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Abstract.  This paper introduces a new and effective design amplification factor-based approach for reliable 

optimum design of trusses. This paper may be categorized as in the family of decoupled methods that aiming for a 

reliable optimum design based on a Design Amplification Factor (DAF). To reduce the computational expenses of 

reliability analysis, an improved version of Response Surface Method (RSM) was used. Having applied this 

approach to two planar and one spatial truss problems, it exhibited a satisfactory performance. 
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1. Introduction 
 

Reliability-based design optimization (RBDO) is a concept that accounts for uncertainty all 

along the optimization process. The deterministic performance model is wrapped into a more 

realistic probabilistic constraint which is referred to as the failure probability. The general truss 

RBDO problem with both deterministic and probabilistic constraints can be formulated as (Zhou 

and Hong 2004) 
 

Min/Max  𝑓 𝒅   

(1) 
Subject to: 

 

 

 

𝑃 𝐺𝑖 𝒅, 𝑿 ≤ 0 ≤ 𝑃𝑓
𝑖 ,   𝑖 = 1,… ,𝑁𝑃𝐶  

and/or  𝜎𝑗 (𝒅, 𝑿) ≤ 𝜎𝑎𝑙𝑙 .,     𝑗 = 1,… ,𝑁𝑚  

and/or  𝑢𝑘(𝒅, 𝑿) ≤ 𝑢𝑎𝑙𝑙 .,   𝑘 = 1,… ,𝑁𝐷𝑂𝐹  

and/or  𝒅𝐿 ≤ 𝒅 ≤ 𝒅𝑈  
 

Where 𝒅 = [𝑑1 , 𝑑2 , … , 𝑑𝑛 ]𝑇  is a column vector of n deterministic design variables, 𝑿 =
[𝑥1 , 𝑥2 , … , 𝑥𝑚 ]𝑇  is the m-dimensional vector of random variables, 𝑓(𝒅) is the objective functio

 n, 𝑃 𝐺𝑖 𝒅, 𝑿 ≤ 0  denotes the failure probability for the i-th limit state function 

𝐺𝑖 𝒅, 𝑿 . 𝑃𝑓
𝑖  is the target failure probability of i-th constraint and NPC is the number of 

probabilistic constraints. In Eq. (1), 𝜎  and 𝑢  are the stress of jth member and the nodal 

displacement of k-th degrees of freedom, respectively. 𝜎𝑎𝑙𝑙 ., 𝑢𝑎𝑙𝑙 ., 𝒅
𝐿, 𝒅𝑈 , Nm and NDOF are 

allowable member stress, allowable nodal displacement, allowable lower and uper bounds of 𝒅, 
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total number of members and total number of degrees-of-freedom, respectively. The target failure 

probability could simply be expressed in terms of the target reliability index as 𝑃𝑓
𝑖 = Φ(−𝛽𝑡𝑖 ), 

where Φ(. ) is the standard normal cumulated distribution function (Lu et al. 2015). 

The most common routines to solve Eq. (1) consists of 1- nesting a reliability analysis within a 

constrained optimization loop that are referred to as double or loop nested approaches. It is also 

known as the Reliability Index Approach (RIA), 2- decoupled approaches consist in decoupling 

the optimization loop from the reliability analyses. Such approaches are referred to as sequential 

approaches or decoupled approaches (Royset et al. 2001, Du and Chen 2004, Chen et al. 2013, 

Dizangian and Ghasemi 2015a), 3-Single-loop approaches (Kuschel and Rackwitz 1997, Kirjner-

Neto et al. 1998, Kharmanda et al. 2002, Shan and Wang 2008, Mansour and Olsson 2016) 

attempt to fully reformulate the original RBDO problem into an equivalent DDO problem by 

means of classical optimization algorithms. As far as structural and mechanical RBDO is 

concerned, many attempts have been made through the last decades to reduce the computational 

expenses of reliability analysis using response-surface-based approaches (see e.g., Basaga et al. 

2012, Bucher and Bourgund 1990, Guan and Melchers 2001, Kang et al. 2010, Lü et al. 2007, 

Zhao and Qiu 2013, Goswami et al. 2016, Zhao et al. 2016, Roussouly et al. 2013, Shu and Gong 

2016). The present paper introduces an efficient framework for solving RBDO of trusses by 

implementing stress and/or displacement Design Amplification Factors (DAFs) into the design 

constraints in order to construct kind of hypothetical constraints surfaces after which it proceeds 

with the optimization procedure. Besides, in order to reduce the computational efforts, an 

improved version of RSM that was previously proposed by (Zhao and Qiu 2013) is employed for 

reliability analysis. To assess the performance of the proposed RBDO method, three truss 

problems were investigated. 
 

