Steel and Composite Structures, Vol. 22, No. 2 (2016) 257-276
DOI: http://dx.doi.org/10.12989/scs.2016.22.2.257 257

A new simple three-unknown sinusoidal shear
deformation theory for functionally graded plates

Mohammed Sid Ahmed Houari %, Abdelouahed Tounsi "°,
Aicha Bessaim " and S.R. Mahmoud *°

' Université Mustapha Stambouli de Mascara, Department of Civil Engineering, Mascara, Algeria
% Material and Hydrology Laboratory, University of Sidi Bel Abbes,
Faculty of Technology, Civil Engineering Department, Algeria
3 | aboratoire de Modélisation et Simulation Multi-échelle, Département de Physique,
Faculté des Sciences Exactes, Département de Physique, Université de Sidi Bel Abbés, Algeria
* Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia
® Mathematics Department, Faculty of Science, University of Sohag, Egypt

(Received July 10, 2016, Revised September 25, 2016, Accepted September 30, 2016)

Abstract. In this paper, a new simple higher-order shear deformation theory for bending and free vibration analysis
of functionally graded (FG) plates is developed. The significant feature of this formulation is that, in addition to
including a sinusoidal variation of transverse shear strains through the thickness of the plate, it deals with only three
unknowns as the classical plate theory (CPT), instead of five as in the well-known first shear deformation theory
(FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required.
Equations of motion are derived from Hamilton’s principle. Analytical solutions for the bending and free vibration
analysis are obtained for simply supported plates. The accuracy of the present solutions is verified by comparing the
obtained results with those predicted by classical theory, first-order shear deformation theory, and higher-order shear
deformation theory. Verification studies show that the proposed theory is not only accurate and simple in solving the
bending and free vibration behaviours of FG plates, but also comparable with the other higher-order shear
deformation theories which contain more number of unknowns.
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1. Introduction

