
 
 
 
 
 
 
 

Steel and Composite Structures, Vol. 22, No. 2 (2016) 257-276 
DOI: http://dx.doi.org/10.12989/scs.2016.22.2.257 

Copyright © 2016 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6         ISSN: 1229-9367 (Print), 1598-6233 (Online) 
 
 
 

 
 
 
 

A new simple three-unknown sinusoidal shear 
deformation theory for functionally graded plates 

 

Mohammed Sid Ahmed Houari 1,2, Abdelouahed Tounsi 2,3, 
Aicha Bessaim 1,2 and S.R. Mahmoud 4,5 

 
1 Université Mustapha Stambouli de Mascara, Department of Civil Engineering, Mascara, Algeria 

2 Material and Hydrology Laboratory, University of Sidi Bel Abbes, 
Faculty of Technology, Civil Engineering Department, Algeria 

3 Laboratoire de Modélisation et Simulation Multi-échelle, Département de Physique, 
Faculté des Sciences Exactes, Département de Physique, Université de Sidi Bel Abbés, Algeria 

4 Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia 
5 Mathematics Department, Faculty of Science, University of Sohag, Egypt 

 
(Received July 10, 2016, Revised September 25, 2016, Accepted September 30, 2016) 

 
Abstract.  In this paper, a new simple higher-order shear deformation theory for bending and free vibration analysis 
of functionally graded (FG) plates is developed. The significant feature of this formulation is that, in addition to 
including a sinusoidal variation of transverse shear strains through the thickness of the plate, it deals with only three 
unknowns as the classical plate theory (CPT), instead of five as in the well-known first shear deformation theory 
(FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. 
Equations of motion are derived from Hamilton’s principle. Analytical solutions for the bending and free vibration 
analysis are obtained for simply supported plates. The accuracy of the present solutions is verified by comparing the 
obtained results with those predicted by classical theory, first-order shear deformation theory, and higher-order shear 
deformation theory. Verification studies show that the proposed theory is not only accurate and simple in solving the 
bending and free vibration behaviours of FG plates, but also comparable with the other higher-order shear 
deformation theories which contain more number of unknowns. 
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1. Introduction 
 

