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Abstract.    In this paper, post-buckling behavior of sandwich plates with functionally graded (FG) face sheets under 
uniform temperature rise loading is examined based on both sinusoidal shear deformation theory and stress function. 
It is supposed that the sandwich plate is in contact with an elastic foundation during deformation, which acts in both 
compression and tension. Thermo-elastic non-homogeneous properties of FG layers change smoothly by the 
variation of power law within the thickness, and temperature dependency of material constituents is considered in the 
formulation. In the present development, Von Karman nonlinearity and initial geometrical imperfection of sandwich 
plate are also taken into account. By employing Galerkin method, analytical solutions of thermal buckling and post-
buckling equilibrium paths for simply supported plates are determined. Numerical examples presented in the present 
study discuss the effects of gradient index, sandwich plate geometry, geometrical imperfection, temperature 
dependency, and the elastic foundation parameters. 
 

Keywords:   functionally graded materials; thermal post-buckling; sinusoidal shear deformation theory; 
elastic foundation; imperfection 
 
 
1. Introduction 
 

Buckling and post-buckling behaviors of functionally graded (FG) plates subjected to different 
types of loading are important for practical uses and have taken considerable interest. Wu (2004) 
employed the first order shear deformation theory (FSDT) to determine the analytical expressions 
of critical buckling temperatures for simply supported FG plates. Thermo-mechanical post-
buckling behavior of FG plates based on an analytical approach is examined by Woo et al. (2005). 
Liew et al. (2003, 2004) utilized the higher order shear deformation theory in conjunction with 
differential quadrature method to study the post-buckling of pure and hybrid FG plates with and 
without imperfection on the point of view that buckling only occurs for fully clamped FG plates. 
The post-buckling response of pure and hybrid FG plates subjected to the combination of different 
loading types were also examined by Shen (2007, 2009) by employing higher order shear 
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deformation theory and two-step perturbation technique taking temperature dependence of 
material characteristics into consideration. Zhao et al. (2009) investigated the mechanical and 
thermal stability of FG plates by employing element- free Ritz method. Lee et al. (2010) have 
employed element-free Ritz technique to study the post-buckling of FG plates under to 
compressive and thermal loads. Tung and Duc (2010) proposed a simple accurate analytical 
solution to investigate the buckling and post-buckling behavior of thin FG plates. By considering 
the initial imperfection for an FG plate, they demonstrated that imperfect plates do not follow 
bifurcation-type buckling and commence to deflect by initiation of compression. They investigated 
possible combinations of movable and immovable simply supported edges for each case of 
thermo-mechanical loading. Tounsi et al. (2013) proposed a refined trigonometric shear 
deformation theory for thermo-elastic bending of FG sandwich plates. Bachir Bouiadjra et al. 
(2013) presented a nonlinear thermal buckling analysis for FG plates using an efficient sinusoidal 
shear deformation theory. Ahmed (2014) studied the post-buckling behavior of FG sandwich 
beams using a consistent higher order theory. Swaminathan and Naveenkumar (2014) developed 
an analytical approach for the buckling analysis of simply supported FG sandwich plates based on 
two higher-order refined computational models. Based on an efficient and simple trigonometric 
shear deformation theory, Tebboune et al. (2015) presented a thermal buckling analysis of FG 
plates resting on elastic foundation. Akbaş (2015) discussed the wave propagation of a FG beam in 
thermal environments. Bouchafa et al. (2015) analyzed thermal stresses and deflections of FG 
sandwich plates using a new refined hyperbolic shear deformation theory. Bouguenina et al. (2015) 
investigated the thermal stability of FGM plates with variable thickness using a finite differential 
method. Laoufi et al. (2016) analyzed the mechanical and hygrothermal behavior of FG plates 
using a hyperbolic shear deformation theory. Bourada et al. (2016) presented a new displacement 
field to analyze the buckling behavior of isotropic and orthotropic plates. Additional works on 
buckling and post-buckling analysis of laminated composite and FG structures under thermo-
mechanical load are presented in the literature by Panda and his co-workers (Kar and Panda 2015a, 
b, 2016a, b, Katariya and Panda 2016, Bouderba et al. 2016, Panda and Katariya 2015, Panda and 
Singh 2013a, b, c, 2011, 2010a, b, 2009). The reason for the increasing use of FGMs in a variety of 
aerospace, automotive, civil, and mechanical engineering structures is that their material properties 
can be tailored to different applications and working environments (Arefi 2015a, b, Hamidi et al. 
2015, Darılmaz 2015, Arefi and Allamm 2015, Meksi et al. 2015, Ebrahimi and Dashti 2015, 
Pradhan and Chakraverty 2015, Kar and Panda 2015a, b, Boukhari et al. 2016, Bounouara et al. 
2016, Ebrahimi and Habibi 2016, Hadji et al. 2016, Moradi-Dastjerdi 2016, Bousahla et al. 2016, 
Ebrahimi and Salari 2016, Trinh et al. 2016). 

