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Abstract.   In this research, buckling analysis of an embedded laminated composite plate is investigated. The elastic 
medium is simulated with spring constant of Winkler medium and shear layer. With considering higher order shear 
deformation theory (Reddy), the total potential energy of structure is calculated. Using Principle of Virtual Work, the 
constitutive equations are obtained. The analytical solution is performed in order to obtain the buckling loads. A 
detailed parametric study is conducted to elucidate the influences of the layer numbers, orientation angle of layers, 
geometrical parameters, elastic medium and type of load on the buckling load of the system. Results depict that the 
highest buckling load is related to the structure with angle-ply orientation type and with increasing the angle up to 45 
degrees, the buckling load increases. 
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1. Introduction 
 

Laminated composites have superior properties compared to the conventional materials like 
metal, wood and so on. These properties include high strength to weight ratio, excellent fatigue 
characteristics, high abrasion and bending strength, low weight to volume ratio, good thermal 
insulation and so forth. So in recent years, the study and analysis of the dynamics behavior of 
these structures are increased among the researchers. Dawe and Yuan (2001) analyzed the overall 
and local buckling of laminated composites plates. They used the high order shear deformation 
theory (HSDT) for mathematical modeling of the structure and applied the finite strip method 
(FSM) for solving the problem. They examined the effects of the geometrical parameters and also 
the orientation angle of the layers on the buckling behavior of the system. Chakrabarti and Sheikh 
(2006) studied the dynamic instability of laminated sandwich plates subjected to in-plane edge 
loading using finite element method (FEM). The plate model is based on refined HSDT. They 
solved a number of problems including various boundary conditions, plate geometry, thickness 
ratio and other aspects. Pandita et al. (2008a, b, 2009) discussed the vibration and buckling of the 
laminated sandwich plates. They presented an improved higher order zigzag theory and solved the 
problem by utilizing the FEM. The three-dimensional solution for static analysis of cross-ply 
rectangular plate embedded in piezoelectric layers was presented by Alibeigloo and Madoliat 
(2009). They applied differential quadrature method (DQM) and Fourier series approach for 
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solving the problem. They introduced the upper layer and lower one as an actuator and sensor, 
respectively. Both the direct and inverse piezoelectric effects and the influence of piezoelectric 
layers on the mechanical behavior of the structure were investigated by the authors. Chen et al. 
(2012) developed a model for the composite laminated Reddy plate based on a new modified 
couple stress theory. They examined the deflections and stresses of the plate and showed that this 
model of plate can capture the scale effects of microstructures. Reddy (2012) investigated the 
bending of the beams and plates. He reformulated the classical and shear deformation beam and 
plate theories using the nonlocal differential constitutive relations of Eringen and von Karman 
nonlinear strains. The effect of the geometric nonlinearity and nonlocal parameters was studied by 
the author. Mantari et al. (2012a) proposed a new trigonometric shear deformation theory for 
laminated composite plates. They developed the finite element formulation to obtain the stresses. 
They compared the mentioned theory with other available theories and demonstrated that the 
accuracy of the results is higher than similar ones. Mantari et al. (2012b) also employed the Navier 
solution method for static bending analysis based on the trigonometric shear deformation theory. 
Sahoo and Singh (2013a, b, 2014) investigated the static analysis of the laminated composite 
plates in macro-scale. They modeled the structure using a trigonometric zigzag theory. The 
numerical FEM is used to calculate the bending of the laminated composite plate. A cell-based 
smoothed discrete shear gap method (CS-FEM-DSG3) using triangular elements was recently 
proposed by Nguyen-Thoi et al. (2013) to improve the performance of the discrete shear gap 
method (DSG3) for static and dynamics analyses of Mindlin plates. An isogeometric finite element 
approach (IGA) in combination with the third-order deformation plate theory (TSDT) was used by 
Tran et al. (2013) for thermal buckling analysis of functionally graded material (FGM) plates. 
Vidal and Polit (2013) probed the buckling analysis of laminated composite plates using a refined 
shear sinusoidal plate theory. A simple and effective formulation based on a fifth-order shear 
deformation theory (FSDT) in combination with IGA was presented by Nguyen-Xuan et al. (2013) 
for composite sandwich plates. Based on a CS-FEM-DSG3 and FSDT, Phung-Van et al. (2014a) 
investigated static and dynamics analyses of Mindlin plates resting on viscoelastic foundation. 
Sayyad and Ghugal (2014) developed the analytical solution for the biaxial bending analysis of 
isotropic, transversely isotropic and laminated composite plates based on a sinusoidal shear and 
normal deformation theory which taking into account effects of transverse shear and transverse 
normal. Luong-Van et al. (2014) used a cell-based smoothed finite element method using three-
node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of 
laminated composite plates on viscoelastic foundation. The CS-FEM-DSG3 was extended to the 
C0-type HSDT by Phung-Van et al. (2014b) and was incorporated with damping–spring systems 
for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung 
vehicle. An edge-based smoothed stabilized discrete shear gap method (ES-DSG3) based on FSDT 
was recently proposed by Phung-Van et al. (2014c) for static and dynamic analyses of Mindlin 
plates. Thai et al. (2014) presented a generalized shear deformation theory for static, dynamic and 
buckling analysis of functionally graded material (FGM) made of isotropic and sandwich plates. A 
cell-based smoothed three-node Mindlin plate element (CS-MIN3) was extended by Phung-Van et 
al. (2014d) to geometrically nonlinear analysis of functionally graded plates (FGPs) subjected to 
thermo-mechanical loadings. The CS-FEM-DSG3 was extended and incorporated by Phung-Van et 
al. (2014e) with a layerwise theory for static and free vibration analyses of composite and 
sandwich plates. A simple and effective approach that incorporates IGA with a refined plate theory 
(RPT) was addressed by Nguyen-Xuan et al. (2014) for static, free vibration and buckling analysis 
of FGM plates. An efficient computational approach based on refined plate theory (RPT) including 
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the thickness stretching effect, namely quasi-3D theory, in conjunction with IGA was proposed by 
Nguyen et al. (2015) for the size-dependent bending, free vibration and buckling analysis of 
functionally graded nanoplate structures. An efficient computational approach based on a 
generalized unconstrained approach in conjunction with IGA were proposed by Phung-Van et al. 
(2015a) for dynamic control of smart piezoelectric composite plates. Phung-Van et al. (2015b), the 
CS-FEM-MIN3 was extended to geometrically nonlinear analysis of laminated composite plates. A 
simple and effective formulation based on IGA and HSDT was applied by Phung-Van et al. (2015c) 
to investigate the static and dynamic behavior of functionally graded carbon nano-reinforced 
composite plates. Nguyen et al. (2016) introduced a unified framework on HSDTs, modelling and 
analysis of laminated composite plates. 