Nowadays functionally graded materials (FGMs) are an alternative materials widely used in
aerospace, nuclear, civil, automotive, optical, biomechanical, electronic, chemical, mechanical and
shipbuilding industries. In fact, FGMs have been proposed, developed and successfully used in
industrial applications since 1980’s (Koizumi 1993). The increase of FGM applications requires
the development of accurate theories to predict their responses (Kar and Panda 2015a, Akbag 2015,
Darilmaz 2015, Ait Atmane et al. 2015, Al-Basyouni et al. 2015, Arefi et al. 2015, Bennali et al.
2015, Meradjah et al. 2015). Many studies have been developed for thermal stress, hygro-thermo-
elastic bending, thermal and mechanical buckling, and linear and nonlinear free vibration of
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laminated composite and multilayered structures are available in the literature (Tounsi et al. 2013,
Belabed et al. 2014, Zidi et al. 2014, Bouchafa ef al. 2015, Larbi Chaht ef al. 2015, Belkorissat et
al. 2015, Sahoo et al. 2016a, 2016b, Mahapatra et al. 2016a, b, c, Bousahla et al. 2016). Draiche et
al. (2014) examined the free vibration of rectangular composite plates with patch mass by
employing a trigonometric four variable plate model. Bousahla et a/. (2014) developed a novel
higher order shear and normal deformation theory based on neutral surface position for bending
analysis of advanced composite plates. Khalfi et al. (2014) used a refined and simple shear
deformation theory for thermal buckling of solar functionally graded plates resting on elastic
foundation. Kar and Panda (2015b) studied the free vibration responses of shear deformable
functionally graded curved panels under uniform, linear and nonlinear temperature fields based on
the higher-order shear deformation. Ait Yahia et al. (2015) studied the wave propagation in FG
plates with porosities using various higher-order shear deformation plate theories. Beldjelili ef al.
(2016) investigated the hygro-thermo-mechanical bending of S-FGM plates resting on variable
elastic foundations using a four-variable trigonometric plate theory. Bounouara et al. (2016)
presented a nonlocal zeroth-order shear deformation theory for free vibration of FG nanoscale
plates resting on elastic foundation. It should be noted that the classical plate theory (CPT), which
is based on the Kirchhoff hypothesis, is suitable for thin plates, but inadequate for thick plates or
plates made of advanced composites like FGMs. The first order shear deformation theory (FSDT)
(Bellifa et al. 2016, Yaghoobi and Yaghoobi 2013, Zhao et al. 2009) accounts for the shear
deformation effect by the way of linear variation of in-plane displacements through the thickness.
Thus, a shear correction factor is required to compensate for the difference between the actual and
assumed constant stress states. The higher-order shear deformation theories (Reddy 1984, 2000,
Ren 1986, Kant and Pandya 1988, Pandya and Kant 1988, Touratier 1991, Zenkour 2006, Soldatos
1992, Karama et al. 2003, Pradyumna and Bandyopadhyay 2008, Jha et al. 2013, Bachir Bouiadjra
et al. 2013, Bouderba et al. 2013, Tounsi et al. 2013, Ait Amar Meziane ef al. 2014, Attia et al.
2014, Hamidi et al. 2015, Mahi et al. 2015, Bourada et al. 2015, Akavci 2015, Mantari et al. 2016,
Amirpour et al. 2016, Bennoun et al. 2016, Bouderba et al. 2016) account for higher-order
variation in the in-plane displacements through the thickness of the plate and satisfy the
equilibrium conditions at the top and bottom surfaces of the plate and, consequently, any shear
correction factors are needed. These theories are capable of representing the section warping in the
deformed configuration. The major advantage of this theories is that the transverse shear strains
and stresses are represented quadratically, a state of tress that is close to the 3-D elasticity solution
they have the ability to change the transverse strain and stress distribution (Aydogdu 2006). Some
of these higher-order shear deformation theories are cumbersome and computationally expensive
since with each additional power of the thickness coordinate, an additional unknown is introduced
to the theory (e.g., theories by Ren (1986) with nine unknowns, Kant and Pandya (1988) with
seven unknowns, Pandya and Kant (1988) with nine unknowns, Pradyumna and Bandyopadhyay
(2008) with nine unknowns, Jha et al. (2013) with twelve unknowns and recently, Tounsi et al.
(2013), Boukhari ef al. (2016) and Bourada et al. (2016) with four unknowns. Although some
well-known higher-order shear deformation theories have the same unknowns as in the first-order
shear deformation theory (e.g., third-order shear deformation theory (Reddy 1984, 2000),
sinusoidal shear deformation theory (Touratier 1991, Zenkour 2006), hyperbolic shear deformation
theory (Soldatos 1992), and exponential shear deformation theory (Karama et al. 2003), their
equations of motion are more complicated than those of the first-order shear deformation theory.
As a consequence, the development of simple higher-order shear deformation theories in the
present work is necessary.
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This work aims to develop a new simple higher-order shear deformation theory for the bending
and vibration analyses of FG plates. The proposed theory contain fewer unknowns and equations
of motion than the first-order shear deformation theory, but satisfy the equilibrium conditions at
the top and bottom surfaces of the plate without using any shear correction factors. Indeed, unlike
the previous mentioned theories, the number of variables in the present theory is same as that in
the CPT. Equations of motion are derived from Hamilton’s principle. Analytical solutions for
deflections, stresses, and frequencies are obtained for a simply supported FG plate. Numerical
examples are presented to verify the accuracy of the present theory.

2. Theoretical formulation

Consider a simply supported rectangular FG plate with the length a, width b, and thickness /.
The x-, y-, and z-coordinates are taken along the length, width, and height of the plate, respectively,
as shown in Fig. 1. The formulation is limited to linear elastic material behavior. The FG plate is
isotropic with its material properties vary smoothly through the thickness of the plate. Unlike the
previous mentioned theories, the number of unknown functions involved in the present theory is
only three as in CPT.