The influence of the Pasternak elastic foundation on mechanical post-buckling of moderately 
thick FG plates is treated by Yang et al. (2005). Their work covers plates with all four edges 
clamped, and formulation is based on the FSDT. They determined the post-buckling equilibrium 
paths based on a 2D differential quadrature method combined with the perturbation technique. 
Librescu and Lin (1997) and Lin and Librescu (1998) have extended previous studies (Librescu 
and Stein 1991, 1992) to discuss the post-buckling response of flat and curved laminated 
composite panels resting on Winkler elastic foundations. Duc and Tung (2011) studied mechanical 
and thermal post-buckling of FG plate on elastic foundation by employing third order shear 
deformation plate theory and simple power law variation of the volume fraction for metal and 
ceramic. Bouderba et al. (2013) discussed the thermo-mechanical bending behavior of FG thick 
plates resting on Winkler-Pasternak elastic foundations. Zidi et al. (2014) studied the bending 
response of FG plates on elastic foundation under hygro-thermo-mechanical loading using a four 
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variable refined plate theory. Ait Amar Meziane et al. (2014) presented and efficient and simple 
refined theory for buckling and free vibration of exponentially graded sandwich plates under 
various boundary conditions and resting on Winkler-Pasternak elastic foundations. Khalfi et al. 
(2014) developed a refined and simple shear deformation theory for thermal stability of solar FG 
plates on elastic foundation. Bakora and Tounsi (2015) investigated the thermo-mechanical post-
buckling behavior of thick P-FGM plates resting on elastic foundations. Recently, Chikh et al. 
(2016) examined the thermo-mechanical post-buckling of symmetric S-FGM plates resting on 
Pasternak elastic foundations using hyperbolic shear deformation theory. Also, many paper are 
published concerning with analysis of FGM structures based on higher order shear deformation 
theories (Benachour et al. 2011, Bourada et al. 2012, Ould Larbi et al. 2013, Belabed et al. 2014, 
Hebali et al. 2014, Bousahla et al. 2014, Ait Yahia et al. 2015, Larbi Chaht et al. 2015, Mahi et al. 
2015, Meradjah et al. 2015, Merazi et al. 2015, Belkorissat et al. 2015, Nguyen et al. 2016, Al-
Basyouni et al. 2015, Bourada et al. 2015, Attia et al. 2015, Bennai et al. 2015, Sallai et al. 2015, 
Tagrara et al. 2015, Zemri et al. 2015, Ait Atmane et al. 2015, Mouaici et al. 2016, Beldjelili et al. 
2016, Bennoun et al. 2016, Saidi et al. 2016, Tounsi et al. 2016). 