 

2. Methodology 
 

2.1 Description of conventional RSM 
 

To improve the accuracy of the Response Surface Method (RSM), Bucher and Bourgund 1990, 

Roussouly et al. 2013, suggested an alternative process of selecting the experimental points. In the 

first step of this algorithm, the mean vector is selected as the center point. Then the RSF obtained 

is used to find an estimation of the design point 𝑿𝐷 . In the next step, the new center point 𝑿𝑀  is 

chosen on a straight line from the mean vector 𝑿 to 𝑿𝐷  so that G(X) = 0 at the new center point 

𝑿𝑀  from linear interpolation, i.e. 
 

𝑿𝑀 = 𝑿 +  𝑿𝐷 − 𝑿 
𝐺 𝑿 

𝐺 𝑿 − 𝐺 𝑿𝐷 
 (2) 

 

2.2 A brief description to the Zhao’s improved RSM 
 

For reliability analysis, at one stage, it is required to determine the reliability index (β). For this 

purpose, the improved RSM just as introduced and proposed by (Zhao and Qiu 2013) was utilized 

in the present study. For the sake of a better understanding of the modified RSM, a brief 

explanation is given here as follows: 

(1) Select n+1 initial experimental points, 𝑿 and 𝑿𝑖 = 𝑿 − 𝑓𝝈, i = 1, 2, …, n. The value f = 

3 has been recommended by several scholars (Kaymaz and Mcmahon 2005, Zhao and Qiu 
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2013, Kang et al. 2010). The value of f = 3 is also used in the present work. 

(2) Calculate the values of 𝐺(𝑿) and 𝐺(𝑿𝑖) at the points selected in step 1. 
(3) Calculate the differences between 𝐺(𝑿) and 𝐺(𝑿𝑖), as follows 
 

𝐹(𝑿𝑖) = G 𝑿 − G 𝑿𝑖 ,           𝑖 = 1, 2, … , 𝑛 (3) 
 

(4) Use the following expression to obtain the weight for each experiment point 
 

𝑤𝑖 =
𝐹(𝑿𝑖)

 |𝐹(𝑿𝑗 )|𝑛
𝑗=1

, 𝑖 = 1,2, … , 𝑛 (4) 

 

(5) Determine the control point in the standard normal space by employing from the following 

expression 

𝑼𝐶 =  𝑤𝑖𝑼𝑖

𝑛

𝑖=1

, 𝑖 = 1,2, … , 𝑛 (5) 

 

where 
 

𝑼𝑖 =  𝑿𝑖 − 𝑿 ./𝝈 (6) 
 

where ./ represents the division of corresponding components between two vectors. Finally, the 

following equation is defined to express the control point of experiment points in the actual space 
 

𝑿𝐶 = 𝑼𝐶 .× 𝝈 + 𝑿 (7) 
 

where .×  represents the division of corresponding components between two vectors. 

 

2.3 Design amplification factor-based design 
 
2.3.1 Role of Design Amplification Factors (DAFs) 
Most engineering optimization problems may be expressed as minimizing (or maximizing) a 

function subject to inequality and equality constraints and can be stated as the general form (Chen 

et al. 2013, Kaveh and Bakhshpoori 2015) 
 

Minimize/Maximize 𝑓(𝒅) 

subject to      𝜎𝑖(𝒅) ≤ 𝜎𝑎𝑙𝑙 . i=1,…,NM 

and/or          𝑢𝑗  𝒅 ≤ 𝑢𝑎𝑙𝑙 . j=1,…,ND 

and/or          𝒅𝐿 ≤ 𝒅 ≤ 𝒅𝑈  

(8) 

 

Where 𝒅 = [𝑑1 , 𝑑2 , … , 𝑑𝑛 ]𝑇  is a column vector of n deterministic design variables, NM stands 

for the number of members and ND is the number of degrees of freedom of the structure. In Eq. (8), 

𝑓  is the objective function, 𝜎  is the stress of i-th member and 𝑢  represents the nodal 

displacement of j-th degrees of freedom. 𝜎𝑎𝑙𝑙 ., 𝑢𝑎𝑙𝑙 ., 𝒅
𝐿 and 𝒅𝑈  are the allowable values for 

member stress, nodal displacement and lower and upper bounds of 𝒅, respectively. A design 𝒅 

that satisfies all inequality and equality constraints is referred to as feasible. 