2.1 Kinematics

The displacement field of the present three unknowns shear deformation theory is built upon
the classical plate theory (CPT) including the sinusoidal function in terms of thickness coordinate
to represent shear deformation and is assumed as follows (Tounsi et al. 2016)

3
u(xay,Z,t)=u0(x,y,t)_2%_f(z)a M;O
ox Ox
3
V06D 2a0) = vy (o 0) — 20— (2 L (1)
oy oy

W(x’yazat) = WO(xayat)

where ug, vy, and wy are three unknown displacement functions of midplane of the plate. f(z) is a
shape function representing the distribution of the transverse shear strains and shear stresses

E

Fig. 1 Geometry of rectangular FG plate and coordinates



260 Mohammed Sid Ahmed Houari, Abdelouahed Tounsi, Aicha Bessaim and S.R. Mahmoud

through the thickness of the plate and is given as

—cosh{ Z | _in[ &
f(2)= cosh( 2} Py sm[ P ), 2)

The nonzero strains associated with the displacement field in Eq. (1) are

&, &) k., n, .
Y yz -
£, 1=3&) (+2k, v+ f(23n, i {};‘V }=g(z){yf) } 3)
Yol 7o ke My *
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2.2 Constitutive relations

The material properties of FG plates are assumed to vary continuously through the thickness.
Three homogenization methods are deployable for the computation of the Young’s modulus £(z)
namely: (1) the power law distribution; and (2) the Mori-Tanaka scheme. For the power law
distribution, the Young’s modulus is given as (Reddy 2000)

k
22+hj ©6)

E(z)=E, +(E.-E
(2)=E, +(E, )( o
where k is the power law index; and the subscripts m and c¢ represent the metallic and ceramic
constituents, respectively.

For Mori-Tanaka scheme, the Young’s modulus is given as (Benveniste 1987, Mori and
Tanaka 1973)

VC
E(z)=E, +(E, ‘E"’)[ua—m(Ec/Em —1><1+v>/<3—3V)J ”

where V. = (0.5 + z/h)" is the volume fraction of the ceramic. Since the effects of the variation of
Poisson’s ratio (v) on the response of FGM plates are very small (Yang et al. 2005, Kitipornchai et
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al. 2006), this material parameter is assumed to be constant for convenience. The linear
constitutive relations of a FG plate can be written as

o [CyCy 0 0 0]fe
o, C, Cyp 0 0 0 |e
T.r=| 0 0 Cyu 0 0 W7 (8)
T, 0 0 0 Ci O ||V
Tyl [0 0 0 0 Cgl7o

where (o, 0y, Tz, Tos, Ty) and (x, &), Vpz Yass V) are the stress and strain components, respectively.
The stiffness coefficients, Cy;, can be expressed as

E(z)
Ch=Cy = -2

ChL=v( (92)

E(z)

Cyuy=Cs5=Cs =G(2) = 2(1 n V): (9b)

2.3 Equations of motion

Hamilton’s principle is used herein to derive equations of motion. The principle can be stated in
an analytical form as follows

T
0=[(EU+5V 5Kt (10)
0

where dU is the variation of strain energy; dV is the variation of work done by external forces; and
0K is the variation of kinetic energy.
The variation of strain energy of the plate is calculated by

h/2
oU = I .HO-X5 etode, +1,0y,+7,0y,+7.0 m]dA dz

-h/2 A4
=[[NG e+ NG+ NS P+ M Sk M Sk, + M S, (1D
A

+8.57,+8,0m,+S,5n, +0,.8 7% +0.5 " Jda=0

where 4 is the top surface and the stress resultants N, M, S and Q are defined by

hi2 hi2
(Ni,Mi,Si)z I(l,z,f)oydz, (i = x,y,xy) and Q = Jrig(z)dz, (i = xz,yz) (12)
~h/2 —h/2

The variation of work done by external forces can be expressed as
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5V == g6 wydd (13)

where ¢ is the distributed transverse load.
The variation of kinetic energy of the plate can be written in the form

h/2

SK= jj[a5a+v'5v'+w5w]p(z)d/1dz
—-h/2 A4
= [0,y + 367, + vy ]

A
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where dot-superscript convention indicates the differentiation with respect to the time variable ¢
p(2) is the mass density; and (ly, 11, Ji, I, J», K>) are mass inertias defined as

hl/2
(o lysdis Do Ks )= [(Lz, 0222 £, 12 Jp(2)dz (15)

