 
and Kapania (2008) - ABAQUS/standard user’s manual (1998)). In all cases of this article, the 
static analysis (or divergence criterion) has been utilized in order to calculate the buckling load. 

 
2.7 Eigenvalue problem 
 
Having been formed global linear elastic stiffness matrix, Ke, global geometric stiffness KG, and 
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global load or pressure stiffness matrix KP, the static criterion (divergence) for estimating load 
parameter λcr may be established through a linear eigenvalue analysis as follows 

 
 e cr G PK (K K ) 0      (24)

 
λcr is the lowest eigenvalue and Φ is its associated eigenmode. As stated earlier, KP is generally 

un-symmetric due to non-uniformity of loading and insufficient constraints in shell boundaries. In 
the sequel two types of eigenvalue analyses have been carried out, with pressure stiffness and 
without pressure stiffness. Comparison of the results of these two analyses to clarify the effect of 
considering or omitting KP has been performed. 
 
 
3. Numerical applications and results 
 

Based on the above derivations, in this section, some results and considerations concerning the 
buckling loads problem of laminated composite cylindrical shells are presented. To verify the 
accuracy of the present method, some comparisons have been performed. Based on the presented 
formulations a computer program has been prepared to compute buckling pressure via eign-value 
problem. 

 
3.1 The convergence study of finite strip method 

 
The buckling of a simply supported cylindrical shell under lateral follower pressure for 

different number of strips is considered. The lay-up of shell is ([0/0/90]s), radius, thickness and 
length of the cylinder are 190.5, 6.35 and 762 mm, respectively. The material properties are 
considered as 

11 22 12 13

23 12

E 130 GPa      E 7 GPa   G G 6 GPa 

G = 4.2GPa    0.28     

   
 

 

 
Variations of follower buckling pressure of the cylinder with regard to different number of 

strips in the meridian direction is depicted in Fig. 5. 
 
 

 

Fig. 4 Boundary and load conditions 
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For all models considered in the example, minimum buckling pressure is obtained with 
circumferential wave number, ncr = 4. As it is seen from Fig. 4 the buckling pressure nearly 
remains unchanged after considering 30 strips in the model but to cover variations in geometry, 
shell lay-up and boundary conditions, in the following problems 40 strips have been taken in the 
meridian direction. It is to be noted that the FEM result obtained by Abaqus software using (3724) 
S8R5 elements is also shown in the Fig. 5. 

 
3.2 Laminated (cross ply) cylinder under lateral pressure 
 
In this section, the buckling analyses are carried out for cylindrical shells having two fixed ends 

under uniform lateral pressure. Therefore, the effects of different properties such as, shell thickness, 
length to radius ratio and lay-ups ([90/90/90]s, [0/90/0]s) by considering the presence and absence 
of pressure stiffness (follower action) on critical lateral pressure have been compared to those of 
other research results. Radius of the cylinder is 190.5 mm. The material properties are considered 
as 

11 22 12 13

23 12 13 23

E 206.844 GPa      E 18.6159 GPa   G G 4.482 GPa 

G = 2.55107 GPa    υ = 0.21     0.25

   

   
 

 
In this study, the difference between the calculated buckling load by considering and neglecting 

the pressure stiffness is shown by the Eq. (25) 
 

cr(without PS) cr(with PS)

cr(with PS)

q q
(%) 100

q
 

    
 

 (25)

 
The results are presented in Tables 1-2. 
According to Tables 1-2, the calculated buckling results are in accordance with the investigated 

results done in Cagdas and Adali (2011) by considering two different states, with and without 
pressure stiffness. One reason for difference between these two studies is that Cagdas and Adali 

 
 

Table 1 Buckling pressure (MPa) of cylindrical shell under lateral pressure for lay-up [90/90/90]s 

h (mm) L/R N 
Cagdas and 
Adali (2011) 
without PS 

Cagdas and 
Adali (2011)

with PS 

Cagdas and
Adali (2011)
μ (%) 

Current study 
without PS 

Current study 
with PS μ (%)