Nowadays functionally graded materials (FGMs) are an alternative materials widely used in 
aerospace, nuclear, civil, automotive, optical, biomechanical, electronic, chemical, mechanical and 
shipbuilding industries. In fact, FGMs have been proposed, developed and successfully used in 
industrial applications since 1980’s (Koizumi 1993). The increase of FGM applications requires 
the development of accurate theories to predict their responses (Kar and Panda 2015a, Akbaş 2015, 
Darılmaz 2015, Ait Atmane et al. 2015, Al-Basyouni et al. 2015, Arefi et al. 2015, Bennai et al. 
2015, Meradjah et al. 2015). Many studies have been developed for thermal stress, hygro-thermo-
elastic bending, thermal and mechanical buckling, and linear and nonlinear free vibration of 
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laminated composite and multilayered structures are available in the literature (Tounsi et al. 2013, 
Belabed et al. 2014, Zidi et al. 2014, Bouchafa et al. 2015, Larbi Chaht et al. 2015, Belkorissat et 
al. 2015, Sahoo et al. 2016a, 2016b, Mahapatra et al. 2016a, b, c, Bousahla et al. 2016). Draiche et 
al. (2014) examined the free vibration of rectangular composite plates with patch mass by 
employing a trigonometric four variable plate model. Bousahla et al. (2014) developed a novel 
higher order shear and normal deformation theory based on neutral surface position for bending 
analysis of advanced composite plates. Khalfi et al. (2014) used a refined and simple shear 
deformation theory for thermal buckling of solar functionally graded plates resting on elastic 
foundation. Kar and Panda (2015b) studied the free vibration responses of shear deformable 
functionally graded curved panels under uniform, linear and nonlinear temperature fields based on 
the higher-order shear deformation. Ait Yahia et al. (2015) studied the wave propagation in FG 
plates with porosities using various higher-order shear deformation plate theories. Beldjelili et al. 
(2016) investigated the hygro-thermo-mechanical bending of S-FGM plates resting on variable 
elastic foundations using a four-variable trigonometric plate theory. Bounouara et al. (2016) 
presented a nonlocal zeroth-order shear deformation theory for free vibration of FG nanoscale 
plates resting on elastic foundation. It should be noted that the classical plate theory (CPT), which 
is based on the Kirchhoff hypothesis, is suitable for thin plates, but inadequate for thick plates or 
plates made of advanced composites like FGMs. The first order shear deformation theory (FSDT) 
(Bellifa et al. 2016, Yaghoobi and Yaghoobi 2013, Zhao et al. 2009) accounts for the shear 
deformation effect by the way of linear variation of in-plane displacements through the thickness. 
Thus, a shear correction factor is required to compensate for the difference between the actual and 
assumed constant stress states. The higher-order shear deformation theories (Reddy 1984, 2000, 
Ren 1986, Kant and Pandya 1988, Pandya and Kant 1988, Touratier 1991, Zenkour 2006, Soldatos 
1992, Karama et al. 2003, Pradyumna and Bandyopadhyay 2008, Jha et al. 2013, Bachir Bouiadjra 
et al. 2013, Bouderba et al. 2013, Tounsi et al. 2013, Ait Amar Meziane et al. 2014, Attia et al. 
2014, Hamidi et al. 2015, Mahi et al. 2015, Bourada et al. 2015, Akavci 2015, Mantari et al. 2016, 
Amirpour et al. 2016, Bennoun et al. 2016, Bouderba et al. 2016) account for higher-order 
variation in the in-plane displacements through the thickness of the plate and satisfy the 
equilibrium conditions at the top and bottom surfaces of the plate and, consequently, any shear 
correction factors are needed. These theories are capable of representing the section warping in the 
deformed configuration. The major advantage of this theories is that the transverse shear strains 
and stresses are represented quadratically, a state of tress that is close to the 3-D elasticity solution 
they have the ability to change the transverse strain and stress distribution (Aydogdu 2006). Some 
of these higher-order shear deformation theories are cumbersome and computationally expensive 
since with each additional power of the thickness coordinate, an additional unknown is introduced 
to the theory (e.g., theories by Ren (1986) with nine unknowns, Kant and Pandya (1988) with 
seven unknowns, Pandya and Kant (1988) with nine unknowns, Pradyumna and Bandyopadhyay 
(2008) with nine unknowns, Jha et al. (2013) with twelve unknowns and recently, Tounsi et al. 
(2013), Boukhari et al. (2016) and Bourada et al. (2016) with four unknowns. Although some 
well-known higher-order shear deformation theories have the same unknowns as in the first-order 
shear deformation theory (e.g., third-order shear deformation theory (Reddy 1984, 2000), 
sinusoidal shear deformation theory (Touratier 1991, Zenkour 2006), hyperbolic shear deformation 
theory (Soldatos 1992), and exponential shear deformation theory (Karama et al. 2003), their 
equations of motion are more complicated than those of the first-order shear deformation theory. 
As a consequence, the development of simple higher-order shear deformation theories in the 
present work is necessary. 
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This work aims to develop a new simple higher-order shear deformation theory for the bending 
and vibration analyses of FG plates. The proposed theory contain fewer unknowns and equations 
of motion than the first-order shear deformation theory, but satisfy the equilibrium conditions at 
the top and bottom surfaces of the plate without using any shear correction factors. Indeed, unlike 
the previous mentioned theories, the number of variables in the present theory is same as that in 
the CPT. Equations of motion are derived from Hamilton’s principle. Analytical solutions for 
deflections, stresses, and frequencies are obtained for a simply supported FG plate. Numerical 
examples are presented to verify the accuracy of the present theory. 
 
 
2. Theoretical formulation 
 

Consider a simply supported rectangular FG plate with the length a, width b, and thickness h. 
The x-, y-, and z-coordinates are taken along the length, width, and height of the plate, respectively, 
as shown in Fig. 1. The formulation is limited to linear elastic material behavior. The FG plate is 
isotropic with its material properties vary smoothly through the thickness of the plate. Unlike the 
previous mentioned theories, the number of unknown functions involved in the present theory is 
only three as in CPT. 