-h/2

Substituting the expressions for U, 6V, and JK from Eqs. (11), (13), and (14) into Eq. (10) and
integrating by parts, and collecting the coefficients of duy, dvy and dw,, the following equations of

motion of the plate are obtained

aN 3..
suy: Moy Doy g B, 00
ox oy ox?
aN aN .. 3--
Sy o (B gy B, 00
Ox oy op?
O*M 62MW 82M oS, 8 Sy 8 Sy 8 S, (16)
ow,: —+2 - > L4 4 . 5 4
ox Ox0Oy oy ox ax Gy ay 6x oy
3 3 3 2 .- 2 .
_20. 9 Qyz+q Iy, + 1, iy , PV +J, 8u0+6v0 -1, Oty | O
ox? oy? ox Oy ox® oy’ ox? op?
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4 - 4 - 6 6 .-
_2J28w0+8w0 _K28w0+8w0 (16)
ox* oy* ox® oy°

By substituting Eq. (3) into Eq. (8) and the subsequent results into Eq. (12), the stress resultants
are obtained as

N) [4 B B (e
Mi=| B D D* Rk!, Q=4%y, (17)
S| |B* D° H'||n

in which
t t t
N={N,N, N,  MP={mtmiomt ), s={s.S,.S, ], (18a)
52{5255377%-}[’ k:{kxakyakxy}ta 77={77xa77y>77xy}ta (18b)
4, 4, 0 _Bn B, 0 Dy D, 0
A=|4, A4y 0 |, B=|B, B,, 0 |, D=|\D, Dy, 0 | (18c)
0 0 A | 0 0 By 0 0 D
n B 0 Dy, Dy, 0O Hy), Hy, O
B*=\B) B, 0| D'=\D) Dy, 0| H'=\H} H;, 0 | (18d)
0 0 B 0 0 Dg 0 0 H
¢ 145 0
QZ{sz,Qyz}t, 7={7/£Z,7/32} , A° ={ 84 P } (18¢)
55

and stiffness components are given as

4, By, Dy, B, Dj, Hj h2 1
A, By, Dy, B, Dy, Hp, = I C“(l,z,zz,f(z),zf(Z),fZ(Z) lV dz, (19a)
s s s — -V
Ags Bss Des Bos Des Hes h/2 5
(AzzaBzzaDzszzsstzszastz):(AnaBnaDmBlslaDlslaHlsl)> (19b)
W2
s K 2
Ay = A5 = IC44 [2(2)] dz., (19¢)
—h/2

By substituting Eq. (17) into Eq. (16), the equations of motion can be expressed in terms of
displacements (1, vo and wy) as
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3. Analytical solutions

The above equations of motion are analytically solved for bending and free vibration problems
of a simply supported rectangular plate. Based on Navier solution procedure, the displacements are
assumed as follows

u@ )| (U cos(a)sin(uy)e’®”
vo (X, 3,0) = z Z , sin(A x)cos(u y)e'! (21)
wo(x,3,0)| " W, sin(A x)sin(u y) e’

where i=+-1, A=mx/a, py=nx!/b, (U, Vi, Wun) are the unknown maximum displacement
coefficients, and w is the angular frequency. The transverse load ¢ is also expanded in the double-
Fourier sine series as



A new simple three -unknown sinusoidal shear deformation theory for functionally graded plates 265

q(x,3) =D q,, sin(A x)sin(x y)

m=1 n=1
For the case of a sinusoidally distributed load, we have
m=n=1 and ¢q,, =¢,
For the case of a uniformly distributed load (UDL), it is

_ l6gyab

P (m,n=1,3,5,......)

9 mn

where g, represents the intensity of the load at the plate centre.
Substituting Egs. (21) and (22) into Eq. (20), the analytical solutions can be obtained from

app dp 4 my 0 m; U, 0
2 _

Ay Ay Ay |—@°| 0 my my, Vi (=4 0

a3 dps ds; myz Myy My Won 9 mn

where

a, = _(1‘111/12 + Assﬂz)

ay, == 1 (A, + )

aj; = A[ByA* +(By, +2Bgs) i — BYA* =Byt — B 2P p® — Byt

ay = —(A()()/Iz + Azzﬂz)

ay = y[B22,u2 +(By, +2Bg) 7 _stzﬂ4 _Blszﬂb4 _Bgéizﬂz _326/14]

gy = =Dy A = 2(Dy, + 2D ) P 4 = Doy ua* +2(D}\2° + D3, )
24 4 2\ Dly + 2D~ Hi — Hiygpl =27 (Y, + Hy)
_(/16#2 n /12#6)H6s6 — A5 IO — A3

my =my, =—I,

myy = AL, +J,22)

