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Analytical solution for buckling of embedded laminated plates
based on higher order shear deformation plate theory
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Abstract. In this research, buckling analysis of an embedded laminated composite plate is investigated. The elastic
medium is simulated with spring constant of Winkler medium and shear layer. With considering higher order shear
deformation theory (Reddy), the total potential energy of structure is calculated. Using Principle of Virtual Work, the
constitutive equations are obtained. The analytical solution is performed in order to obtain the buckling loads. A
detailed parametric study is conducted to elucidate the influences of the layer numbers, orientation angle of layers,
geometrical parameters, elastic medium and type of load on the buckling load of the system. Results depict that the
highest buckling load is related to the structure with angle-ply orientation type and with increasing the angle up to 45
degrees, the buckling load increases.
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1. Introduction

Laminated composites have superior properties compared to the conventional materials like
metal, wood and so on. These properties include high strength to weight ratio, excellent fatigue
characteristics, high abrasion and bending strength, low weight to volume ratio, good thermal
insulation and so forth. So in recent years, the study and analysis of the dynamics behavior of
these structures are increased among the researchers. Dawe and Yuan (2001) analyzed the overall
and local buckling of laminated composites plates. They used the high order shear deformation
theory (HSDT) for mathematical modeling of the structure and applied the finite strip method
(FSM) for solving the problem. They examined the effects of the geometrical parameters and also
the orientation angle of the layers on the buckling behavior of the system. Chakrabarti and Sheikh
(2006) studied the dynamic instability of laminated sandwich plates subjected to in-plane edge
loading using finite element method (FEM). The plate model is based on refined HSDT. They
solved a number of problems including various boundary conditions, plate geometry, thickness
ratio and other aspects. Pandita et al. (2008a, b, 2009) discussed the vibration and buckling of the
laminated sandwich plates. They presented an improved higher order zigzag theory and solved the
problem by utilizing the FEM. The three-dimensional solution for static analysis of cross-ply
rectangular plate embedded in piezoelectric layers was presented by Alibeigloo and Madoliat
(2009). They applied differential quadrature method (DQM) and Fourier series approach for
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solving the problem. They introduced the upper layer and lower one as an actuator and sensor,
respectively. Both the direct and inverse piezoelectric effects and the influence of piezoelectric
layers on the mechanical behavior of the structure were investigated by the authors. Chen et al.
(2012) developed a model for the composite laminated Reddy plate based on a new modified
couple stress theory. They examined the deflections and stresses of the plate and showed that this
model of plate can capture the scale effects of microstructures. Reddy (2012) investigated the
bending of the beams and plates. He reformulated the classical and shear deformation beam and
plate theories using the nonlocal differential constitutive relations of Eringen and von Karman
nonlinear strains. The effect of the geometric nonlinearity and nonlocal parameters was studied by
the author. Mantari et al. (2012a) proposed a new trigonometric shear deformation theory for
laminated composite plates. They developed the finite element formulation to obtain the stresses.
They compared the mentioned theory with other available theories and demonstrated that the
accuracy of the results is higher than similar ones. Mantari ez a/l. (2012b) also employed the Navier
solution method for static bending analysis based on the trigonometric shear deformation theory.
Sahoo and Singh (2013a, b, 2014) investigated the static analysis of the laminated composite
plates in macro-scale. They modeled the structure using a trigonometric zigzag theory. The
numerical FEM is used to calculate the bending of the laminated composite plate. A cell-based
smoothed discrete shear gap method (CS-FEM-DSG3) using triangular elements was recently
proposed by Nguyen-Thoi et al. (2013) to improve the performance of the discrete shear gap
method (DSG3) for static and dynamics analyses of Mindlin plates. An isogeometric finite element
approach (IGA) in combination with the third-order deformation plate theory (TSDT) was used by
Tran et al. (2013) for thermal buckling analysis of functionally graded material (FGM) plates.
Vidal and Polit (2013) probed the buckling analysis of laminated composite plates using a refined
shear sinusoidal plate theory. A simple and effective formulation based on a fifth-order shear
deformation theory (FSDT) in combination with IGA was presented by Nguyen-Xuan ef al. (2013)
for composite sandwich plates. Based on a CS-FEM-DSG3 and FSDT, Phung-Van et al. (2014a)
investigated static and dynamics analyses of Mindlin plates resting on viscoelastic foundation.
Sayyad and Ghugal (2014) developed the analytical solution for the biaxial bending analysis of
isotropic, transversely isotropic and laminated composite plates based on a sinusoidal shear and
normal deformation theory which taking into account effects of transverse shear and transverse
normal. Luong-Van et al. (2014) used a cell-based smoothed finite element method using three-
node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of
laminated composite plates on viscoelastic foundation. The CS-FEM-DSG3 was extended to the
CO-type HSDT by Phung-Van et al. (2014b) and was incorporated with damping—spring systems
for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung
vehicle. An edge-based smoothed stabilized discrete shear gap method (ES-DSG3) based on FSDT
was recently proposed by Phung-Van et al. (2014c) for static and dynamic analyses of Mindlin
plates. Thai ef al. (2014) presented a generalized shear deformation theory for static, dynamic and
buckling analysis of functionally graded material (FGM) made of isotropic and sandwich plates. A
cell-based smoothed three-node Mindlin plate element (CS-MIN3) was extended by Phung-Van et
al. (2014d) to geometrically nonlinear analysis of functionally graded plates (FGPs) subjected to
thermo-mechanical loadings. The CS-FEM-DSG3 was extended and incorporated by Phung-Van et
al. (2014e) with a layerwise theory for static and free vibration analyses of composite and
sandwich plates. A simple and effective approach that incorporates IGA with a refined plate theory
(RPT) was addressed by Nguyen-Xuan ef al. (2014) for static, free vibration and buckling analysis
of FGM plates. An efficient computational approach based on refined plate theory (RPT) including
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the thickness stretching effect, namely quasi-3D theory, in conjunction with IGA was proposed by