The normalized penalized objective function Z for Equation 8 related to the member stresses 

and nodal displacement may be defined as in Eq. (9) given (Belegundu and Chandrupatla 2011) 
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𝑍 𝒅 =  [max⁡(0,
𝜎𝑖 𝒅 

𝜎𝑎𝑙𝑙 .
− 1)]2

𝑁𝑀

𝑖=1

+  [max⁡(0,
𝑢𝑗  𝒅 

𝑢𝑎𝑙𝑙 .
− 1)]2

𝑁𝐷

𝑗=1

 (9) 

 

Assuredly, the resulting optimal design will have an unqualified reliability. Instead of using 

probabilistic design to raise reliability, here design amplification factors, like the design codes, 

together with the mean values of random variables are entered into the constraint formulation of 

Eq. (10). The above equation can be modified as in Eq. (10) where the concept and significant role 

of DAF is introduced and applied (Dizangian and Ghasemi 2015a) 
 

𝑍′ 𝒅, 𝑿  =  [max⁡(0, |
𝜎𝑖 𝒅, 𝑿  

𝛾𝑠𝜎𝑎𝑙𝑙 .
| − 1)]2

𝑁𝑀

𝑖=1

+  [max⁡(0, |
𝑢𝑗  𝒅, 𝑿  

𝛾𝑑𝑢𝑎𝑙𝑙 .
| − 1)]2

𝑁𝐷

𝑗=1

 (10) 

 

Where Z′ is called hypothetical constraint surface, 𝛾𝑠  and 𝛾𝑑  are defined here as Design 

Amplification Factors (DAF) corresponding to stress and displacement, respectively. In Eq. (10), 

𝑿  denotes vector of the mean values of random variables. Design amplification factors of 𝛾𝑑  and 

𝛾𝑠 , similar to design safety factors, should be between 0 and 1. In the proposed approach, use of 

DAF in the objective function simply allows a combined reliability-based objective function for 

optimization. The new formulation of DAF-based RBDO is introduced as the following equation 

(Dizangian and Ghasemi 2015a) 
 

Find 𝛾∗and corresponding 𝒅∗

subject to:

𝑍′ 𝒅, 𝑿  = 0

𝑃𝑓 𝒅
∗, 𝑿  = 𝑃𝑓

𝑇𝑎𝑟𝑔𝑒𝑡

 (11) 

 

where in Eq. (11), in the current study the probability of failure Pf is then computed using an 

improved Response Surface Method (RSM). 
 

2.4 Procedure of the proposed DAF-based RBDO of trusses 
 

The essence of the algorithm is to reduce substantially the searching time for the RBDO point 

by allowing a confined number of design amplification factors for which the 𝑃𝑓  should be 

computed. For such aim, the polynomial curve-fitting concept was utilized. Fig. 1 contains the 

flowchart of the proposed RBDO procedure. 

The following steps details the routine. In all steps the optimum points are computed for the 

mean values of the random variables 𝑿 = [𝜇𝑥1
, 𝜇𝑥2

, … , 𝜇𝑥𝑚 ]𝑇 . 𝑃𝑓
𝑎  means the probability of 

failure corresponding to 𝛾 = 𝑎. 
 

(1) First for the mean value of design amplification factor, 𝛾 = 0.5, first optimum design d* 

will be determined with regard to the allotted value for 𝛾 embedded in Z’ of Eq. (10). The 

𝑃𝑓
0.5

 will then be computed using an improved RSM. 

(2) Compare 𝑃𝑓
𝑇𝑎𝑟𝑔𝑒𝑡

 with 𝑃𝑓
0.5as a result of which the range of 𝛾∗ will be found according 

to Eq. (12) 
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Fig. 1 Flowchart of the proposed RBDO of trusses 

 

 

 
 𝐼      if      𝑃𝑓

0.5 > 𝑃𝑓
𝑇𝑎𝑟𝑔𝑒𝑡

       search for     𝛾∗    0 < 𝛾 < 0.5 

 𝐼𝐼   if      𝑃𝑓
0.5 < 𝑃𝑓

𝑇𝑎𝑟𝑔𝑒𝑡
        search for    𝛾∗     0.5 < 𝛾 < 1

  (12) 

 

In most structural problems, computing 𝑃𝑓
0.4 for region I and 𝑃𝑓

0.6 for region II could be very 

efficient. In case of (I), compute the values of 𝑃𝑓  for the two auxiliary points 𝛾 = 0 and 0.4; in 

case of (II), compute the values of 𝑃𝑓  for the two auxiliary points 𝛾 = 0.6 and 1. It should be 

noted that when 𝛾 = 0 that means Pf  is obviously equal to zero. This is a case where the 

structure becomes fully over-designed, a case not being a part of the aim of the present work. 
 