 
2.1 Kinematics 
 
The displacement field of the present three unknowns shear deformation theory is built upon 

the classical plate theory (CPT) including the sinusoidal function in terms of thickness coordinate 
to represent shear deformation and is assumed as follows (Tounsi et al. 2016) 
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where u0, v0, and w0 are three unknown displacement functions of midplane of the plate. f (z) is a 
shape function representing the distribution of the transverse shear strains and shear stresses 

 
 

 

Fig. 1 Geometry of rectangular FG plate and coordinates 
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through the thickness of the plate and is given as 
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The nonzero strains associated with the displacement field in Eq. (1) are 
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2.2 Constitutive relations 
 
The material properties of FG plates are assumed to vary continuously through the thickness. 

Three homogenization methods are deployable for the computation of the Young’s modulus E (z) 
namely: (1) the power law distribution; and (2) the Mori-Tanaka scheme. For the power law 
distribution, the Young’s modulus is given as (Reddy 2000) 
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where k is the power law index; and the subscripts m and c represent the metallic and ceramic 
constituents, respectively. 

For Mori-Tanaka scheme, the Young’s modulus is given as (Benveniste 1987, Mori and 
Tanaka 1973) 
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where Vc = (0.5 + z / h)k is the volume fraction of the ceramic. Since the effects of the variation of 
Poisson’s ratio (v) on the response of FGM plates are very small (Yang et al. 2005, Kitipornchai et 
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al. 2006), this material parameter is assumed to be constant for convenience. The linear 
constitutive relations of a FG plate can be written as 
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where (σx, σy, τyz, τxz, τxy) and (εx, εy, γyz, γxz, γxy) are the stress and strain components, respectively. 
The stiffness coefficients, Cij, can be expressed as 
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2.3 Equations of motion 
 
Hamilton’s principle is used herein to derive equations of motion. The principle can be stated in 

an analytical form as follows 
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where δU is the variation of strain energy; δV is the variation of work done by external forces; and 
δK is the variation of kinetic energy. 

The variation of strain energy of the plate is calculated by 
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where A is the top surface and the stress resultants N, M, S and Q are defined by 
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The variation of work done by external forces can be expressed as 
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dAwqV
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where q is the distributed transverse load. 

The variation of kinetic energy of the plate can be written in the form 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 
ρ(z) is the mass density; and (I0, I1, J1, I2, J2, K2) are mass inertias defined as 
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Substituting the expressions for δU, δV, and δK from Eqs. (11), (13), and (14) into Eq. (10) and 

integrating by parts, and collecting the coefficients of δu0, δv0 and δw0, the following equations of 
motion of the plate are obtained 

 



























































































































2
0

2

2
0

2

23
0

3

3
0

3

1
00

1003

3

3

3

4

4

3

4

3

4

4

4

2

22

2

2

0

3
0

3

1
0

1000

3
0

3

1
0

1000

         

2   : 

   : 

   : 

y

w

x

w
I

y

v

x

u
J

y

v

x

u
IwIq

y

Q

x

Q

y

S

xy

S

yx

S

x

S

y

M

yx

M

x

M
w

y

w
J

y

w
IuI

y

N

x

N
v

x

w
J

x

w
IuI

y

N

x

N
u

yzxz

yxyxyxyxyx

yxy

xyx
















(16)

262



 
 
 
 
 
 

A new simple three -unknown sinusoidal shear deformation theory for functionally graded plates 
































6

0
6

6
0

6

24
0

4

4
0

4

22        
y

w

x

w
K

y

w

x

w
J


(16)

 
By substituting Eq. (3) into Eq. (8) and the subsequent results into Eq. (12), the stress resultants 

are obtained as 
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and stiffness components are given as 
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By substituting Eq. (17) into Eq. (16), the equations of motion can be expressed in terms of 

displacements (u0, v0 and w0) as 
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3. Analytical solutions 
 

The above equations of motion are analytically solved for bending and free vibration problems 
of a simply supported rectangular plate. Based on Navier solution procedure, the displacements are 
assumed as follows 
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where ,1i  ,/ am   ,/bn   (Umn, Vmn, Wmn) are the unknown maximum displacement 
coefficients, and ω is the angular frequency. The transverse load q is also expanded in the double-
Fourier sine series as 

264



 
 
 
 
 
 

A new simple three -unknown sinusoidal shear deformation theory for functionally graded plates 











1 1

) sin() sin(),(
m n

mn yxqyxq   (22)

 
For the case of a sinusoidally distributed load, we have 
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For the case of a uniformly distributed load (UDL), it is 
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where q0 represents the intensity of the load at the plate centre. 