Nguyen et al. (2015) for the size-dependent bending, free vibration and buckling analysis of
functionally graded nanoplate structures. An efficient computational approach based on a

generalized unconstrained approach in conjunction with IGA were proposed by Phung-Van et al.

(2015a) for dynamic control of smart piezoelectric composite plates. Phung-Van et al. (2015b), the

CS-FEM-MIN3 was extended to geometrically nonlinear analysis of laminated composite plates. A
simple and effective formulation based on IGA and HSDT was applied by Phung-Van et al. (2015¢)
to investigate the static and dynamic behavior of functionally graded carbon nano-reinforced

composite plates. Nguyen et al. (2016) introduced a unified framework on HSDTs, modelling and

analysis of laminated composite plates.

In the present work, the buckling behavior of the laminated composite plate embedded in
elastic medium is studied. The mathematical model of the structure is afforded based on higher
order shear deformation theory (Reddy). By applying Navier solution method, the buckling load of
the system is obtained and the effects of various parameters such as elastic medium, angle
orientation of layers, geometric parameters and number of layers on the buckling behavior of the
system are probed.

2. Mathematical formulation

Fig. 1 shows a laminated composite plate embedded in elastic medium which is modeled by
Winkler springs and Pasternak shear layer. The length, width and thickness of the plate are a, b
and A, respectively.

2.1 Third order shear deformation theory (TSDT)

This section examines the displacement field of the third order shear deformation theory
(TSDT) which is proposed by Reddy. This theory assumes that the thickness does not change. So
the displacement field is defined as a cubic function of z and transverse shear stresses are the
functions of second order. For this reason, no need to use the shear correction factor in the FSDT
and displacement field is considered as follows

Shear Constant

Spring Constant

Fixed Surface

Fig. 1 Geometry of a laminated composite plate embedded in elastic medium
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where u, v and w are the displacement components of the mid-plane and ¢,, ¢, are the angle of
rotation around the y and x axes of cross-section, respectively. Also ¢; = —4 / 34~ in which 4 is the
thickness of the plate. So the kinematic relations are defined as follows
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where ¢, = 3¢;.
2.2 Stress-Strain relations

In this paper, the material of the layers obeys Hook’s law and the constitutive equations are as
follows