My3 = /U(]l +J1,U2)’

my, =—(IO +Iz(ﬂ,2 +/12)+2J2(/14 +ﬂ4)+K2(16 +/u6))

4. Evaluation of transverse stresses

(22)

(23a)

(23b)

24

(25)

In this approach the transverse stresses are obtained by integrating the equilibrium equation
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with respect to thickness direction. These relations can be expressed as

4 or < (ot oo
r.= | 90 . | and N 2 (26)
S\ Oy o\ OOy

5. Numerical results

The general approach outlined in the previous sections for the bending and vibration analyses
of the FG plates has been investigated through many numerical examples to verify the accuracy of
the proposed three -unknown sinusoidal shear deformation theory. Two types of FG plates of
Al/AL,O5 and Al/ZrO, are used in this study, and their corresponding material properties are listed
in Table 1. The Young’s modulus and density of FG plates (unless otherwise stated) are evaluated
using the power law distribution (see Eq. (6)). The effective density p(z) is estimated using the
power-law distribution with Voigt's rule of mixtures as follows

2z+h)
p(2)=p, +(p. - p, 27)
2h
For convenience, the following dimensionless forms are utilized
_ z _ 10E, (a b _ .~ 100E (a b _
z==, S=alh, w= W sz, W= M T2 )
q,aS 2°2 qohS 2°2
_ 1 (ab_)A 1 (ab_)_ 1 (ab_)A 1 (ab_j
O, =20, Z>7,2 0, = x| A2~ Z p Oy T SO0y 25 50% 0, = Oyl 57522 |
q0S 2°2 q,5° 2°2 T og,S 272 T q,8? 2°2 (28)
_ 1 N\ s 1 N - _ _
w =Ty (0,0,Z), v = Ty (O,O,Z), 7, =Lz’yz[g,0,zj, T, =LTXZ O,Q,ZJ,
905 905 905 2 905 2
2 —
d=whp. /E., Ezw% p./E., B=ohp, IE,

5.1 Bending analysis
The first example is performed for square isotropic plate (a//4 = 10) subjected to UDL. The

materials used for this example are as follows: the Young’s modulus is £ =210 GPa, and Poisson’s
ratio is v = 0.3. The obtained results are compared with quasi-3D solutions given by Shimpi et

Table 1 Material properties used in the FG plate

. . Ceramic
Properties Metal aluminum (Al) - ; ;
Alumina (Al,O5) Zirconia (ZrO,)
E (GPa) 70 380 200
v 0.3 0.3 0.3

p (kg/m?) 2702 3800 5700
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Table 2 The dimensionless stresses and transversal displacement for isotropic square plate (a/h = 10)
subjected to a UDL

Theory war2,6/20) 6.(hi2)  6(h2) 7, (h/2)  7.(0,6/2,0) 7, (a/2,0,0)

Present 4.6183 0.2922 0.2922 0.1962 0.4234 0.4234
Shimpi er al. (2003)  4.625 0.307 0.307 0.195 0.505 0.505
Srinivas et al. (1970)  4.639 0.290 0.290 / 0.488 /
Hebali ef al. (2014) 4.631 0.276 0.276 0.197 0.481 0.481

al. (2003), Hebali et al. (2014) and the exact solution carried out by Srinivas et al. (1970). It can
be seen from Table 2 that the dimensionless displacement and stresses predicted by the new
proposed theory with three unknowns are in good agreement with those generated by the quasi-3D
solutions (Shimpi et al. 2003, Hebali ef al. 2014) and the exact 3D solution (Srinivas et al. 1970).