3.175 

1 5 3.417 3.301 3.5 3.402 3.283 3.6 

2 4 1.946 1.838 5.9 1.940 1.830 6.0 

5 3 0.941 0.843 11.6 0.940 0.841 11.7

6.35 

1 5 18.521 17.957 3.1 18.432 17.480 5.4 

2 3 11.087 10.037 10.5 10.969 9.892 10.9

5 3 5.990 5.388 11.2 5.979 5.353 11.7

12.7 

1 4 92.293 88.672 4.1 91.311 86.464 5.6 

2 3 52.581 48.225 9.0 51.981 46.897 10.8

5 2 28.275 22.220 27.3 27.890 21.554 29.4
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Table 2 Buckling pressure (MPa) of cylindrical shell under lateral pressure for lay-up [90/90/90]s 

h (mm) L/R N 
Cagdas and 
Adali (2011) 
without PS 

Cagdas and 
Adali (2011)

with PS 

Cagdas and
Adali (2011)
μ (%) 

Current study 
without PS 

Current study 
with PS μ (%)

3.175 

1 7 2.283 2.240 1.9 2.283 2.239 2.0 

2 5 1.085 1.044 4.0 1.085 1.043 4.0 

5 4 0.532 0.499 6.5 0.532 0.499 6.6 

6.35 

1 6 14.878 14.517 2.5 14.875 14.481 2.7 

2 4 6.175 5.820 6.1 6.163 5.796 6.3 

5 3 2.794 2.495 12.0 2.790 2.487 12.2

12.7 

1 5 88.224 86.351 2.2 88.248 85.670 3.0 

2 4 34.719 32.921 5.5 34.656 32.584 6.4 

5 3 16.294 14.652 11.2 16.268 14.497 12.2

 
 

(2011) has applied the Koiter – Sanders relations to calculate the pressure stiffness. 
In another parametrics buckling analysis, the results for six L/R (1, 2, 4, 8, 10, 20), there 

thicknesses (3.175, 6.35, 12.7 mm) and eight stacking sequences for the pined-pined cylindrical 
shell under uniform lateral pressure, have been presented in Table 3. 

The maximum lateral buckling pressure occurs in lay-up [90/90/0]s for two types of analysis, 
with and without pressure stiffness. According to Table 3 for cylindrical shell under uniform lateral 
pressure, increasing in thickness and length to reduce ratio intensify the effect of follower action 
on the buckling pressure. 

 
3.3 Laminated cylinder under lateral pressure (Symmetric and un- symmetric lay-ups) 
 
In this section, the effects of pressure stiffness and bending-extensional rigidity, Bij, on buckling 

pressure are investigated for pined-pined cylindrical shells. The shell comprises of a four-ply 
laminate with balanced symmetric stacking sequence [θ/0/‒θ]s and un-symmetric stacking 
sequence [θ/0/‒θ]2 in which θ varies from 0 to 90 degrees. For symmetric lay-up [θ/0/‒θ]s, the 
bending-extension coupling, Bij = 0, but for un-symmetric lay-up [θ/0/‒θ]2, Bij ≠ 0. Various length 
to radius ratios and different shell thicknesses are considered in the analyses. The calculated non-
follower and follower buckling loads are shown in Tables 4-9 for different L/R, h (thickness) and 
fiber orientation, θ. Forty, two-nodded strips have been taken into account in the meridian 
direction. It should be mentioned that the results were generated for the following geometry and 
material properties (Graphite/epoxy) 

 

1 2 12 13 23 12 13E 130GPa      E 7GPa   G G 6GPa  G = 4.2GPa    υ = 0.28

R 300mm

     


 

 
According to Tables 4-9, it has been concluded that the maximum effect of follower force on 

the buckling load is nearly 32%. In other words, if the pressure stiffness matrix is neglected, shell 
is designed for a pressure nearly one third larger than the pressure which causes buckling. 
According to Tables 4-9, for a thin shell, if the length to radius ratio in every stacking sequences as 
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Table 4 Buckling pressure (MPa) of cylindrical shell under lateral pressure for symmetric lay-up, h = 3 mm 

L/R 2 5 10 

θ 
Non- 

follower 
Follower μ (%) 

Non- 
follower

Follower μ (%) 
Non- 

follower
Follower μ (%) 

10 0.085 0.084 1.15 0.036 0.035 2.79 0.019 0.018 4.13 
20 0.106 0.105 1.06 0.044 0.043 2.79 0.023 0.022 4.14 

30 0.142 0.140 1.15 0.058 0.056 2.80 0.030 0.028 6.59 

40 0.195 0.193 1.15 0.083 0.081 2.79 0.042 0.039 6.59 
50 0.264 0.260 1.45 0.112 0.108 4.03 0.061 0.057 6.57 