This work presents a simple analytical formulation to examine the post-buckling behavior of 
sandwich plates with FGM face sheets under uniform temperature rise loading. Present model is 
easily applied after some modifications for any types of loading with constant pre-buckling loads 
which lead to bifurcation-type buckling of simply supported plates. Material characteristics of the 
FGM layers follow power law variation within the thickness, and for all three layers, temperature 
dependency of thermo-mechanical characteristics is considered. A two-parameter Pasternak-type 
elastic foundation is supposed to be in contact during deformation, which acts in both tension and 
compression. Finally, analytical expressions are presented, which properly gives the temperature-
deflection path and critical buckling temperature of symmetric sandwich FG plates. 
 
 
2. Sandwich FGM plates 
 

In this paper, a symmetrically mid-plane rectangular plate with a three-layered sandwich plate 
configuration made of two similar FG face sheets and a homogeneous core (Fig. 1) is considered 
(Liew et al. 2004, Houari et al. 2011, Li et al. 2008). Total height, width, and length of the plate 
are mentioned as h, b, and a, respectively. Considering a simple power law variation in the 
thickness direction, the volume fraction of metal constituent of the structure Vm may be expressed 
in the form 
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where hH and hf present the thickness of homogeneous core and each of face sheets, respectively. 

Material characteristics of a sandwich FGM plate can be determined by means of the Voigt rule 
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Fig. 1 Coordinate system and geometry of three-layered sandwich FG plates over an elastic foundation 
 

 
of mixture (Suresh and Mortensen 1998). Hence, by employing Eq. (1), each non-homogeneous 
characteristic of sandwich plate P versus the thickness coordinate becomes 
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Where, Pmc = Pm ‒ Pc and Pm and Pc are the corresponding properties of the metal and ceramic, 
respectively, and k is the gradient index that takes the values greater or equal to zero. In the present 
study, we consider that the Young modulus E and thermal expansion coefficient α are defined by 
Eq. (2), while Poisson’s ratio v is assumed to be constant within the thickness (Tung and Duc 2010, 
Bakora and Tounsi 2015, Akavci 2015, Hadji and Adda Bedia 2015, Kar and Panda 2015a, Bellifa 
et al. 2016). 
 
 
3. Mathematical formulations 
 

In this work, the sinusoidal shear deformation plate theory is employed with the following 
kinematic 
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),(),,( 0 zxwzyxw   (3c)
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here u0, v0, w0, ϕx, ϕy are five unknown displacements of the mid-plane of the plate. 

The non-linear von Karman strain–displacement equations are as follows 
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The linear constitutive relations of the sandwich FG plate can be written as 
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where ΔT is temperature rise from stress free initial state or temperature difference between two 
surfaces of the sandwich FG plate. 

By employing the virtual work principle to minimize the functional of total potential energy 
function result in the expressions for the nonlinear equilibrium equations of a perfect plate resting 
on two parameters elastic foundation as 
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0,,  yyyxxy QSS  (7e)

 
where the force and moment resultants (N, Q, S and M) of the sandwich FG plate are expressed by 
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where the force and moment resultants (N, Q, S and M) of the sandwich FG plate are expressed by 
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The last three equations of Eq. (7) can be expressed into two equations in terms of variables w0 

and ϕx,x + ϕy,y by substituting Eqs. (5) and (9) into Eqs. (7c)-(7e). Subsequently, elimination of the 
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variable ϕx,x + ϕy,y from two the resulting equations, conducts to the following system of 
equilibrium equations 
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For an imperfect sandwich FG plate, Eq. (11) are modified into form as 
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In which w*(x, y) is a known function denoting initial small imperfection of the plate. Note that 

equation (13) gets a complicated form under the sinusoidal shear deformation theory which 
includes the 6th-order partial differential term 6 w0. Also, f (x, y) is stress function defined by 
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The geometrical compatibility equation for an imperfect plate is written as 
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From the constitutive relations Eqs. (9) and (14) one can write 
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Substituting Eq. (16) into Eq. (15), the compatibility equation of an imperfect sandwich plate 

becomes 
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In this work, plate is considered to be simply supported in all edges where normal to edge 
displacement is prevented at boundaries. This type of edge conditions is also known as immovable 
simply supported conditions (Shen 2007). Mathematical expression for this class of edge supports 
may be written as (Shen 2007) 
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where Nx0, Ny0 are fictitious compressive edge loads at immovable edges. 