[0_]6><1 _ [C]6><6 [8]6><1 , (3)

in which [o], [C] and [e¢] are stress, stiffness and strain matrices, respectively. Since in this
research, the material of the layers is assumed to be orthotropic, Eq. (3) can be rewritten as follows
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To transform the stress-strain relations from local coordinate to reference one, we define
[e]=[T][e], (5a)
in which
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By applying Eq. (5), the stress-strain relations in reference coordinate are obtained as follows

lol=[rlle], =[rlic]le], =[rlic] [T []

N (50)
(0]

where Q;; are the transformed material constants in the reference coordinate (Chow et al. 1992). So
the constitutive equations can be expressed as follows
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where Qj; are considered as follows

0,, = C,, cos* @ —4C,, cos® Osin @+ 2(C,, +2C )cos? Osin> @
—4C,, cos@sin®* @+ C,, sin* 0,

(8a)

0, = Cy,c08* 0 +2(C, — Cyg )cos® Osin @+ (C,, + C,, — 4C,, )cos® Osin> @

8b
+2(Cys — Cy Jeos sin® 6+ C,, sin* 6, (8)
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2.3 Derivation of governing equations

The strain energy stored in the structure can be considered as follows
h/2

1 a
U= EJ‘—h/Z .[(f .[0 (O-""gxx

By applying Eq. (2) we have
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By defining the below relations

dz,

(8¢)
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(8e)
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(8h)

(81)

©

dxdydz. (10)

(11a)
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the Eq. (10) can be rewritten as follows
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The work due to the in-plane external loads and elastic medium can be expressed as
(Ghorbanpour Arani et al. 2012)

o L (20 awzdd (e w—k,V? v
__EJ.OJ‘O ”[a_xj TN g xy_.[oj.o wW ™ He xay, (13)

where k, and k, are the Winkler and Pasternak stiffness coefficients, respectively. Also N and
N ;‘ﬁ =aN" are applied loads to the plate in x and y directions, respectively and o is a constant
coefficient.

<

<

2.3.1 Principle of virtual work
To determine the equations of motion, Principle of Virtual Work is applied as follows

Lt(—éU + SW)dt =0. (14)

Now by calculating the variation of the Egs. (12) and (13), and substituting into Eq. (14), the
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equations of motion are obtained as follows
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Also by substituting the stress-strain relations (Eq. (7)) into Egs. (11a)-(11¢), we have
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In which N is the number of composite layers. Finally the governing equations are obtained by

substituting Eqgs. (21a)-(21f) into governing equations (Egs. (15)-(19)).
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3. Navier solution method

In this section, the Navier solution method is employed to obtain the buckling load of the
structure so the all edges of the plate are assumed to be simply supported and the components of
the displacement are considered as follows (Samaei et al. 2011)

u(x,y)= ZZumn cos( j (Tﬂyj, (27a)

m=1 n=1

v(x,y)= szmn s1n( j (% , (27b)

m=1 n=1

w(x,y) = ZZwmn s1n( ) (%), (27¢)

m=1 n=1

8. (x, ) = ZZ%cos[ ) [”bj (27d)

m=1 n=1
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o . (mmx nmuy
P, (x,y)= Z Z Brn sm(Tj COS(TJ, (27e)
m=1 n=1

in which m and »n are the wave numbers in x and y axes, respectively. By substituting the Egs.
(27a)-(27¢), into the governing equations (Egs. (22)-(26)), we have

Ky Ky, K5 Ky Kis ||| g 0]
Ky Ky Ky Koy Kos [ 0
Ky Ky Ky Ky Kis || wo |=|0), (28)
Ky Ky Kz Ky Kys ||| b0 0
| K51 Ksy Ks3 Ksy K | _¢y0_ 10

where the components of matrix K, are mentioned in Appendix A. Setting the determinate of Eq.
(28) to zero, the buckling load of the structure can be obtained.

4. Numerical results and discussion

This section examines the buckling load of the laminated composite plate resting on elastic
medium. The main goal of this part is the study of various parameters such as number and
orientation angle of layers, buckling modes and elastic medium on the buckling behavior of the
system. The material of the layers is Graphite/Epoxy and the mechanical properties are listed in
Table 1.