60 0.337 0.331 1.89 0.148 0.142 4.02 0.085 0.076 12.17 

70 0.392 0.385 1.92 0.183 0.172 6.36 0.095 0.085 12.17 
80 0.401 0.390 2.67 0.187 0.176 6.41 0.102 0.091 12.21 

90 0.395 0.385 2.71 0.186 0.175 6.45 0.103 0.092 12.23 
 
 

Table 5 Buckling pressure (MPa) of cylindrical shell under lateral pressure for symmetric lay-up, h = 15 mm 

L/R 2 5 10 

θ 
Non- 

follower 
Follower μ (%) 

Non- 
follower

Follower μ (%) 
Non- 

follower
Follower μ (%) 

10 5.557 5.426 2.42 1.934 1.821 6.22 1.037 0.925 12.15 

20 6.442 6.304 2.19 2.407 2.267 6.17 1.257 1.121 12.15 
30 8.031 7.862 2.15 3.198 3.011 6.21 1.683 1.501 12.17 

40 10.496 10.269 2.21 4.463 4.203 6.19 2.452 2.187 12.10 

50 13.790 13.361 3.21 6.319 5.956 6.08 3.629 3.241 11.96 
60 16.824 16.285 3.31 7.886 7.083 11.34 5.169 3.983 29.79 

70 19.507 18.487 5.52 9.084 8.148 11.49 5.622 4.287 31.14 

80 19.734 18.632 5.91 9.926 8.883 11.74 5.760 4.378 31.54 
90 19.865 18.720 6.12 10.239 9.149 11.92 5.718 4.338 31.80 
 
 

Table 6 Buckling pressure (MPa) of cylindrical shell under lateral pressure for symmetric lay-up, h = 30 mm 

L/R 2 5 10 

θ 
Non- 

follower 
Follower μ (%) 

Non- 
follower

Follower μ (%) 
Non- 

follower
Follower μ (%) 

10 41.734 40.142 3.97 11.576 10.443 10.85 6.405 5.709 12.19 
20 43.503 42.126 3.27 14.390 13.193 9.07 7.709 6.876 12.12 

30 48.374 46.977 2.97 18.851 17.021 10.75 10.478 9.355 12.01 

40 58.281 56.575 3.02 24.624 22.190 10.97 15.372 11.829 29.95 
50 73.092 70.899 3.09 32.399 29.198 10.96 19.297 14.767 30.68 

60 87.44 83.322 4.94 42.014 37.874 10.93 24.206 18.512 30.76 

70 100.09 94.985 5.37 52.505 47.266 11.08 29.123 22.228 31.02 
80 105.86 95.766 10.54 57.684 44.531 29.54 32.732 24.889 31.51 

90 102.49 92.296 11.04 53.789 41.270 30.33 34.066 25.835 31.86 
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Table 7 Buckling pressure (MPa) of cylindrical shell under lateral pressure 
for un-symmetric lay-up, h = 3 mm 

L/R 2 5 10 

θ 
Non- 

follower 
Follower μ (%) 

Non- 
follower

Follower μ (%) 
Non- 

follower
Follower μ (%) 

10 0.084 0.083 1.15 0.036 0.035 2.79 0.019 0.018 4.13 

20 0.106 0.105 1.15 0.043 0.041 2.79 0.022 0.021 4.14 

30 0.140 0.139 1.18 0.054 0.053 2.81 0.028 0.026 6.60 
40 0.191 0.188 1.48 0.077 0.074 3.60 0.037 0.035 6.60 

50 0.250 0.246 1.50 0.099 0.095 4.05 0.052 0.049 6.59 

60 0.308 0.302 1.93 0.129 0.124 4.04 0.073 0.068 6.87 
70 0.359 0.352 1.96 0.163 0.156 4.05 0.086 0.077 12.18 

80 0.383 0.373 2.69 0.178 0.167 6.42 0.097 0.086 12.21 

90 0.395 0.385 2.71 0.186 0.175 6.45 0.103 0.092 12.23 
 
 

Table 8 Buckling pressure (MPa) of cylindrical shell under lateral pressure 
for un-symmetric lay-up, h = 15 mm 

L/R 2 5 10 

θ 
Non- 

follower 
Follower μ (%) 

Non- 
follower

Follower μ (%) 
Non- 

follower
Follower μ (%) 

10 5.618 5.483 2.46 1.929 1.816 6.23 1.031 0.919 12.15 

20 6.763 6.609 2.34 2.387 2.247 6.23 1.226 1.093 12.17 

30 8.782 8.576 2.40 3.163 2.975 6.33 1.601 1.426 12.24 
40 11.588 11.212 3.35 4.454 4.186 6.41 2.308 2.056 12.27 