The proposed solutions of w and f respecting boundary conditions Eq. (18) are considered to be 
(Librescu and Lin 1997, Lin and Librescu 1998) 
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where λm = mπ / a, δn = nπ / b, m, n are odd numbers, W is amplitude of the deflection and μ is 
imperfection parameter. The coefficients Ai (i = 1, 2, 3) are obtained by substitution of Eqs. (19a), 
(19b) into Eq. (17) as 
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Then, setting Eqs. (19a), (19b) into Eq. (13) and using the Galerkin method for the resulting 

equation yield 
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This equation will be used to examine the buckling and post-buckling responses of thick 

sandwich FG plates under thermal loads. 
 
 
4. Solving equations 
 

The in-plane condition on immovability at all edges, i.e., u0 = 0 at x = 0, a and v0 = 0 at y = 0, b, 
is given in an average sense as (Tung and Duc 2010) 
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From Eqs. (5) and (9) one can obtain the following expressions in which Eq. (14) and 

imperfection have been included 
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Substituting Eq. (19) into Eq. (23) and then the result into Eq. (22) give 
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When the deflection dependence of fictitious edge loads is ignored, i.e., W = 0, Eq. (25) 

becomes 
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Substituting Eq. (24) into Eq. (21) yields the expression of thermal parameter as 
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The sandwich FG plate is exposed to temperature environments uniformly raised from stress 

free initial state Ti to final value Tf, and temperature change ΔT = Tf ‒ Ti is assumed to be 
independent from thickness variable. The thermal parameter Φ1 is obtained from Eq. (10b), and 
substitution of the result into Eq. (26) yields 
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where 
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5. Results and discussion 
 

To check the proposed formulation, a sandwich plate with metallic core and FGM face sheets is 
examined. The FGM layers are graded within the thickness. The combination of materials for 
FGM consists of ZrO2 and Ti6Al4V. Reference temperature T0is considered to be 300 K (Shen 
2007, Liew et al. 2004, Kiani and Eslami 2012). Temperature-dependent coefficients for these 
materials are presented in Table 1, and thus, each property may be calculated as follow (Kiani and 
Eslami 2012) 
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For simplicity, the following non-dimensional parameters are used 
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Table 1 Temperature-dependent coefficients for ZrO2 and Ti6Al4V (Kiani and Eslami, 2012) 

Material P0 P-1 P1 P2 P3 

ZrO2 

E (Pa) 244.27e+9 0 −1.371e−3 1.214e−6 −3.681e−10 

α (1/°K) 12.766e−6 0 −1.491e−3 1.006e−5 −6.778e−11 

Ti6Al4V 

E (Pa) 122.56e+9 0 −4.586e−4 0 0 

α (1/°K) 7.5788e−6 0 6.638e−4 −0.3147e−6 0 
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Fig. 2 A comparison on post-buckling responses of initially perfect and imperfect contact-less homogeneous 
square plate with those of given by Shen (2007) 
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Fig. 3 Effect of temperature dependency of the material constituents on ΔTCr (k = 1, a/h = 20) 
 
 
For (ZrO2/Ti6Al4V) sandwich plate, Poisson’s ratio is assumed to be constant and chosen as v 

= 0.29 (Shen 2007, Liew et al. 2004, Kiani and Eslami 2012). The plate is supposed to be simply 
supported on all four edges with expansion prevention capability of edge supports. 