Substituting Eqs. (21) and (22) into Eq. (20), the analytical solutions can be obtained from 
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4. Evaluation of transverse stresses 
 

In this approach the transverse stresses are obtained by integrating the equilibrium equation 
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with respect to thickness direction. These relations can be expressed as 
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5. Numerical results 
 

The general approach outlined in the previous sections for the bending and vibration analyses 
of the FG plates has been investigated through many numerical examples to verify the accuracy of 
the proposed three -unknown sinusoidal shear deformation theory. Two types of FG plates of 
Al/Al2O3 and Al/ZrO2 are used in this study, and their corresponding material properties are listed 
in Table 1. The Young’s modulus and density of FG plates (unless otherwise stated) are evaluated 
using the power law distribution (see Eq. (6)). The effective density ρ(z) is estimated using the 
power-law distribution with Voigt's rule of mixtures as follows 
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5.1 Bending analysis 
 
The first example is performed for square isotropic plate (a / h = 10) subjected to UDL. The 

materials used for this example are as follows: the Young’s modulus is E = 210 GPa, and Poisson’s 
ratio is v = 0.3. The obtained results are compared with quasi-3D solutions given by Shimpi et 

 
 

Table 1 Material properties used in the FG plate 

Properties Metal aluminum (Al) 
Ceramic 

Alumina (Al2O3) Zirconia (ZrO2) 

E (GPa) 70 380 200 

v 0.3 0.3 0.3 

ρ (kg/m3) 2702 3800 5700 
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Table 2 The dimensionless stresses and transversal displacement for isotropic square plate (a / h = 10) 
subjected to a UDL 

Theory  0,2/,2/ˆ baw   2/ˆ hx  2/ˆ hy  2/ˆ hxy   0,2/,0 bxz   0,0,2/ayz
Present 4.6183 0.2922 0.2922 0.1962 0.4234 0.4234 

Shimpi et al. (2003) 4.625 0.307 0.307 0.195 0.505 0.505 

Srinivas et al. (1970) 4.639 0.290 0.290 / 0.488 / 

Hebali et al. (2014) 4.631 0.276 0.276 0.197 0.481 0.481 

 
 

al. (2003), Hebali et al. (2014) and the exact solution carried out by Srinivas et al. (1970). It can 
be seen from Table 2 that the dimensionless displacement and stresses predicted by the new 
proposed theory with three unknowns are in good agreement with those generated by the quasi-3D 
solutions (Shimpi et al. 2003, Hebali et al. 2014) and the exact 3D solution (Srinivas et al. 1970). 

 
 

Table 3 The dimensionless in-plane longitudinal stress x  and displacement w  for FG square plate 
subjected to a sinusoidal load 