In the present work, the buckling behavior of the laminated composite plate embedded in 
elastic medium is studied. The mathematical model of the structure is afforded based on higher 
order shear deformation theory (Reddy). By applying Navier solution method, the buckling load of 
the system is obtained and the effects of various parameters such as elastic medium, angle 
orientation of layers, geometric parameters and number of layers on the buckling behavior of the 
system are probed. 
 
 
2. Mathematical formulation 
 

Fig. 1 shows a laminated composite plate embedded in elastic medium which is modeled by 
Winkler springs and Pasternak shear layer. The length, width and thickness of the plate are a, b 
and h, respectively. 

 
2.1 Third order shear deformation theory (TSDT) 
 
This section examines the displacement field of the third order shear deformation theory 

(TSDT) which is proposed by Reddy. This theory assumes that the thickness does not change. So 
the displacement field is defined as a cubic function of z and transverse shear stresses are the 
functions of second order. For this reason, no need to use the shear correction factor in the FSDT 
and displacement field is considered as follows 

 
 

 

Fig. 1 Geometry of a laminated composite plate embedded in elastic medium 
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where u, v and w are the displacement components of the mid-plane and ϕx, ϕy are the angle of 
rotation around the y and x axes of cross-section, respectively. Also c1 = ‒4 / 3h2 in which h is the 
thickness of the plate. So the kinematic relations are defined as follows 
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where c2 = 3c1. 
 
2.2 Stress-Strain relations 
 
In this paper, the material of the layers obeys Hook’s law and the constitutive equations are as 

follows 

     6 1 6 6 6 1
,C    (3)

 

in which [], [C] and [ε] are stress, stiffness and strain matrices, respectively. Since in this 
research, the material of the layers is assumed to be orthotropic, Eq. (3) can be rewritten as follows 
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To transform the stress-strain relations from local coordinate to reference one, we define 
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By applying Eq. (5), the stress-strain relations in reference coordinate are obtained as follows 
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where Qij are the transformed material constants in the reference coordinate (Chow et al. 1992). So 
the constitutive equations can be expressed as follows 
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where Qij are considered as follows 
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2.3 Derivation of governing equations 
 
The strain energy stored in the structure can be considered as follows 
 

 /2

/2 0 0

1
,

2

h b a

xx xx yy yy xy xy xz xz yz yzh
U dxdydz         


      

 
(9)

 
By applying Eq. (2) we have 
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the Eq. (10) can be rewritten as follows 
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The work due to the in-plane external loads and elastic medium can be expressed as 

(Ghorbanpour Arani et al. 2012) 
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where kw and kg are the Winkler and Pasternak stiffness coefficients, respectively. Also 

M
xxN  and 

M
xx

M
yy NN   are applied loads to the plate in x and y directions, respectively and α is a constant 

coefficient. 
 