Table 3 The dimensionless in-plane longitudinal stress &, and displacement w for FG square plate
subjected to a sinusoidal load

) heory &.(h/3) W(a/2,b/2,0)
alh=4 a/h=10 a/h=100 alh=4 a/h=10 a/h=100

Ca”eragft:“(’)' @01 07856 20068 20149 07289 05890  0.5625
Ca“eragf;"é' @01 06221 15064 14969 07171 05875 0.5625
' Neves ge’ ;’(')(2012) 05925 14945 14969 06997  0.5845 0.5624
P:’iegt 0.6073 1.5073 14.969 0.7224 0.5860 0.5625
Ca“eragff: @GO osos6 15874 16047 L1673 08828 08286
Ca“reragf; AOOD T oagr7 11971 1923 LIs8s 08821 0.8286
b Neves “ ;’6(2012) 04404 11783 11932 11178 08750  0.8286
Pgrzeiegt 04976  1.2046 11.924 1.1058 0.8671 0.8285
Ca”eragft:“(’)' @01 04345 11807 11989 13925 1.0090 09361
Ca“eragf;"é' @O 91478 08965 89077 13745 10072 09361
© Neves o ;’(')(2012) 03227 11783 11932 13490 08750 08286
Present 0.3786 0.9019 8.9084 12723 0.9816 0.9359

=0




268 Mohammed Sid Ahmed Houari, Abdelouahed Tounsi, Aicha Bessaim and S.R. Mahmoud

The second example deals with thin and thick Al,O; square plates subjected to a sinusoidal load.
Three different values of the power law index are considered: £ = 1, 4, and 10. Table 3 contains
nondimensional transverse displacement w and axial stress &,. The obtained results are
compared with quasi-3D solutions given by Neves et al. (2012) and Hebali et al. (2014), and with
those obtained using finite-element approximations by Carrera et al. (2011). In general, a good
agreement between the results is found. The small difference between the results is due to the
effect of thickness stretching which is considered in quasi-3D solutions (Neves et al. 2012, Hebali
etal. 2014).

In the third example, a moderately thick AlI/Al,O; square plate (a/h = 10) subjected to a
sinusoidal load is examined. Table 4 shows the effects of power law index k& on the dimensionless
displacements and stresses. The present results are compared with the results of the sinusoidal
shear deformation theory (SSDT) for FG plates presented by Zenkour (2006). In general, the
obtained results are almost identical with those reported by Zenkour (2006) based on SSDT for all
cases.

It should be noted that the present theory involves three unknowns as against five or more
unknowns in other higher order shear deformation theory. This indicates that the proposed three-
unknown sinusoidal shear deformation theory can improve the computational cost due to reducing
the number of unknowns as well as governing equations of motion.

To further prove the accuracy of present three -unknown sinusoidal shear deformation theory
for wide range of thickness ratio a/#, the variation of dimensionless deflection w versus the
thickness ratio a// is illustrated in Fig. 2. The obtained results are compared with those computed
using the third-order shear deformation theory (TSDT) of Reddy (2000) and the CPT. In general,
the results of present theory and TSDT are almost identical. Since the CPT neglects the shear
deformation effects, it underestimates deflection of thick plate.

The through thickness variation for stresses (o, and 7,,) is also presented in Fig. 3 for the
case of k = 2. The obtained results are compared with those computed using TSDT where a good
agreement is showed.

Table 4 Effects of volume fraction exponent on the dimensionless stresses and deflections of a FG square
plate subjected to a sinusoidal load

|

w o

k X XZ Xy
Present SSDT® Present SSDT® Present SSDT® Present SSDT®
Ceramic 0.2930 0.2960 2.0139 1.9955 0.2416 0.2462 0.7174 0.7065

0.5860 0.5889 3.1076 3.0870 0.2408 0.2462 0.6179 0.6110

—

2 0.7517 0.7573 3.6351 3.6094 0.2285 0.2265 0.5513 0.5441
3 0.8276 0.8377 3.9043 3.8742 0.2230 0.2107 0.5614 0.5525
4 0.8671 0.8819 4.1023 4.0693 0.2214 0.2029 0.5772 0.5667
5 0.8930 0.9118 4.2843 4.2488 0.2209 0.2017 0.5869 0.5755
6 0.9137 0.9356 4.4624 4.4244 0.2208 0.2041 0.5924 0.5803
7 0.9321 0.9562 4.6378 4.5971 0.2208 0.2081 0.5958 0.5834
8 0.9493 0.9750 4.8096 4.7661 0.2207 0.2124 0.5982 0.5856
9 0.9658 0.9925 4.9765 4.9303 0.2207 0.2164 0.6003 0.5875
10 0.9816 1.0089 5.1378 5.0890 0.2207 0.2198 0.6022 0.5894