(3) Fit (𝑃𝑓  𝑣𝑠.  𝛾) curve by using the coordinates of the 3 points found. 

(4) Extract the approximate DAF 𝛾
∗
corresponding to the value of 𝑃𝑓

𝑇𝑎𝑟𝑔𝑒𝑡
given, from the 

fitted curve of step 3. 

(5) Use DDO approach to find the optimum design point 𝒅∗subject to Z′ based on the 

extracted 𝛾
∗
using the mean values of random variables 𝑿 . 

(6) Determine the 𝑃𝑓
𝑡+1 for the deterministic optimum design 𝒅∗of step 6 using an improved 

RSM. 

(7) Compute the relative distance 𝑒𝑟𝑟𝑜𝑟𝑃𝑓
 between 𝑃𝑓

𝑡+1
 and 𝑃𝑓

𝑇𝑎𝑟𝑔𝑒𝑡
 using Eq. (13) 
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𝑒𝑟𝑟𝑜𝑟𝑃𝑓 =
𝑃𝑓
𝑡+1 − 𝑃𝑓

𝑇𝑎𝑟𝑔𝑒𝑡

𝑃𝑓
𝑇𝑎𝑟𝑔𝑒𝑡  (13) 

 

(8) Check convergence. If relative distance 𝑒𝑟𝑟𝑜𝑟𝑃𝑓  is smaller than the desired value of 

tolerance 𝛿, the 𝑃𝑓
𝑡+1 will be assigned as the 𝑃𝑓

𝑇𝑎𝑟𝑔𝑒𝑡
 and the reliability based optimum 

design is said to be found. 

(9) If according to Eq. (13) the convergence has not occurred, the 𝑃𝑓
𝑡+1 will be considered as 

another auxiliary point to more accurately fit the curve. Steps 3 to 9 will be repeated until 

converged and the reliable optimum design point 𝒅∗ will be recorded. 

 

 

3. Examples 
 

Three truss problems will be investigated here. First example is a ten-bar planar truss studied 

by Zhao and Qiu 2013 and Dizangian and Ghasemi 2015a. Second example is a seventeen-bar 

planar truss which has been studied by several researchers as a deterministic design optimization 

problem. However, in the present study it will be investigated from the RBDO point of view. The 

third example is the RBDO study of a twenty-five-bar space truss benchmarked for the first time 

by Ho-Huu et al. 2016. In all examples, ViS-BLAST method (Dizangian and Ghasemi 2015b and c) 

for optimization and adaptive RSM method (Zhao and Qiu 2013) for reliability analysis were 

utilized. The permissible error for Pf in all examples is 𝛿 = 1%. 
 

3.1 A Ten-bar truss problem 
 
3.1.1 Definition 
A 10 bar truss structure is considered as illustrated in Fig. 2. Random variables include five 

basic variables reflecting different properties of structural components, the modulus of elasticity E, 

the length of bar L and loads P1, P2 and P3 are basic random variables. All variables are assumed 

independent and normally distributed as listed in Table 1. The cross-sectional areas of 10 bars are 

design variables. The lower and upper bound of design variables are 0.0001 m2 and 0.002 m2, 

respectively. 

The total area of bars is to be minimized. For this example, two types of limit states were 

considered such as: 
 

(1) Serviceability limit state: Maximum vertical displacement of node 3, which should be less 

than 0.004 m as recorded by (Zhao and Qiu 2013) with the target reliability index of 2.5, 

i.e., the target failure probability 6.21×10-3. 

(2) Strength and Serviceability limit states: Limit state of Case (1) together with the stress 

constraints of 200 MPa equal to the yield stress Fy for all members. In order to show the 

impact of target reliability level on the optimization results for Case 2, two different target 

levels of reliability were also considered. These reliability levels were considered as the 

target reliability indexes of 2.5, and 3.5 with the corresponding probability of failure 

6.21×10-3 and 2.326×10-4, respectively. An implicit limit state function of Case (1) is 

expressed as in Eq. (14) for Pf calculation 
 

𝐺 = 0.004 − 𝑢3,𝑦 𝒅
∗, 𝑿  (14) 
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Table 1 Statistical properties of random variables, 10-Bar truss 

Variable Distribution Unit Mean value Coefficient of variation(C.V.) 