k Theory 
)3/(hx  )0,2/,2/( baw  

a / h = 4 a / h = 10 a / h = 100 a / h = 4 a / h = 10 a / h = 100

1 

Carrera et al. (2011) 
εz = 0 

0.7856 2.0068 20.149 0.7289 0.5890 0.5625 

Carrera et al. (2011) 
εz ≠ 0 

0.6221 1.5064 14.969 0.7171 0.5875 0.5625 

Neves et al. (2012)
εz ≠ 0 

0.5925 1.4945 14.969 0.6997 0.5845 0.5624 

Present 
εz = 0 

0.6073 1.5073 14.969 0.7224 0.5860 0.5625 

4 

Carrera et al. (2011) 
εz = 0 

0.5986 1.5874 16.047 1.1673 0.8828 0.8286 

Carrera et al. (2011) 
εz ≠ 0 

0.4877 1.1971 11.923 1.1585 0.8821 0.8286 

Neves et al. (2012)
εz ≠ 0 

0.4404 1.1783 11.932 1.1178 0.8750 0.8286 

Present 
εz = 0 

0.4976 1.2046 11.924 1.1058 0.8671 0.8285 

10 

Carrera et al. (2011) 
εz = 0 

0.4345 1.1807 11.989 1.3925 1.0090 0.9361 

Carrera et al. (2011) 
εz ≠ 0 

0.1478 0.8965 8.9077 1.3745 1.0072 0.9361 

Neves et al. (2012)
εz ≠ 0 

0.3227 1.1783 11.932 1.3490 0.8750 0.8286 

Present 
εz = 0 

0.3786 0.9019 8.9084 1.2723 0.9816 0.9359 
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The second example deals with thin and thick Al2O3 square plates subjected to a sinusoidal load. 
Three different values of the power law index are considered: k = 1, 4, and 10. Table 3 contains 
nondimensional transverse displacement w  and axial stress .x  The obtained results are 
compared with quasi-3D solutions given by Neves et al. (2012) and Hebali et al. (2014), and with 
those obtained using finite-element approximations by Carrera et al. (2011). In general, a good 
agreement between the results is found. The small difference between the results is due to the 
effect of thickness stretching which is considered in quasi-3D solutions (Neves et al. 2012, Hebali 
et al. 2014). 

In the third example, a moderately thick Al/Al2O3 square plate (a / h = 10) subjected to a 
sinusoidal load is examined. Table 4 shows the effects of power law index k on the dimensionless 
displacements and stresses. The present results are compared with the results of the sinusoidal 
shear deformation theory (SSDT) for FG plates presented by Zenkour (2006). In general, the 
obtained results are almost identical with those reported by Zenkour (2006) based on SSDT for all 
cases. 

It should be noted that the present theory involves three unknowns as against five or more 
unknowns in other higher order shear deformation theory. This indicates that the proposed three- 
unknown sinusoidal shear deformation theory can improve the computational cost due to reducing 
the number of unknowns as well as governing equations of motion. 

To further prove the accuracy of present three -unknown sinusoidal shear deformation theory 
for wide range of thickness ratio a / h, the variation of dimensionless deflection w  versus the 
thickness ratio a / h is illustrated in Fig. 2. The obtained results are compared with those computed 
using the third-order shear deformation theory (TSDT) of Reddy (2000) and the CPT. In general, 
the results of present theory and TSDT are almost identical. Since the CPT neglects the shear 
deformation effects, it underestimates deflection of thick plate. 

The through thickness variation for stresses x(  and )xy  is also presented in Fig. 3 for the 
case of k = 2. The obtained results are compared with those computed using TSDT where a good 
agreement is showed. 

 
 

Table 4 Effects of volume fraction exponent on the dimensionless stresses and deflections of a FG square 
plate subjected to a sinusoidal load 

k 
w  x  xz  xy  

Present SSDT(a) Present SSDT(a) Present SSDT(a) Present SSDT(a)

Ceramic 0.2930 0.2960 2.0139 1.9955 0.2416 0.2462 0.7174 0.7065 

1 0.5860 0.5889 3.1076 3.0870 0.2408 0.2462 0.6179 0.6110 
2 0.7517 0.7573 3.6351 3.6094 0.2285 0.2265 0.5513 0.5441 
3 0.8276 0.8377 3.9043 3.8742 0.2230 0.2107 0.5614 0.5525 
4 0.8671 0.8819 4.1023 4.0693 0.2214 0.2029 0.5772 0.5667 
5 0.8930 0.9118 4.2843 4.2488 0.2209 0.2017 0.5869 0.5755 
6 0.9137 0.9356 4.4624 4.4244 0.2208 0.2041 0.5924 0.5803 
7 0.9321 0.9562 4.6378 4.5971 0.2208 0.2081 0.5958 0.5834 
8 0.9493 0.9750 4.8096 4.7661 0.2207 0.2124 0.5982 0.5856 
9 0.9658 0.9925 4.9765 4.9303 0.2207 0.2164 0.6003 0.5875 

10 0.9816 1.0089 5.1378 5.0890 0.2207 0.2198 0.6022 0.5894 

Metal 1.5909 1.6070 2.0139 1.9955 0.2416 0.2462 0.7174 0.7065 
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Fig. 2 Variation of dimensionless deflection w  of isotropic Al/Al2O3 square plates under 
sinusoidal loads versus thickness ratio a / h 

 
 

(a) 
 

(b) 

Fig. 3 Variation of dimensionless stresses x(  and )xy of isotropic Al/Al2O3 square plates 
under sinusoidal loads (a / h = 10 and k = 2) 
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Fig. 4 Variation of dimensionless transverse stress )( xz  of isotropic Al/Al2O3 square plates 
under sinusoidal loads (a / h = 10 and k = 2) 

 
 
In Fig. 4 we have plotted the through-the-thickness distributions of the transverse shear stress 
.xz  The through-the-thickness distributions of the transverse shear stresses for FG plates are not 

parabolic as in the case of homogeneous metal or ceramic beams. 
 