Metal 1.5909 1.6070 2.0139 1.9955 0.2416 0.2462 0.7174 0.7065
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Fig. 4 Variation of dimensionless transverse stress (7 ) of isotropic Al/Al,O3 square plates
under sinusoidal loads (a /2 =10 and k = 2)

In Fig. 4 we have plotted the through-the-thickness distributions of the transverse shear stress
7.,. The through-the-thickness distributions of the transverse shear stresses for FG plates are not
parabolic as in the case of homogeneous metal or ceramic beams.

5.2 Free vibration analysis

The accuracy of the new proposed three -unknown sinusoidal shear deformation theory is also
verified with free vibration analysis.

The first verification is performed for thin and thick Al/ZrO, square plates. This example aims
to verify the obtained results with the 3D solutions of Vel and Batra (2004) and quasi-3D solution
of Belabed et al. (2014). Young’s modulus is evaluated using Mori—Tanaka scheme (see Eq. (7)).
This approach has also been used by many other investigators and is applicable in zones of graded
microstructure which possess a well-defined continuous matrix and a discontinuous particulate
phase. It models with sufficient robustness the interaction of the elastic fields among neighboring
inclusions. The non-dimensional fundamental frequency f is given in Table 5 for different values
of thickness ratio and power law index. It can be seen that the obtained results agree well with the
3D solutions (Vel and Batra 2004) and quasi-3D solutions (Belabed ef al. 2014).

The next verification is performed for thin and thick Al/Al,O5 square plates with thickness ratio
varied from 5 to 20 and power law index varied from 0 to 10. The non-dimensional frequencies

Table 5 Non-dimensional fundamental frequency £ of Al/ZrO, square plates

k=0 k=1 alh=5
Method
alh=\10 a/h=10 a/h=5 alh=10 a/h=20 k=2 k=3 k=5
3p®@ 0.4658 0.0578 02192  0.0596 0.0153 02197 02211 02225
Quasi-3D® 0.4659 0.0578 02192  0.0597 0.0153 02201 0.2214 0.2225

Present 0.4633 0.0580 0.2190 0.0595 0.0152  0.2209 0.2231 0.2250
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Table 6 Non-dimensional fundamental frequency @ of Al/Al,O; square plates

alh Method k
0 0.5 1 4 10

Quasi-3D® 0.2121 0.1819 0.1640 0.1383 0.1306

TSDT® 0.2113 0.1807 0.1631 0.1378 0.1301

> FSDT® 0.2112 0.1805 0.1631 0.1397 0.1324
Present 0.2133 0.1815 0.1637 0.1401 0.1342

Quasi-3D® 0.0578 0.0494 0.0449 0.0389 0.0368

TSDT® 0.0577 0.0490 0.0442 0.0381 0.0364

10 FSDT® 0.0577 0.0490 0.0442 0.0382 0.0366
Present 0.0580 0.0491 0.0443 0.0384 0.0368

Quasi-3D® 0.0148 0.0126 0.0115 0.0100 0.0095

20 TSDT® 0.0148 0.0125 0.0113 0.0098 0.0094
FSDT® 0.0148 0.0125 0.0113 0.0098 0.0094

Present 0.0148 0.0126 0.0113 0.0098 0.0094

@ Taken from Belabed ef al. (2014); ® Taken from Hosseini-Hashemi ez al. (2011a);
© Taken from Hosseini-Hashemi et al. (2011b)

Table 7 Comparison of frequency parameter @ of AL/AlO; rectangular plate (b = 2a)