P1 Normal kN 60.00 0.2 

P2 Normal kN 40.00 0.2 

P3 Normal kN 10.00 0.2 

E Normal Gpa 200.00 0.1 

L Normal m 1.00 0.05 

 

 

 

Fig. 2 10-Bar truss 

 

 

Considering Eq. (10), the following hypothetical constraint formulation is introduced as 

utilizing the displacement DAF (𝛾𝑑 ) to obtain optimum deterministic points 
 

𝑍′ 𝒅, 𝑿  = [max⁡(0,
𝑢3,𝑦 𝒅, 𝑿  

𝛾𝑑0.004
− 1)]2 (15) 

 

In a similar way, limit state function and hypothetical constraint formulation for Case (2) may 

respectively be regarded as Eqs. (16) and (17) 
 

 
𝐺1 = 0.004 − 𝑢3,𝑦(𝒅∗, 𝑿)

𝐺2 = 𝐹𝑦 −  𝜎𝑖 𝒅
∗, 𝑿  

  (16) 

 

and 
 

𝑍′ 𝒅, 𝑿  = [max⁡(0,
𝑢3,𝑦 𝒅, 𝑿  

𝛾𝑑0.004
− 1)]2 +  [max⁡(0,

𝜎𝑖 𝒅, 𝑿  

𝛾𝑠𝐹𝑦
− 1)]2

10

𝑖=1

 (17) 

 

In Eqs. (16) and (17), the aim is to find an optimum design amplification factors of 𝛾𝑑
∗  and 𝛾𝑠

∗ 

that give an optimum solution d
*, such that 𝑃𝑓 (d,

*
X) is less than the 𝑃𝑓

𝑇𝑎𝑟𝑔𝑒𝑡
 considering the 

allowable probability of failure error 𝛿. 
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Table 2 RBDO results of 10-Bar truss, Case 1 

Variable 

group 

Bar 

areas 

Optimal cross sectional area (m2) ×10-4 

Zhao 

and 

Qiu 

2013 

Dizangian 

and 

Ghasemi 

2015a 

Current work 

Initial sample points Auxiliary sample points (Iterations) 

𝛾𝑑 = 0.5 𝛾𝑑 = 0.6 𝛾𝑑 = 1 𝛾
𝑑,1

∗
= 0.61 𝛾

𝑑,2

∗
= 0.626 𝛾

𝑑,3

∗
= 0.6264 

1 𝐴1 10.705 10.000 12.500 13.999 6.250 10.000 10.000 10.000 

2 𝐴2 5.914 5.042 6.250 10.000 3.125 7.2 5.040 5.040 

3 𝐴3 14.424 14.0280 17.562 10.000 8.693 13.832 13.9627 13.951 

4 𝐴4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5 𝐴5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

6 𝐴6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7 𝐴7 5.531 9.000 12.500 10.000 6.250 9.000 9.000 9.000 

8 𝐴8 11.853 10.000 12.500 10.000 6.250 10.000 10.000 10.000 

9 𝐴9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10 𝐴10 11.223 10.000 12.500 10.000 6.250 10.000 10.000 10.000 

Total area (×10
-4

) 63.649 62.068 77.812 67.999 40.818 64.0322 62.0027 61.991 

β (RSM) 2.777 2.5017 3.0618 2.747 0.1 2.683 2.5050 2.5022 

Exact Pf (MCS) 
2.742 

×10-3 

6.15 

×10-3 

0.13 

×10-3 

2.6 

×10-3 
0.43 

3.64 

×10-3 
6.122 

×10-3 

6.17 

×10-3 

(𝑒𝑟𝑟𝑜𝑟𝑃𝑓×100)% 55.8 0.966    41.27 1.41 0.64 

 

 

 

Fig. 3 Converged fit plots of Pf vs γ; 10-bar truss, Case 1 

 

 

3.1.2 Results obtained 
Case (1): Having found 𝑃𝑓

0.5 and compared the value with 𝑃𝑓
𝑇𝑎𝑟𝑔𝑒𝑡

, the range 0.5 < 𝛾∗
 < 1 

was selected. To first fit the curve, the two initial points corresponding to 𝛾 = 0.6 and 1 were 

computed for Pf. 
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The procedure then was repeated for three iteration until the curve was fitted for three auxiliary 

points as a result of which 𝑒𝑟𝑟𝑜𝑟𝑃𝑓
 was found less than 1%. Fig. 3 illustrates the convergence 

leading to the optimum design corresponding to the 𝑃𝑓
𝑇𝑎𝑟𝑔𝑒𝑡

. The results were alse listed in 
 

 

Table 3 Properties of the initial sample points for two levels of reliability; 10-bar truss, Case 2 