5.2 Free vibration analysis 
 
The accuracy of the new proposed three -unknown sinusoidal shear deformation theory is also 

verified with free vibration analysis. 
The first verification is performed for thin and thick Al/ZrO2 square plates. This example aims 

to verify the obtained results with the 3D solutions of Vel and Batra (2004) and quasi-3D solution 
of Belabed et al. (2014). Young’s modulus is evaluated using Mori–Tanaka scheme (see Eq. (7)). 
This approach has also been used by many other investigators and is applicable in zones of graded 
microstructure which possess a well-defined continuous matrix and a discontinuous particulate 
phase. It models with sufficient robustness the interaction of the elastic fields among neighboring 
inclusions. The non-dimensional fundamental frequency   is given in Table 5 for different values 
of thickness ratio and power law index. It can be seen that the obtained results agree well with the 
3D solutions (Vel and Batra 2004) and quasi-3D solutions (Belabed et al. 2014). 

The next verification is performed for thin and thick Al/Al2O3 square plates with thickness ratio 
varied from 5 to 20 and power law index varied from 0 to 10. The non-dimensional frequencies 

 
 

Table 5 Non-dimensional fundamental frequency  of Al/ZrO2 square plates 

Method 
k = 0 k = 1 a / h = 5 

10/ ha  a / h = 10 a / h = 5 a / h = 10 a / h = 20 k = 2 k = 3 k = 5 

3D(a) 0.4658 0.0578 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225

Quasi-3D(b) 0.4659 0.0578 0.2192 0.0597 0.0153 0.2201 0.2214 0.2225

Present 0.4633 0.0580 0.2190 0.0595 0.0152 0.2209 0.2231 0.2250
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Table 6 Non-dimensional fundamental frequency ̂  of Al/Al2O3 square plates 

a / h Method 
k

0 0.5 1 4 10 

5 

Quasi-3D(a) 0.2121 0.1819 0.1640 0.1383 0.1306 

TSDT(b) 0.2113 0.1807 0.1631 0.1378 0.1301 

FSDT(c) 0.2112 0.1805 0.1631 0.1397 0.1324 

Present 0.2133 0.1815 0.1637 0.1401 0.1342 

10 

Quasi-3D(a) 0.0578 0.0494 0.0449 0.0389 0.0368 

TSDT(b) 0.0577 0.0490 0.0442 0.0381 0.0364 

FSDT(c) 0.0577 0.0490 0.0442 0.0382 0.0366 

Present 0.0580 0.0491 0.0443 0.0384 0.0368 

20 

Quasi-3D(a) 0.0148 0.0126 0.0115 0.0100 0.0095 

TSDT(b) 0.0148 0.0125 0.0113 0.0098 0.0094 

FSDT(c) 0.0148 0.0125 0.0113 0.0098 0.0094 

Present 0.0148 0.0126 0.0113 0.0098 0.0094 
(a) Taken from Belabed et al. (2014); (b) Taken from Hosseini-Hashemi et al. (2011a); 
(c) Taken from Hosseini-Hashemi et al. (2011b) 

 
 

Table 7 Comparison of frequency parameter   of AL/Al2O3 rectangular plate (b = 2a) 

a / h
 Mode no 

(m, n) 
Method 

k

0 0.5 1 2 5 8 10 

5 

1 (1,1) 

FSDT(a) 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677

n-order theory(b) 3.4412 2.9346 2.6475 2.3948 2.2271 2.1696 2.1406

Present 3.4649 2.9538 2.6651 2.4095 2.2517 2.2024 2.1748

2 (1,2) 