Mode no k
alh " n, ) Method 0 0.5 1 2 5 8 10
FSDT® 3.4409 29322 2.6473 24017 22528 2.1985 2.1677
1(1,1) n-order theory®™ 34412 29346 26475 23948 22271 2.1696 2.1406
Present 34649 29538 2.6651 24095 22517 22024 2.1748
FSDT® 52802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094
5  2(1,2) n-order theory® 52813 45179 4.0780 3.6805 3.3938 3.2964 3.2513
Present 53318 4.5376 4.0915 3.7012 3.4677 3.3957 3.3543
FSDT® 8.0710 6.9231 6.2636 5.6695 52579 5.1045 5.0253
3(1,3) n-order theory® 8.0748 6.9366 6.2662 5.6389 5.1424 4.9757  4.9055
Present 8.1706 7.0160 6.3398 5.6981 52376 5.1050 5.0411
FSDT® 3.6518 3.0983 2.7937 25386 2.3998 2.3504 23197
1(1,1) n-order theory® 3.6517 3.0990 2.7936 2.5364 23916 23410 23110
Present 3.6597  3.1042 27982 2.5408 24014 23541 23244
FSDT® 57693 4.8997 44192 4.0142 3.7881 3.7072  3.6580
10  2(1,2) n-order theory™® 5.7694 4.9014 4.4192 4.0089 3.7682 3.6845 3.6368
Present 57972 49149 44294 4.0224 3.8042 3.7304 3.6839
FSDT® 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887  5.8086
3(1,3) n-order theory™ 9.1880 7.8189 7.0514 6.3886 59764 58340 5.7574
Present 92432 7.8494 7.0762 6.4166 6.0461 59246 5.8509

@ Taken from Hosseini-Hashemi ef al. (2011b); ® Taken from Klouche Djedid ez al. (2014)
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@ predicted by the quasi-3D solution of Belabed et al. (2014), the third shear deformation theory
(TSDT) (Hosseini-Hashemi ez al. 2011a), FSDT (Hosseini-Hashemi et al. 2011b), and the present
theory are compared in Table 6. It can be seen from Table 6 that the computations based on the
present theory are once again in excellent agreement with those predicted by the other shear
deformations theories. It is emphasized that the TSDT, FSDT and the quasi-3D solutions contain a
greater number of unknowns than those associated with the present theory.

The last example is carried out for rectangular Al/Al,O; plate (b = 2a). The lowest three
frequency parameters @ obtained from present theory are compared with those reported by
Hosseini-Hashemi et al. (2011b) based on FSDT and by Klouche Djedid et al. (2014) based on
simple n-order four variable refined theory in Table 7. Again, it can be seen that the results
obtained by present theory are in good agreement with those reported by Hosseini-Hashemi ef al.
(2011b) based on FSDT, and Klouche Djedid et al. (2014) based on simple n-order four variable
refined theory.

e RS
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Power law index, k

Fig. 5 Variation of dimensionless fundamental frequency @ of isotropic Al/AL,O3 square
plates under sinusoidal loads versus power law index k (a/h =5)
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The variations of the nondimensional fundamental natural frequency @ versus the power law
index k and the thickness ratio a / & are presented in Figs. 5 and 6, respectively, where the present
results are compared with those predicted by both FSDT and CPT. It should be noted that the
developed three -unknown sinusoidal shear deformation theory contains less number of unknowns
than the FSDT.

It can be concluded that the present theory not only gives comparable results with the existing
higher-order and first shear deformations theories, but also is simpler than the existing HSDT and
FSDT due to having less number of unknowns, i.e., three as against five. From the results can be
concluded also that due to the accuracy of the present theory and its reduced number of unknowns,
this work opens a new generation of higher order shear deformation theory not available in the
literature with potential for further investigation due to it similarities with the CPT and FSDT.

6. Conclusions

A new simple and accurate 3-unknowns sinusoidal shear deformation theory is developed for
the bending and vibration analysis of FG plates. The interesting advantage of this theory is that, in
addition to including the shear deformation effect, the displacement field is modelled with only 3
unknowns as the case of the classical plate theory (CPT) and which is even less than the first order
shear deformation theory (FSDT). Results prove that the present theory is capable to predict
accurate results compared with the CPT, FSDT and other HSDTs with higher number of unknowns
and so deserve special attention and offer potential for future research.
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