50 14.333 13.840 3.56 6.124 5.496 11.42 3.402 3.031 12.26 

60 17.318 16.696 3.73 7.169 6.427 11.53 4.769 3.642 30.94 
70 18.764 17.736 5.80 8.289 7.421 11.70 5.142 3.919 31.21 

80 19.305 18.200 6.07 9.460 8.455 11.88 5.486 4.169 31.59 

90 19.865 18.720 6.12 10.239 9.149 11.92 5.718 4.338 31.80 

 
 

well as thickness of the shells increases, the effect of pressure stiffness on the buckling load 
increases as well. For instance, as you can see in Table 5, for the thickness equals to 15 mm and 
L/R = 2, the maximum effect of follower action on the buckling force is 6.12% (μmax = 6.12) while 
for ratio L/R = 10, μmax = 31.8. In addition, increasing thickness acquires the similar result with 
unchanging length to radius ratio so that for L/R = 2 and t = 3 mm (Table. 7), the lowest effect of 
this assumption on the buckling pressure is 1.15% (μmax = 1.15), while for thickness equals to 30 
mm and L/R = 2, μmax = 4.02%. Furthermore, for the latter thickness and L/R, the maximum effects 
of this assumption on the buckling are 2.71% and 11.04%, respectively. Therefore, the effect of 
increasing length to radius ratio is more than that of increasing thickness on the value of μ. 
Another issue that can be perceived from Tables 4-9 is that different influences of pressure 
stiffness matrix on buckling pressure are variable with fiber orientation, as by increasing angle of 
fiber from 10 to 90 degrees, the effects of follower loading on the buckling pressure increases. The 
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Table 9 Buckling pressure (MPa) of cylindrical shell under lateral pressure 
for un-symmetric lay-up, h = 30 mm 

L/R 2 5 10 

θ 
Non- 

follower 
Follower μ (%) 

Non- 
follower

Follower μ (%) 
Non- 

follower
Follower μ (%) 

10 42.102 40.473 4.02 11.556 10.419 10.91 6.405 5.707 12.21 

20 46.002 44.430 3.54 14.537 13.130 10.72 7.750 6.905 12.24 

30 54.201 52.399 3.44 18.720 16.858 11.05 10.822 9.556 13.25 

40 67.505 65.177 3.57 24.430 21.929 11.40 14.383 11.002 30.73 

50 80.634 76.645 5.20 32.168 28.823 11.61 17.527 13.385 30.95 

60 92.245 87.345 5.61 41.398 37.040 11.77 21.695 16.544 31.14 

70 102.820 97.015 5.98 51.170 45.699 11.97 26.304 20.014 31.43 

80 104.520 94.359 10.77 55.839 43.051 29.70 31.068 23.578 31.77 

90 102.490 92.296 11.04 53.789 41.270 30.33 34.066 25.835 31.86 

 
 

maximum buckling pressure for the two lay-ups and with and without pressure stiffness, induces in 
two stacking sequences including θ = 80 and 90 degrees. In addition, the effects of bending- 
extension rigidity, Bij, on follower buckling pressure are not sizeable so that a comparison between 
the calculated values of μ for two lay-ups [θ/0/‒θ]s and [θ/0/‒θ]2 reveals that they are approximately 
equal. 

 
3.4 Laminated cylinder under combined Lateral and axial pressures 
 
In this section, the effects of pressure stiffness on buckling load for the fixed-fixed cylinders 

under hydrostatic pressure (combined lateral and axial pressures) for various lay-ups, length to 
radius ratios and different thicknesses are investigated. The shell comprises of a four-ply laminate 
with balanced symmetric stacking sequences [α/‒α]s in which α varies from 0 to 90 degrees. The 
results are shown in Figs. 6-8 for two states, non-follower and follower buckling. The considered 
material properties and shell radius are 

 

1 2 12 13 23

12 13 23

E 206.844 GPa      E 18.6159 GPa   G G 4.482 GPa   G = 2.55107 GPa 

υ = 0.21     0.25 R 190.5mm

   

    
 

 
Hydrostatic pressure has the same effects as lateral pressure when the forces are assumed as 

follower type. It should be noted that hydrostatic pressure effect, due to presence of pressure 
stiffness, is slightly more in comparison with the other kind of pressure. Another point which can 
be determined by considering Figs. 6-8 is that the differences in influence of pressure stiffness 
matrix on buckling pressure depend on angle of fibers, as with increasing angle of fiber from 5 to 
90 degrees, the effects of follower-type loading on the buckling pressure increases. 