 
5.1 Comparative studies 
 
For checking of the buckling and post-buckling solutions determined from the proposed 

approach, four comparative studies are examined in Tables 2, 3, 4 and Fig. 3. 
Table 2 shows a comparative study on critical buckling temperature difference of isotropic 

homogeneous plate determined by the present method and the available data in the literature (k = 0). 
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Table 2 Critical bucking temperature difference ΔTCr for a simply-supported square plate in contact 
with the Winkler elastic foundation and subjected to uniform temperature rise 

(Kw, Kg) h/b = 0.01 h/b = 0.02 h/b = 0.05 

(0,0) 

Present 14.36 57.35 354.34 

Kiani and Eslami (2012) 14.36 57.35 354.27 

Shen (1997) 14.37 57.48 359.26 

Raju and Rao (1988) 14.26 57.04 356.21 

(π4, 0) 

Present 17.86 71.72 444.16 

Kiani and Eslami (2012) 17.95 71.72 444.09 

Shen (1997) 17.96 71.85 449.07 

Raju and Rao (1988) 17.86 71.45 446.56 

(2π4, 0) 

Present 21.55 86.10 533.97 

Kiani and Eslami (2012) 21.55 86.09 533.90 

Shen (1997) 21.56 86.22 538.89 

Raju and Rao (1988) 21.47 85.86 536.64 

(5π4, 0) 

Present 32.33 129.21 803.42 

Kiani and Eslami (2012) 32.33 129.20 803.34 

Shen (1997) 32.33 129.33 808.33 

Raju and Rao (1988) 32.27 129.08 806.77 

 
 
 

Table 3 Effect of temperature dependency on vfor two-layered square FGM plate 

Theory k = 0 k = 0.2 k = 0.5 k = 1 k = 2 k = 5 

Present 
(T−ID) 

354.3428 315.9042 279.5835 247.6850 219.2483 193.0968 

Kiani and Eslami 
(2012) (T−ID) 

354.2707 315.9903 279.7846 247.9336 219.4674 193.2106 

Shen (1997) 
(T−ID) 

354.3356 315.9033 279.5919 247.7017 219.2681 193.1101 

Present 
(T−D) 

321.3564 226.7279 187.6934 163.1828 144.9072 129.5516 

Kiani and Eslami 
(2012) (T−D) 

321.3050 226.8111 187.6975 163.1947 144.9294 129.6938 

Shen (1997) 
(T−D) 

321.3503 226.7268 187.6960 163.1888 144.9149 129.5569 
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Solution to thermal post-buckling problem in works of Shen (1997) and Raju and Rao (1988) are 
determined based on regular perturbation and iterative non-linear finite elements method, 
respectively, and the solution in work of Kiani and Eslami (2012) is based on FSDT. However, the 
present solution is based on sinusoidal shear deformation theory and stress function. As observed, 
in this case, comparison is well-demonstrated. 

Table 3 presents the buckling temperature difference for a two-layered FGM plate, and results 
are compared with those given by Shen (2007) based on an iterative two-step perturbation method. 
Both temperature-dependent material characteristics and non-dependent material characteristics 
are considered into account. Here, T − D shows that the material characteristics are temperature 
dependent and T − ID indicates the temperature independency of the material characteristics. 

Table 4 demonstrates the thermal post-buckling behavior of an isotropic homogeneous square 
plate which is in contact with the Winkler elastic foundation and a comparison with the available 
data in the literature is carried out. Results give the non-dimensional thermal parameter defined by 

.
)1(12

22

2




h

Tb
T


 This example demonstrates the accuracy and efficiency of the present 

formulation. 
In Fig. 2, to confirm the accuracy of the present formulation in the case of imperfect plate 

(without elastic foundation), results of the present work are shown against those given in (Shen 
2007) for a moderately thick homogeneous square plate (h/b = 0.1), when materials are considered 
to be temperature independent. As observed from Tables 2, 3, 4 and Fig. 2, comparisons are well-
demonstrated. 