2.3.1 Principle of virtual work 
To determine the equations of motion, Principle of Virtual Work is applied as follows 
 

.0)(
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Now by calculating the variation of the Eqs. (12) and (13), and substituting into Eq. (14), the 
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equations of motion are obtained as follows 
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Also by substituting the stress-strain relations (Eq. (7)) into Eqs. (11a)-(11e), we have 
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In which N is the number of composite layers. Finally the governing equations are obtained by 

substituting Eqs. (21a)-(21f) into governing equations (Eqs. (15)-(19)). 
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3. Navier solution method 
 

In this section, the Navier solution method is employed to obtain the buckling load of the 
structure so the all edges of the plate are assumed to be simply supported and the components of 
the displacement are considered as follows (Samaei et al. 2011) 
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in which m and n are the wave numbers in x and y axes, respectively. By substituting the Eqs. 
(27a)-(27e), into the governing equations (Eqs. (22)-(26)), we have 
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where the components of matrix Kmn are mentioned in Appendix A. Setting the determinate of Eq. 
(28) to zero, the buckling load of the structure can be obtained. 
 
 
4. Numerical results and discussion 
 

This section examines the buckling load of the laminated composite plate resting on elastic 
medium. The main goal of this part is the study of various parameters such as number and 
orientation angle of layers, buckling modes and elastic medium on the buckling behavior of the 
system. The material of the layers is Graphite/Epoxy and the mechanical properties are listed in 
Table 1. 

The buckling load and spring constant are defined as dimensionless parameters and considered 
as follows 

11 /   ),/( EakKaENP ww
M
x   (29)

 
4.1 Buckling load versus circumferential mode number 
 
The variation of buckling load of the system versus the circumferential mode number is plotted 

in Figs. 2-6. It can be observed that the buckling load decreases at first until reaches to the lowest 
 
 

Table 1 Mechanical properties of Graphite/Epoxy (Phung-Van et al. 2015d) 

Mechanical properties Value 

E11 13238 GPa 

E22 = E33 10.76 GPa 

G12 3.61 GPa 

G13 = G23 5.65 GPa 

v11 = v23 0.24 

v13 0.49 

ρ 1578 Kg/m3 
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Fig. 2 Variation of dimensionless buckling load of the structures with various number of 
layers versus circumferential mode number 

 
 
 

amount and after that increasing process begins. The critical buckling load appears in the point 
where the buckling load is minimal. Fig. 2 shows the effect of the number of layers on the 
dimensionless buckling load. It can be seen that in symmetric laminated composites (with three 
number of layers), the buckling phenomenon occurs later compared with the anti-symmetric ones 
(with two number of layers). The reason is that the symmetric laminated composite plates are more 
balance and stable. 

The influence of the orientation type of layers is studied in Fig. 3. For this purpose, five various 
type of the orientation of layers are considered as follows 

 

 (0°, 0°, 0°): indicates a composite structure with zero angle of orientation in layers 
(0°, 90°, 0°): indicates a composite structure with cross-ply orientation in layers 
(15°, ‒15°, 15°), (30°, ‒30°, 30°) and (45°, ‒45°, 45°): 

indicates a composite structure with angle-ply orientation in layers. 
 

According to Fig. 3, it can be concluded that the composite structure with angle-ply orientation 
of layers has the highest buckling load and becomes stiffer by increasing the angle to 45 degrees 
since the buckling load increases and the system buckling occurs later. Also the composite 
structure with zero angle of orientation has the lowest buckling load and after that the structure 
with cross-ply orientation in layer. 