Variable 

group 
 

Optimal cross sectional area (m2) ×10-4 

Initial sample points 

𝛾𝑑,𝑠 = 0.5 𝛾𝑑,𝑠 = 0.6 𝛾𝑑,𝑠 = 1 

1 𝐴1 16.334 13.699 8.274 

2 𝐴2 7.732 9.031 3.544 

3 𝐴3 12.5 10 6.25 

4 𝐴4 1.000 1.000 1.000 

5 𝐴5 1.000 1.000 1.000 

6 𝐴6 1.000 2.577 1.000 

7 𝐴7 12.5 10 6.250 

8 𝐴8 12.5 10 6.125 

9 𝐴9 1.000 1.000 1.000 

10 𝐴10 12.5 10.000 6.125 

Total area (×10
-4

) 78.067 68.309 40.818 

Computed Pf (MCS) 0.147×10-3 3.394×10-3 0.495 

 

 

Table 4 Comparison of the RBDO results of 10-bar truss for two levels of reliability, Case 2 

Variable 

group 
 

Optimal cross sectional area (m2) ×104 

Auxiliary sample points (𝛽 = 2.5) Auxiliary sample points (𝛽 = 3.5) 

𝛾
𝑑,𝑠,1

∗

= 0.6218 

𝛾
𝑑,𝑠,2

∗

= 0.623 

𝛾
𝑑,𝑠,3

∗

= 0.6227 

𝛾
𝑑,𝑠,1

∗

= 0.5142 

𝛾
𝑑,𝑠,2

∗

= 0.5177 

𝛾
𝑑,𝑠,3

∗

= 0.5158 

𝛾
𝑑,𝑠,4

∗

= 0.5152 

1 𝐴1 13.226 13.171 13.201 16.152 15.991 16.330 16.236 

2 𝐴2 6.443 6.185 6.443 6.956 6.102 6.121 6.121 

3 𝐴3 10.000 10.000 10.000 12.500 12.500 12.500 12.500 

4 𝐴4 1.000 1.0309 1.000 1.000 1.000 1.000 1.000 

5 𝐴5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

6 𝐴6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7 𝐴7 10.000 10.000 10.000 12.500 12.500 12.500 12.500 

8 𝐴8 9.8 10.000 9.800 11.289 11.760 11.760 12.250 

9 𝐴9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10 𝐴10 10.000 10.000 10.000 12.500 12.500 12.500 12.250 

Total area ×10
4 63.469 63.388 63.444 75.898 75.353 75.711 75.857 

β (RSM) 2.6 2.489 2.506 3.527 3.44 3.466 3.502 

Exact Pf (MCS) 5.995×10-3 6.281×10-3 6.18×10-3 2.053×10-4 2.846×10-4 2.52×10-4 2.3×10-4 

(𝑒𝑟𝑟𝑜𝑟𝑃𝑓×100)% 3.46 1.14 0.483 11.74 22.3 8.32 1 
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Fig. 4 Converged fit plots of Pf vs γ; 10-bar truss, 

Case 2 (Beta = 2.5) 

Fig. 5 Converged fit plots of Pf vs γ; 10-bar truss, 

Case 2 (Beta = 3.5) 
 

 

Table 2. To compare the results, the exact Pf was also computed using Monte Carlo Simulation 

(MCS) (Ghorbani and Ghasemi 2011). It is worth to note that through the whole process of 

reliability based optimization with the proposed technique, the Pf was only computed for 6 point, 

where the converged optimum design possesses a 𝑃𝑓  less than the target and the optimum weight 

was slightly lighter than that in the literature. 

Case (2): Similar to Case (1), after computing 𝑃𝑓
0.5, it was found that the optimum DAFs are 

located in the range between 0.5 and 1. Table 3 contains the properties of the initial sample points 

that were generated for both reliability levels. The results of RBDO are presented in Table 4 for 

two different levels of target reliability. 

As seen in Table 4, failure probability evaluated by adaptive RSM satisfies the target value with 

a relative error less than 1% for both reliability levels. The exact Pf was also determined with MCS 

to show the effectiveness of proposed DAF-based RBDO. In the case of 𝛽 = 3.5, the reliable 

optimum solution was found with the objective function value of 75.857×10-4 m2 that is about 20% 

greater than the objective value of 63.444×10-4 m2 resulted by the reliability index equal to 2.5. 
 

 

 

Fig. 6 Close-up of converged fit plots around an optimum DAFs; 10-bar truss, Case 2 (Beta = 3.5) 
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The converged fitted curves are illustrated in Figs. 4 and 5 for three and four sample points, as 

the reliability indexes of 2.5 and 3.5, respectively. 

From Fig. 5, it is obvious that the optimum DAFs are located in finite range very close to each 

other; for this reason, Fig. 6 was also plotted for ease of comparison of these four fitted curves. 
 