By using cylindrical shells analyses with different geometries and lay-ups, it is determined that 
a relation exists between buckling mode (number of circumferential wave, ncr) and follower effects 
on buckling load so that by reducing the number of waves, the effect of follower force on buckling 
pressure increases and its maximum value occurs for ncr = 2, as you can observe in Table 10. 
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(a) (b) 

Fig. 6 Buckling load for fixed-fixed cylindrical shell for two loading types, follower and non-follower, 
for h = 3.175 mm and L/R = 5 and 10 

 
 

(a) (b) 

Fig. 7 Buckling load for fixed-fixed cylindrical shell for two loading types, follower and non-follower 
for h = 6.35 mm and L/R = 5 and 10 

 
 

(a) (b) 

Fig. 8 Buckling load for fixed-fixed cylindrical shell for two loading types, follower and non-follower 
for h = 12.7 mm and L/R = 5 and10 
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Table 10 Buckling pressure for (h = 3.175 mm, L/R = 10) 

Lay-up Non-follower Follower Number of wave (ncr) μ (%) 

[5/-5]s 0.130 0.119 4 8.64 

[10/-10]s 0.132 0.124 4 6.59 

[15/-15]s 0.135 0.127 4 6.62 

[20/-20]s 0.143 0.134 4 6.65 

[25/-25]s 0.151 0.134 3 12.48 

[30/-30]s 0.150 0.133 3 12.51 

[35/-35]s 0.162 0.144 3 12.47 

[40/-40]s 0.187 0.167 3 12.39 

[45/-45]s 0.226 0.201 3 12.27 

[50/-50]s 0.276 0.220 2 25.60 

[55/-55]s 0.309 0.237 2 30.59 

[60/-60]s 0.344 0.264 2 30.28 

[65/-65]s 0.381 0.293 2 30.06 

[70/-70]s 0.417 0.321 2 29.91 

[75/-75]s 0.445 0.343 2 29.84 

[80/-80]s 0.463 0.356 2 29.88 

[85/-85]s 0.466 0.358 2 30.04 

[90/-90]s 0.462 0.355 2 30.17 

 
 
Inspection of buckling modes for different shell geometries and lay-ups reveals that in addition 

to changing in circumferential wave number, ncr, amplitudes of the modes components, v, w, u, βs 
and βθ are also altered relatively. These changes affect both on the direction of normal vector to the 
shell middle surface and the deformed area in the buckling process. Thus, these two factors cause 
different effects due to considering follower-type pressure in the analyses. 

By considering the results of this study, the maximum value of μ for every number of 
circumferential waves (ncr) is shown in Fig. 9. 

 
 

Fig. 9 Maximum effect of pressure stiffness on buckling pressure μ (%) for different 
circumferential wave numbers (ncr) 
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According to Fig. 9, it can be concluded that taking into account the pressure stiffness in 
buckling analysis under follower pressures for circumferential wave less than ncr = 8 is required, 
while for more than ncr = 8, it can be removed. 
 
 
4. Conclusions 
 

In this paper, the buckling behavior of the laminated cylindrical shells was investigated under 
follower pressure. Firstly, the shell is divided into several closed strips with alignment of their 
nodal lines in the circumferential direction. Afterwards, displacements and rotations in the shell 
middle surface are approximated by combining polynomial functions in the meridional direction 
and truncated Fourier series having an appropriate number of harmonic terms in the 
circumferential direction. In the next step, linear elastic stiffness, geometric stiffness and pressure 
stiffness are calculated for each strip and finally these matrices are assembled for the whole shell. 

Therefore, based on the presented results, the reader comprehends the importance of 
displacement dependent pressure in designing thin-walled cylindrical shells. The numerical results 
support the following conclusions: 
 

● Results reveal that the effect of follower action on buckling pressure increases for 
cylindrical shell when length to radius ratio and thickness goes up. Moreover, the effect of 
length to radius ratio variations is higher than the influence of thickness changes. 

● The effect of bending-extension rigidity (Bij) is not sizeable on buckling pressure when 
pressure is assumed as follower type. 

● The effect of pressure stiffness on buckling for hydrostatic pressure is similar to that of 
lateral pressure. 

● The results show that increasing the effect of considering pressure stiffness on buckling 
pressure is along with decreasing circumferential wave number. 
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