In Fig. 4, the effect of the thickness of the structure on the buckling load is probed. From this 
figure it can be observed that with increasing the thickness of the structure, the dimensionless 
buckling load decreases and the critical buckling load is decreased. Thereby, with increasing the 
thickness, the stiffness of the structure decreases. According to Fig. 4, the dimensionless buckling 
load is about 0.37 for d = 0.05 m whilst for d = 0.2 m the dimensionless buckling load is about 
0.25. Also it can be found that the effect of thickness changes, is negligible in lower mode 
numbers and this effect is prominent in higher mode numbers. In addition, the reduction rate of the 
buckling load decreases with increasing the thickness. So the excessive increase in the thickness 
caused the loss of the effect of this parameter on the buckling load. 
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Fig. 3 Variation of dimensionless buckling load of the structures with various types of 
orientation angle of layers versus circumferential mode number 

 
 

Fig. 4 Variation of dimensionless buckling load of the structures with different values of 
thickness versus circumferential mode number 

 
 
The effect of the elastic medium which is modeled by the spring constant of Winkler medium 

and shear layer is studied in Fig. 5. It is noteworthy that the material of the elastic medium is 
chosen from reference (Ghorbanpour Arani et al. 2012) and the Winkler and Pasternak constants 
are 8.7×1017 N.m3 and 2 N/m, respectively. Generally the existence of the elastic medium causes to 
increase the stiffness of the structure and thereby the buckling load increases. The Pasternak 
medium considers the vertical and shear loads however the Winkler medium considers only the 
vertical ones, therefore the effect of Pasternak medium is more than Winkler medium. According 
to Fig. 5, the effect of the elastic medium on the buckling load is significant and it can be a useful 
parameter to take away the system from buckling condition. 
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Fig. 5 The effect of the elastic medium on the dimensionless buckling load versus 
circumferential mode number 

 
 

Fig. 6 The effect of the loading type on the dimensionless buckling load versus 
circumferential mode number 

 
 
Fig. 6 examines the influence of the loading types on the dimensionless buckling load of the 

structure. Two types of loading include uniaxial (along the x axis) and biaxial (along the x and y 
axes) are considered. As it can be found, in biaxial loading type the dimensionless buckling load is 
lower than axial loading type. The reason is that, in biaxial loading type, the load which applied to 
the edges is higher than the axial loading type and therefore the buckling of the structure occurs 
sooner. Also the effect of loading type is apparent in lower mode numbers. 

 

4.2 Buckling load versus spring constant of elastic medium 
 

The effect of spring constant of elastic medium on the dimensionless buckling load is studied 
by plotting Figs. 7-11. In Fig. 7, the effect of the number of layers on the dimensionless buckling 
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load versus spring constant of elastic medium is shown. It can be observed that the buckling load 
of the symmetric composite structures is higher than anti-symmetric ones. As it is noted before, the 
reason is that the stability of the symmetric structure is higher than the anti-symmetric ones. Also 
it can be found that with increasing the spring constant of the elastic medium, the dimensionless 
buckling load increases linearly. 

The influence of the orientation type of the layers on the dimensionless buckling load of the 
structure is studied by Fig. 8. As it can be observed the highest buckling load belongs to angle-ply 
orientation type of the layers and after that cross-ply and zero orientation angle types. Also with 
increasing the angle of orientation up to 45 degrees, the stiffness of laminated composite structure 
and thereby the buckling load increases. 

 
 

Fig. 7 The effect of the number of layers on the dimensionless buckling load versus the 
spring constant of elastic medium 

 
 

Fig. 8 Variation of dimensionless buckling load of the structures with different types of 
orientation angle versus spring constant of elastic medium 
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Fig. 9 Variation of dimensionless buckling load of the structures with different values of 
thickness versus spring constant of elastic medium 

 
 

Fig. 10 Variation of dimensionless buckling load of the structures with different values 
of aspect ratio versus spring constant of elastic medium 

 
 
In Fig. 9, the effect of the thickness of the structure on the dimensionless buckling parameter 

versus the spring constant of the elastic medium is probed. The plotted figure shows that with 
increasing the thickness of the structure, the dimensionless buckling load decreases and hence the 
structure with more thickness has less stiffness. 

The influence of the length to thickness ratio (aspect ratio) of the structure on the dimensionless 
buckling load parameter is shown in Fig. 10. It is clear that with increasing the aspect ratio, the 
buckling load of the structure decreases because of the reduction of stiffness. 

In Fig. 11, the buckling behavior of the structure is studied for two types of loading include 
axial and biaxial loadings. The results are the same as obtained from Fig. 6 and in axial loading 
type the buckling load of the structure is higher with respect to the biaxial loading type. Also it can 
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Fig. 11 Variation of dimensionless buckling load of the structures with different types of 
loading versus spring constant of elastic medium 

 
 

be observed that the effect of the spring constant of the elastic medium is more significant in axial 
loading type. 