The buckling load and spring constant are defined as dimensionless parameters and considered
as follows

P=N"/(Ea), K, =k,lE, (29)
4.1 Buckling load versus circumferential mode number

The variation of buckling load of the system versus the circumferential mode number is plotted
in Figs. 2-6. It can be observed that the buckling load decreases at first until reaches to the lowest

Table 1 Mechanical properties of Graphite/Epoxy (Phung-Van ef al. 2015d)

Mechanical properties Value
Ey 13238 GPa
Eyp=Esy 10.76 GPa
G 3.61 GPa
Gi3=Gy3 5.65 GPa
Vi = V3 0.24
Vi3 0.49

p 1578 Kg/m®
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Fig. 2 Variation of dimensionless buckling load of the structures with various number of
layers versus circumferential mode number

amount and after that increasing process begins. The critical buckling load appears in the point
where the buckling load is minimal. Fig. 2 shows the effect of the number of layers on the
dimensionless buckling load. It can be seen that in symmetric laminated composites (with three
number of layers), the buckling phenomenon occurs later compared with the anti-symmetric ones
(with two number of layers). The reason is that the symmetric laminated composite plates are more
balance and stable.

The influence of the orientation type of layers is studied in Fig. 3. For this purpose, five various
type of the orientation of layers are considered as follows

(0°,0°, 0°): indicates a composite structure with zero angle of orientation in layers
(0°,90°, 0°): indicates a composite structure with cross-ply orientation in layers
(15°,-15°, 15°), (30°,-30°, 30°) and (45°, —45°, 45°):

indicates a composite structure with angle-ply orientation in layers.

According to Fig. 3, it can be concluded that the composite structure with angle-ply orientation
of layers has the highest buckling load and becomes stiffer by increasing the angle to 45 degrees
since the buckling load increases and the system buckling occurs later. Also the composite
structure with zero angle of orientation has the lowest buckling load and after that the structure
with cross-ply orientation in layer.

In Fig. 4, the effect of the thickness of the structure on the buckling load is probed. From this
figure it can be observed that with increasing the thickness of the structure, the dimensionless
buckling load decreases and the critical buckling load is decreased. Thereby, with increasing the
thickness, the stiffness of the structure decreases. According to Fig. 4, the dimensionless buckling
load is about 0.37 for d = 0.05 m whilst for d = 0.2 m the dimensionless buckling load is about
0.25. Also it can be found that the effect of thickness changes, is negligible in lower mode
numbers and this effect is prominent in higher mode numbers. In addition, the reduction rate of the
buckling load decreases with increasing the thickness. So the excessive increase in the thickness
caused the loss of the effect of this parameter on the buckling load.
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Fig. 3 Variation of dimensionless buckling load of the structures with various types of
orientation angle of layers versus circumferential mode number
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Fig. 4 Variation of dimensionless buckling load of the structures with different values of
thickness versus circumferential mode number

The effect of the elastic medium which is modeled by the spring constant of Winkler medium
and shear layer is studied in Fig. 5. It is noteworthy that the material of the elastic medium is
chosen from reference (Ghorbanpour Arani et al. 2012) and the Winkler and Pasternak constants
are 8.7x10" N.m’ and 2 N/m, respectively. Generally the existence of the elastic medium causes to
increase the stiffness of the structure and thereby the buckling load increases. The Pasternak
medium considers the vertical and shear loads however the Winkler medium considers only the
vertical ones, therefore the effect of Pasternak medium is more than Winkler medium. According
to Fig. 5, the effect of the elastic medium on the buckling load is significant and it can be a useful
parameter to take away the system from buckling condition.