 
5.2 Parametric studies 
 
Fig. 3 shows the effect of temperature dependency of the material constituents on critical 

buckling temperature difference of the square plate without elastic foundation (Kw = Kg = 0). Linear 
 
 

Table 4 Comparison on thermal deflection response of a thin perfect square homogeneous plate 
(h/b = 0.01, v = 0.3) in contact with the Winkler elastic foundation 

Kw Theory 
W / h 

0 0.2 0.4 0.6 0.8 1 

0 

Present 1.9989 2.1042 2.4202 2.9469 3.6842 4.6322 

Kiani and Eslami (2012) 2.0000 2.1053 2.4212 2.9477 3.6848 4.6325 

Shen (1997) 2.0000 2.1054 2.4231 2.9571 3.7144 4.7049 

Raju and Rao (1988) 1.9847 2.1058 2.4170 2.9528 3.7136 4.6990 

π4 

Present 2.4989 2.6042 2.9202 3.4469 4.1842 5.1322 

Kiani and Eslami (2012) 2.5000 2.6053 2.9212 3.4477 4.1848 5.1325 

Shen (1997) 2.5000 2.6054 2.9232 3.4576 4.2160 5.2088 

Raju and Rao (1988) 2.4860 2.5897 2.9181 3.4540 4.2322 5.2174 

2π4 

Present 2.9989 3.1042 3.4202 3.9469 4.6842 5.6322 

Kiani and Eslami (2012) 3.0000 3.1053 3.4212 3.9477 4.6848 5.6325 

Shen (1997) 3.0000 3.1054 3.4233 3.9581 4.7177 5.7129 

Raju and Rao (1988) 2.9874 3.0911 3.4197 3.9556 4.7335 5.7018 
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Fig. 4 Effect of temperature dependency on post-buckling response of perfect and imperfect 
sandwich square plates. Plates with all edges immovable simply-supported are pre-assumed 
(k = 1, a/h = 20, Kw = Kg = 0) 

 
 

composition of material constituents is supposed for face sheets, and the other parameters are b / a 
= 20h / b = 1. As observed, the effect of temperature-dependent material characteristics is significant 
on ΔTCr. Therefore, when temperature dependency is not considered, the critical buckling 
temperatures become considerable. The critical buckling temperature difference of sandwich plates 
increases permanently when the thickness of metal core increases, because the thermal expansion 
coefficient of ceramic constituent is much more than that of metal. 

The effect of considering temperature dependency of the material constituents on post-buckling 
response of sandwich plates is presented in Fig. 4. As can be observed, for perfect plate we found a 
bifurcation point in which buckling occurs, while for imperfect plates, there is no buckling point 
and plate commence to lateral deflection by initiation of thermal loading. Also, the impact of 
temperature dependency is significant, where the post-buckling curves for both perfect and 
imperfect plates become lower. Note that when W / h becomes larger, the effect of temperature 
dependency is more revealable. As plate deforms more and more, curves are highly descended 
when temperature dependency is considered. 

Fig. 5 demonstrates the influence of elastic foundation on critical buckling temperature 
difference of perfect sandwich plates. As can be observed, the Winkler parameter of elastic 
foundation postpones the bifurcation point of plates in comparison with a foundationless plate. For 
plate without elastic foundation, both T − D and T − I D curves are completely smooth, which 
means that sandwich plate buckles in first modes for all values of a/b. For a plate resting on elastic 
foundation, some local extrema are found in the curves which demonstrate the alternation in 
buckling modes. Thus, the Winkler parameter of elastic foundation directly changes the buckling 
modes of the plate. As observed, for plates with/without elastic foundation, the critical buckling 
temperature is almost constant when a/b >2. However, these constant values are obtained under 
different buckled shapes of the plate. 