3.2 A Seventeen-Bar planar truss problem 
 

3.2.1 Definition 
Fig. 7 shows the schematic of 17-bar planar truss. In terms of deterministic design optimization, 

this truss has been studied by several researchers including Adeli and Kumar 1995 and Lee and 

Geem 2004. Here the RBDO of this truss is concerned. All members were assumed to be made of 

a material with an elastic modulus of E = 30,000 ksi (206.85 GPa) and a mass density of 0.268 

lb/in3 (7418.21446 kg/m3). The members were subjected to stress limitations of ±50 ksi (344.7379 

MPa), and displacement limitations of ±2.0 in. (5.08 cm) were imposed on all nodes in both 

directions (x and y) (Lee and Geem 2004). The loading consists of a single vertical downward load 

of P = 100 kips (444.822 kN) at node 9. In the current work, in order to get more practical design, 
 

 

 

Fig. 7 17-Bar planar truss (Lee and Geem 2004) 
 

 

Table 5 RBDO results of 17-Bar planar truss 

Variable 

Group 

Bar 

areas 

Current work 

Initial sample points Auxiliary sample points (Iterations) 

𝛾𝑑 = 0.5 𝛾𝑑 = 0.6 𝛾𝑑 = 1 𝛾
𝑑,1

∗
= 0.73 𝛾

𝑑,2

∗
= 0.77 𝛾

𝑑,3

∗
= 0.81 𝛾

𝑑,4

∗
= 0.798 

1 A1,3 29.873 24.904 15.207 20.12 17.746 19.65 17.74 

2 A5,7 19.259 16.472 9.751 14.90 13.89 12.00 12.80 

3 A9,11 12.034 10.584 6.192 8.1 8.25 7.66 7.80 

4 A4,8,12 1.998 1.182 1.012 1.22 1.35 1.11 1.13 

5 A13,14 10.370 8.653 5.222 7.087 6.48 5.76 6.53 

6 A2,15 6.063 5.162 2.795 4.23 4.07 3.61 3.66 

7 A6,16 6.218 5.097 2.888 3.85 3.98 3.52 3.73 

8 A10,17 6.175 4.887 3.107 3.78 3.90 3.90 4.14 

Weight (lb.) 5509.394 4588.312 2755.342 3768.3 3574.434 3406.47 3443.712 

β (RSM) 4.99 4.53 -0.006 4.152 3.46 2.81 3.05 

Exact Pf (MCS) 2×10-7 3×10-6 0.498 1.7×10-5 0.000292 0.002381 0.001213 
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seventeen elements of truss were linked in eight groups illustrated in Table 5. The minimum cross-

sectional area of the members was 0.1 in.2. RBDO problem involves 10 random design variables 

including the cross-sectional area Ai of each members group, Young’s modulus E and the external 

force P. All random variables were assumed statistically independent, normally distributed and 

have covariant of 5% of variable values. This RBDO problem was solved for the targeted 

reliability index β equal to 3 (Pf  = 0.001349) only for displacement constraints. 

 

3.2.2 Results obtained 
The reliability-based design optimization results of 17-bar truss are given in Table 5. Table 5 

also indicates that through the whole process of RBDO using the proposed DAF-based technique, 

the Pf was only computed for 7 point (3 initial and 4 auxiliary sample points), where the converged 

optimum design possesses a Pf less than that of the target. From these results, it is obvious that an 

adaptive RSM has acceptable performance since its results match those of the MCS. 

According to Table 5, the deterministic optimum solution explored a global optimum weight of 

2755.342 lb. with the 𝛾𝑑  equal to 1. For the RBDO, the converged 𝛾𝑑  was found equal to 0.798 

corresponding to the global optimum weight of 3443.712 lb, a 20% heavier than that of the 

deterministic solution. 

Figs. 8 and 9 show the converged fit plots at the end of four iterations. From these figures, with 

respect to the target Pf value set as 0.001349, one realizes that the zone through which the global 

optimum DAF is located, as the forth sample point with the value of 0.798, was inspected very fast. 

 

3.3 A Twenty five-bar space truss problem 
 
3.3.1 Definition 
Fig. 10 shows a 25-bar space truss. This problem has been studied by many researchers 

including Togan et al. 2008, Dede et al. 2011, Kaveh et al. 2007 and Dizangian and Ghasemi 2015 

b and c, as a deterministic truss optimization problem. Recently, Ho-Huu et al. 2016, solved this 

work as a RBDO problem by assuming probabilistic characteristics for some design variables and 

parameters. For this space truss, the material density was 0.1 lb./in.3 (2767.990 kg/m3) and the 

modulus of elasticity was 10,000 ksi (68.950 GPa). This space truss was subjected to the loading 

condition as given in Table 6. Design constraints were considered as the maximum allowable 
 