Analytical solution for buckling of embedded laminated plates based on higher order ... 899

0.8

—8— Without elastic medium
—¥— With Winkler medium
—@— With Pasternak medium

o o
o ~
T T

I
&)

o
w
T

Dimensionless buckling load, P
o o
N ~

0.1+

Il
0 2 4 6 8 10 12 14 16 18 20

0 I I I I I I

Circumferential mode number, n

Fig. 5 The effect of the elastic medium on the dimensionless buckling load versus
circumferential mode number
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Fig. 6 The effect of the loading type on the dimensionless buckling load versus
circumferential mode number

Fig. 6 examines the influence of the loading types on the dimensionless buckling load of the
structure. Two types of loading include uniaxial (along the x axis) and biaxial (along the x and y
axes) are considered. As it can be found, in biaxial loading type the dimensionless buckling load is
lower than axial loading type. The reason is that, in biaxial loading type, the load which applied to
the edges is higher than the axial loading type and therefore the buckling of the structure occurs
sooner. Also the effect of loading type is apparent in lower mode numbers.

4.2 Buckling load versus spring constant of elastic medium

The effect of spring constant of elastic medium on the dimensionless buckling load is studied
by plotting Figs. 7-11. In Fig. 7, the effect of the number of layers on the dimensionless buckling
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load versus spring constant of elastic medium is shown. It can be observed that the buckling load
of the symmetric composite structures is higher than anti-symmetric ones. As it is noted before, the
reason is that the stability of the symmetric structure is higher than the anti-symmetric ones. Also
it can be found that with increasing the spring constant of the elastic medium, the dimensionless
buckling load increases linearly.

The influence of the orientation type of the layers on the dimensionless buckling load of the
structure is studied by Fig. 8. As it can be observed the highest buckling load belongs to angle-ply
orientation type of the layers and after that cross-ply and zero orientation angle types. Also with
increasing the angle of orientation up to 45 degrees, the stiffness of laminated composite structure
and thereby the buckling load increases.

o©
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—&— Anti-symmetric, N=2

o
o

o
o

N
~

0.3r

Dimensionless buckling load, P

0 1 2 3 4 5 6 7 8 9 10

10
Spring constant of elastic medium, K, (N/m3) x 10

Fig. 7 The effect of the number of layers on the dimensionless buckling load versus the
spring constant of elastic medium
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o o e e o o
w ES o o ~ ™
T

Dimensionless buckling load, P

0.1

0 1 2 3 4 5 6 7 8 9 10

Spring constant of elastic medium, K, (N/m3) x 10"

Fig. 8 Variation of dimensionless buckling load of the structures with different types of
orientation angle versus spring constant of elastic medium
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Fig. 9 Variation of dimensionless buckling load of the structures with different values of
thickness versus spring constant of elastic medium
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Fig. 10 Variation of dimensionless buckling load of the structures with different values
of aspect ratio versus spring constant of elastic medium

In Fig. 9, the effect of the thickness of the structure on the dimensionless buckling parameter
versus the spring constant of the elastic medium is probed. The plotted figure shows that with
increasing the thickness of the structure, the dimensionless buckling load decreases and hence the
structure with more thickness has less stiffness.

The influence of the length to thickness ratio (aspect ratio) of the structure on the dimensionless
buckling load parameter is shown in Fig. 10. It is clear that with increasing the aspect ratio, the
buckling load of the structure decreases because of the reduction of stiffness.

In Fig. 11, the buckling behavior of the structure is studied for two types of loading include
axial and biaxial loadings. The results are the same as obtained from Fig. 6 and in axial loading
type the buckling load of the structure is higher with respect to the biaxial loading type. Also it can
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Fig. 11 Variation of dimensionless buckling load of the structures with different types of
loading versus spring constant of elastic medium

be observed that the effect of the spring constant of the elastic medium is more significant in axial
loading type.

4.3 Verification of the results

The buckling load of the structure in absence of elastic medium (k, = k, = 0) is obtained to
verify the results. For this goal, all the mechanical properties and also the type of the loading are

intended similar to reference (Putcha and Reddy 1986). The dimensionless buckling load is
3

defined as P = ]zx‘hb} in which £, is the Young’s modulus, / is the thickness of the plate and b is
2

the width of the structure. The results were compared with three different literatures. Putcha and

Reddy (1986) used classical plate theory (CPT), first order (FSDT) and refined shear deformation

theory for modeling the problem. Also Khedir and Liberscu (1988) and Matasunaga (2000) applied

higher-order (HSDT) and global higher-order plate theory, respectively. As it can be concluded

from Table 2, the results of the present work are in good agreement with the available literatures.