Fig. 6 shows the elastic foundation influence on post-buckling response of square sandwich 
plate. Both T – D and T − I D cases are presented to assure the importance of temperature 
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Fig. 5 Effects of elastic foundation and aspect ratio on ΔTCr. All edges are prevented from 
thermal expansion (k = 1, h/b = 0.02, γ = hH / hf = 4, Kg = 0) 
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Fig. 6 Effects of temperature dependency and elastic foundation on temperature-deflection curves 
of perfect sandwich FG square sandwich plate (k = 1, h/b = 0.04, γ = hH / hf = 4, Kg = 0). 
All edges are assumed to be immovable 

 
 

dependency influence. As expected, plates on elastic foundation have highly raised post-buckling 
curves due to the opposition of the elastic foundation against the plate deformation. The influence 
of temperature dependency is presented again, and it is remarked that for sandwich plates on 
elastic foundation, the effect of dependency of the material constituent to temperature is more 
significant. 

Fig. 7 presents the load-deflection curves of both perfect and imperfect sandwich plates with 
various types of FG face sheets (k = 0, 1, 10). Here, an elastic foundation with Winkler coefficient 
Kw = 0 and Pasternak coefficient Kg = 20 resists against the deflection of the plate. As indicated in 
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Fig. 7 Effects of geometrical imperfection and power law index on post-buckling response of 
sandwich FG square sandwich plate with all edges simply-supported (k = 1, h/b = 0.04, 
γ = hH / hf = 4, Kk = 0, Kg = 20) 

 
 

Figs. 3, 4, 5, 6, to gain accurate load-deflection curves, the temperature dependency of the material 
constituents should be considered, and therefore, in Fig. 7, only T − D is examined. Note that, for 
the imperfect plates, there is no bifurcation response and the curves are completely smooth. No 
sudden change is remarked in the temperature-deflection curve. This means that geometrically 
imperfect plates present bending when they are subjected to uniform thermal loading, while 
perfect plates follow bifurcation-type buckling. As observed, due to symmetrically mid-plane 
configuration of the structure and immovability of the boundary conditions, plate remains un-
deformed in pre-buckling state, while a non-linear equilibrium path exists in post-buckling regime. 
As the power law index of FG layers increases, the temperature-deflection curves descend. Note 
that, however, the initial imperfection has significant influences on the primary response of the 
plate; this effect vanishes if someone follows the post-buckling path of the plate. As plate bends 
more and more, both imperfect and its associated perfect curves present the same response. 

 
 

6. Conclusions 
 
In the present work, an analytical approach to investigate the post-buckling behavior of 

sandwich plates with FGM face sheets supported by elastic foundations and subjected to uniform 
temperature rise loading. The derivation is based on the sinusoidal shear deformation plate theory 
and the stress function concept, with the assumption of power law composition for the constituent 
materials of FGM layers. The boundary conditions of plate on all edges are supposed to be simply 
supported with thermal expansion prevention. Temperature dependency of the core and FGM 
layers and initial geometrical imperfection of the plate are also considered in this work. It is 
concluded that: 

 

● Temperature dependency of the material constituents has a considerable effect on the 
thermal buckling and post-buckling path. The critical temperatures are over-evaluated when 
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materials are considered to be temperature independent. Also, temperature-deflection curves 
are over-predicted when independence of material characteristics to the temperature is 
carried out. 

● Geometrical imperfection of the plate has a considerable influence on equilibrium path of 
the plate. Symmetrically mid-plane perfect plates follow bifurcation-type buckling, and 
hence, post-buckling paths exist, while imperfect plates exhibit bending with the onset of in-
plane thermal loading. 

● For plates with all edges immovable and without elastic foundation, thermal buckling occurs 
in first modes, while an elastic foundation may increase the buckling modes of the plate. 
Increasing each of the elastic foundation parameters increases the critical temperature. The 
Winkler parameter of elastic foundation has an important influence on the buckling modes, 
while the buckling modes of plates are independent of the Pasternak parameter of elastic 
foundation. 
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