 

  

Fig. 8 Converged fit plots of Pf vs γ; 17-bar truss 

 

Fig. 9 Close-up of converged fit plots around 

an optimum DAFs; 17-bar truss 
 

1080



 

 

 

 

 

 

An efficient method for reliable optimum design of trusses 

 

Fig. 10 25-Bar space truss 
 

 

Table 6 Loading condition (kips) for 25-bar space truss (Ho-Huu et al. 2016) 

Node x y z 

1 1.0 -10.0 -10.0 

2 0 -10.0 -10.0 

3 0.5 0 0 

6 0.6 0 0 

Note: 1 kips = 4.45 kN 

 

 

displacement of ±0.35 in. (±8.89 mm) imposed on nodes 1, and 2 in x and y directions and the 

allowable stress for all members equals to ±40 ksi (±275.89 MPa). The minimum admissible 

cross-sectional areas of all members were set equally as 0.1 in2 (6.45 mm2). For consistency with 

the literature, all members were classified into eight groups as given in Table 7. For this problem, 

the random variables including the cross-sectional area Ai of each group, Young’s modulus E and 

the external force P which are all considered to be statistically independent and follow normal 

distribution. The covariant of all random variables (C.O.V) is 5% of variable values. The targeted 

Pf for this problem was considered equal to 0.001349 (β = 3) for displacements of all nodes (Ho-

Huu et al. 2016). 

 

3.3.2 Results obtained 
The reliable global optimum solution for the 25 bar truss example was converged through 

seven Pf computation, the results of which are presented in Table 7. The corresponding optimum 

weight using the proposed DAF-based RBDO was found equal to 660.804 lb. The reason for it 

being slightly heavier than that reported by Ho-Huu et al. 2016 is due to the fact that the solution 

obtained by Ho-Huu et al. (2016), deviates the target Pf value of 0.001349 (β = 3) by a small 

amount. This may be because SORA technique makes assumptions for solving RBDO problems. 

Similar to Example 2, Figs. 11 and 12 show the converged fit plots again at the end of four 
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Table 7 RBDO results of 25-Bar space truss 

Variable 

Group 

Bar 

areas 

Optimal cross sectional area (m2) ×10-4 

Ho-Huu 

et al. 

2016 

Current work 

Initial sample points Auxiliary sample points (Iterations) 

𝛾𝑑 = 0.5 𝛾𝑑 = 0.6 𝛾𝑑 = 1 𝛾
𝑑,1

∗
= 0.71 𝛾

𝑑,2

∗
= 0.76 𝛾

𝑑,3

∗
= 0.79 𝛾

𝑑,4

∗
= 0.793 

1 A1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

2 A2-5 2 0.131 0.18 1.25 0.365 0.845 0.1 0.1 

3 A6-9 3.4 7.632 6.82 2.5 5.305 4.56 5.27 4.71 

4 A10-11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

5 A12-13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

6 A14-17 1.2 1.820 1.45 1.25 1.404 1.08 1.02 0.86 

7 A18-21 1.9 4.44 3.44 2.5 2.4 1.94 2.28 2.71 

8 A22-25 3.4 4.87 4.05 2.5 3.98 4.19 3.53 3.57 

Weight (lb.) 659.527 1050.794 875.538 580.978 737.708 686.386 662.91 660.804 

β (RSM)  4.98 4.54 -0.1004 4.26 3.49 2.98 3.01 

Exact Pf (MCS) 0.0023 1×10-7 2×10-6 0.5614 5×10-6 0.00019 0.001195 0.00132 

 

 

  

Fig. 11 Converged fit plots of Pf vs γ; 25-bar truss 

 

Fig. 12 Close-up of converged fit plots around 

an optimum DAFs; 25-bar truss 

 

 

iterations. From these figures, one comprehends that the zone through which the global optimum 

DAF is located, being the forth sample point with the value of 0.793, was inspected very fast. 
 

 

4. Conclusions 
 

The proposed Design Amplification Factor-based RBDO approach was applied to three 

benchmark truss problems for obtaining reliability based optimum design. The features of the 

proposed technique may be summarized as follows: (1) The method introduces an objective 

function depending on a design amplification factor and allowing an inverse approach to find and 

lead to the targeted 𝑃𝑓  with the aid of hypothetical constraint surfaces; (2) To find a design 
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amplification factor corresponding to the targeted 𝑃𝑓 , the interpolation curves of 𝑃𝑓  versus DAF 

were modified each time with the new founded point; (3) An improve version of RSM shows a 

satisfactory performance, as its results compare to the MCS method, have an excellent accuracy. 
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