 
4.3 Verification of the results 

 
The buckling load of the structure in absence of elastic medium (kw = kg = 0) is obtained to 

verify the results. For this goal, all the mechanical properties and also the type of the loading are 
intended similar to reference (Putcha and Reddy 1986). The dimensionless buckling load is 

defined as 
3

2

3

hE

bN
P xx  in which E2 is the Young’s modulus, h is the thickness of the plate and b is 

the width of the structure. The results were compared with three different literatures. Putcha and 
Reddy (1986) used classical plate theory (CPT), first order (FSDT) and refined shear deformation 
theory for modeling the problem. Also Khedir and Liberscu (1988) and Matasunaga (2000) applied 
higher-order (HSDT) and global higher-order plate theory, respectively. As it can be concluded 
from Table 2, the results of the present work are in good agreement with the available literatures. 

 
 

Table 2 The comparison of the results with other available literatures 

Theory E1 / E2     

 3 10 20 30 40 

CPT (Putcha and Reddy 1986) 5.7538 11.4920 19.7120 27.9360 36.1600

FSDT (Putcha and Reddy 1986) 5.3991 9.9652 15.3610 19.7560 23.4530

Refined FSDT (Putcha and Reddy 1986) 5.3905 9.8336 14.8906 18.8778 22.1194

HSDT (Khedir and Liberscu 1988) 5.3920 9.8460 14.917 18.9120 22.1540

Global HSDT (Matasunaga 2000) 5.3208 9.7172 14.7290 168348. 21.8977

Present work 5.3918 9.8452 14.9167 18.8769 22.1531
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Table 3 Normalized deflection and stresses of a three-layer square sandwich plate subjected to a uniform load 

Method w      

 w  x  y  zx  xy
 

HSDT (Pandya and Kant 1988) 256.1300 62.3800 30.3300 9.3820 3.0890

FSDT (Pandya and Kant 1988) 236.1000 61.8700 29.3200 9.8990 3.3130

Ferreira and Barbosa (1970) 258.7400 59.2100 29.5900 9.1220 3.5930

Exact (Srinivas 1973) 258.9700 60.3530 30.0970 9.3400 4.641

Third-order (Ferreira et al. 2003) 256.2387 60.1834 30.1642 9.3716 4.2768

Layerwise (Ferreira 2005) 255.9197 59.6503 29.8296 9.2073 3.9773

Layerwise (Ferreira et al. 2008) 258.1813 60.2973 30.1141 9.2928 4.0961

CS-FEM-DSG3 (Phung-Van et al. 2014a) 257.6447 59.8755 29.9477 9.2437 3.9133

Present work 256.3912 60.1944 30.2218 9.4473 4.1662

 
 
For another comparison of this paper, the results are validated with the work of Phung-Van et al. 

(2014a) on the bending of laminated composite plates. However, a three-layer square sandwich 
plate ((0/core/0)) subjected to a uniform load is considered. The material parameters are given by 
E1 = 25E1, G12 = G13 = 0.5E2, G23 = 0.25E2 and v12 = 0.25. For this purpose, Eq. (28) becomes in 
the following form 
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Table 3 presents the normalized transverse deflection and stresses of the three-layer sandwich 
plate with the a/t = 5. It can be seen that the present results by Reddy plate theory agree well with 
other works. 
 
 

5. Conclusions 
 

In this paper, the buckling analysis of the laminated composite plate embedded in elastic 
medium is performed. The Navier solution method is applied to solve the equations. The effect of 
various parameters such as number and orientation angle of layers, elastic medium, geometric 
parameters and loading type on the buckling load of the system is studied. The remarkable results 
are listed as follows: 

 

 The critical buckling load of the structure with a/d = 10 is in fifth circumferential mode 
number. 

 In symmetric laminated composite plates, the buckling load is higher than the anti-
symmetric ones and so the buckling of the system occurs lately. 

 The buckling load of the structure with cross-ply orientation type in the layers is higher than 
the structure with zero orientation angles. Also the highest buckling load is belongs to the 
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structure with angle-ply orientation type and with increasing the angle up to 45 degrees, the 
buckling load increases. 

 With increasing the thickness of the structure, the buckling load decreases and therefore the 
critical buckling load is appear in lowest values. Also the effect of thickness changes is more 
prominent in higher buckling modes. 

 By considering the elastic medium, the stiffness of the system increases and hence the 
buckling load increases. Also the effect of Pasternak medium which includes the both 
vertical and shear loads is more than Winkler medium. 

 In axial loading type, the buckling load of the structure is higher with respect to the biaxial 
loading type. 

 The buckling load of the system decreases with increasing the aspect ratio. So it can be 
concluded that with increasing the aspect ratio, stiffness of the structure decreases and the 
buckling of the system occurs sooner. 
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