FSDT(a) 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094

n-order theory(b) 5.2813 4.5179 4.0780 3.6805 3.3938 3.2964 3.2513

Present 5.3318 4.5376 4.0915 3.7012 3.4677 3.3957 3.3543

3 (1,3) 

FSDT(a) 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253

n-order theory(b) 8.0748 6.9366 6.2662 5.6389 5.1424 4.9757 4.9055

Present 8.1706 7.0160 6.3398 5.6981 5.2376 5.1050 5.0411

10 

1 (1,1) 

FSDT(a) 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197

n-order theory(b) 3.6517 3.0990 2.7936 2.5364 2.3916 2.3410 2.3110

Present 3.6597 3.1042 2.7982 2.5408 2.4014 2.3541 2.3244

2 (1,2) 

FSDT(a) 5.7693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580

n-order theory(b) 5.7694 4.9014 4.4192 4.0089 3.7682 3.6845 3.6368

Present 5.7972 4.9149 4.4294 4.0224 3.8042 3.7304 3.6839

3 (1,3) 

FSDT(a) 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086

n-order theory(b) 9.1880 7.8189 7.0514 6.3886 5.9764 5.8340 5.7574

Present 9.2432 7.8494 7.0762 6.4166 6.0461 5.9246 5.8509
(a) Taken from Hosseini-Hashemi et al. (2011b); (b) Taken from Klouche Djedid et al. (2014) 

271



 
 
 
 
 
 

Mohammed Sid Ahmed Houari, Abdelouahed Tounsi, Aicha Bessaim and S.R. Mahmoud 

̂  predicted by the quasi-3D solution of Belabed et al. (2014), the third shear deformation theory 
(TSDT) (Hosseini-Hashemi et al. 2011a), FSDT (Hosseini-Hashemi et al. 2011b), and the present 
theory are compared in Table 6. It can be seen from Table 6 that the computations based on the 
present theory are once again in excellent agreement with those predicted by the other shear 
deformations theories. It is emphasized that the TSDT, FSDT and the quasi-3D solutions contain a 
greater number of unknowns than those associated with the present theory. 

The last example is carried out for rectangular Al/Al2O3 plate (b = 2a). The lowest three 
frequency parameters   obtained from present theory are compared with those reported by 
Hosseini-Hashemi et al. (2011b) based on FSDT and by Klouche Djedid et al. (2014) based on 
simple n-order four variable refined theory in Table 7. Again, it can be seen that the results 
obtained by present theory are in good agreement with those reported by Hosseini-Hashemi et al. 
(2011b) based on FSDT, and Klouche Djedid et al. (2014) based on simple n-order four variable 
refined theory. 

 
 

 
Fig. 5 Variation of dimensionless fundamental frequency   of isotropic Al/Al2O3 square 

plates under sinusoidal loads versus power law index k (a / h = 5) 
 
 

 
Fig. 6 Variation of dimensionless fundamental frequency   of isotropic Al/Al2O3 square 

plates under sinusoidal loads versus thickness ratio a / h 
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The variations of the nondimensional fundamental natural frequency   versus the power law 
index k and the thickness ratio a / h are presented in Figs. 5 and 6, respectively, where the present 
results are compared with those predicted by both FSDT and CPT. It should be noted that the 
developed three -unknown sinusoidal shear deformation theory contains less number of unknowns 
than the FSDT. 

It can be concluded that the present theory not only gives comparable results with the existing 
higher-order and first shear deformations theories, but also is simpler than the existing HSDT and 
FSDT due to having less number of unknowns, i.e., three as against five. From the results can be 
concluded also that due to the accuracy of the present theory and its reduced number of unknowns, 
this work opens a new generation of higher order shear deformation theory not available in the 
literature with potential for further investigation due to it similarities with the CPT and FSDT. 

 
 

6. Conclusions 
 
A new simple and accurate 3-unknowns sinusoidal shear deformation theory is developed for 

the bending and vibration analysis of FG plates. The interesting advantage of this theory is that, in 
addition to including the shear deformation effect, the displacement field is modelled with only 3 
unknowns as the case of the classical plate theory (CPT) and which is even less than the first order 
shear deformation theory (FSDT). Results prove that the present theory is capable to predict 
accurate results compared with the CPT, FSDT and other HSDTs with higher number of unknowns 
and so deserve special attention and offer potential for future research. 
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