Table 2 The comparison of the results with other available literatures

Theory E\/E,
3 10 20 30 40
CPT (Putcha and Reddy 1986) 5.7538 11.4920 19.7120 27.9360 36.1600
FSDT (Putcha and Reddy 1986) 5.3991 9.9652 153610 19.7560 23.4530
Refined FSDT (Putcha and Reddy 1986) 5.3905 9.8336 14.8906 18.8778 22.1194
HSDT (Khedir and Liberscu 1988) 5.3920 9.8460 14917 18.9120 22.1540
Global HSDT (Matasunaga 2000) 5.3208 9.7172 147290 168348. 21.8977

Present work 53918 9.8452 149167 18.8769 22.1531
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Table 3 Normalized deflection and stresses of a three-layer square sandwich plate subjected to a uniform load

Method w
W Ex EV Z_-zx ny
HSDT (Pandya and Kant 1988) 256.1300 62.3800 30.3300 9.3820 3.0890
FSDT (Pandya and Kant 1988) 236.1000 61.8700 29.3200 9.8990 3.3130
Ferreira and Barbosa (1970) 258.7400 59.2100 29.5900 9.1220 3.5930
Exact (Srinivas 1973) 258.9700 60.3530 30.0970 9.3400 4.641
Third-order (Ferreira et al. 2003) 256.2387 60.1834 30.1642 9.3716 4.2768
Layerwise (Ferreira 2005) 2559197 59.6503 29.8296 9.2073 3.9773
Layerwise (Ferreira et al. 2008) 258.1813  60.2973 30.1141 9.2928 4.0961
CS-FEM-DSG?3 (Phung-Van et al. 2014a) 257.6447 59.8755 29.9477 9.2437 3.9133
Present work 256.3912  60.1944 30.2218 9.4473 4.1662

For another comparison of this paper, the results are validated with the work of Phung-Van et al.
(2014a) on the bending of laminated composite plates. However, a three-layer square sandwich
plate ((0/core/0)) subjected to a uniform load is considered. The material parameters are given by
E\ =25E,, G;5 = G5 = 0.5E,, Gy3 = 0.25E; and vy, = 0.25. For this purpose, Eq. (28) becomes in
the following form

K, K, K5 Ky Kis ||| ug 0]
Ky Ky Ky Ky Kos ||| v 0
Ky Ky Kz Kyy Kis (ol Wy |=1 4|, (29)
Ky Ky Ky Ky Kiys ||| &0 0
| K51 Ky K3 Ksy Kss | _¢y0_ 0]

Table 3 presents the normalized transverse deflection and stresses of the three-layer sandwich
plate with the a/t = 5. It can be seen that the present results by Reddy plate theory agree well with
other works.

5. Conclusions

In this paper, the buckling analysis of the laminated composite plate embedded in elastic
medium is performed. The Navier solution method is applied to solve the equations. The effect of
various parameters such as number and orientation angle of layers, elastic medium, geometric
parameters and loading type on the buckling load of the system is studied. The remarkable results
are listed as follows:

® The critical buckling load of the structure with a/d = 10 is in fifth circumferential mode
number.

¢ In symmetric laminated composite plates, the buckling load is higher than the anti-
symmetric ones and so the buckling of the system occurs lately.

¢ The buckling load of the structure with cross-ply orientation type in the layers is higher than
the structure with zero orientation angles. Also the highest buckling load is belongs to the
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structure with angle-ply orientation type and with increasing the angle up to 45 degrees, the
buckling load increases.

® With increasing the thickness of the structure, the buckling load decreases and therefore the
critical buckling load is appear in lowest values. Also the effect of thickness changes is more
prominent in higher buckling modes.

e By considering the elastic medium, the stiffness of the system increases and hence the
buckling load increases. Also the effect of Pasternak medium which includes the both
vertical and shear loads is more than Winkler medium.

¢ In axial loading type, the buckling load of the structure is higher with respect to the biaxial
loading type.

® The buckling load of the system decreases with increasing the aspect ratio. So it can be
concluded that with increasing the aspect ratio, stiffness of the structure decreases and the
buckling of the system occurs sooner.
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