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Abstract.    Seismic fragility analysis is a probabilistic decision-making framework which is widely implemented 
for evaluating vulnerability of a building under earthquake loading. It requires ingredient named probabilistic model 
and commonly developed using statistics requiring collecting data in large quantities. Preparation of such a data-base 
is often costly and time-consuming. Therefore, in this paper, by developing generic seismic drift demand model for 
regular-multi-story steel moment resisting frames is tried to present a novel application of the probabilistic decision-
making analysis to practical purposes. To this end, a demand model which is a linear function of intensity measure in 
logarithmic space is developed to predict overall maximum inter-story drift. Next, the model is coupled with a set of 
regression-based equations which are capable of directly estimating unknown statistical characteristics of the model 
parameters.To explicitly address uncertainties arise from randomness and lack of knowledge, the Bayesian regression 
inference is employed, when these relations are developed. The developed demand model is then employed in a 
Seismic Fragility Analysis (SFA) for two designed building. The accuracy of the results is also assessed by 
comparison with the results directly obtained from Incremental Dynamic analysis. 
 

Keywords:    probabilistic demand model; seismic fragility analysis; incremental dynamic analysis; generic 
steel moment resisting frame; Bayesian regression 

 
 
1. Introduction 
 

Next-generation Performance Based-Earthquake Engineering (PBEE) proposed by Pacific 
Earthquake Engineering Research (PEER) centre employs probabilistic framework to serve a 
mathematical basis for seismic performance assessment. In this framework, uncertainties 
embedded in an earthquake occurrence, nonlinear response of structures and vulnerability of 
structural components during seismic events are explicitly addressed. To this end, next-generation 
PBEE requires probabilistic models for seismic hazard, structural response, damage and 
consequence to evaluate seismic performance of a building. Recent studies have tried to meet this 
need by developing several probabilistic models for different part of PBEE. In the present study 
the focus in particular is placed on structural demand model. Demand models, in research studies, 
are commonly developed based on statistics with enormous, costly and time consuming data 
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gathering. For example, Ramamoorthy et al. (2006), based on a large number of nonlinear 
response history analyses, constructed bilinear probabilistic demand models for a hypothetical 
two-story reinforced concrete (RC) frame building before and after retrofitting. The predictive 
models of the maximum inter-story drift are utilized in fragility analyses to evaluate retrofitting 
impact on reducing the vulnerability of the building during earthquake events. This approach is 
also applied in other studies (such as Adeli et al. 2011a, b, Bai et al. 2011, Bayat and Daneshjoo 
2015, Bayat et al. 2015a, b, O’Reilly and Sullivan 2016, Ghowsi and Sahoo 2015, Jalali et al. 
2012, Ruiz-García and Miranda 2010, Tang and Zhang 2011) when demand models are developed. 
Some other studies focus on developing demand models based on available deterministic models 
and experimental tests. This methodology originally presented by Gardoni et al. (2002) became the 
basis of subsequent studies to develop capacity models for structural element. Some novel works 
employing this methodology to develop demand models are Choe et al. 2008, Sharma et al. 2014, 
Tabandeh and Gardoni 2014, Zhu et al. 2007. Although developing probabilistic demand model 
based on nonlinear response history analyses or experimental test results might be justified for 
research purposes, it is not appealing for practical applications because of its computational cost. 
Therefore, availability of ready-made demand models eliminating the need of time-consuming 
data gathering process would be greatly interesting for practical purposes. 

According to above description, in this paper, generic probabilistic demand model of low- to 
mid-rise multi-story steel moment resisting frames (SMRFs) is proposed. The model estimates 
overall maximum inter story-drift and have linear formulation in logarithmic space respect to 
earthquake intensity. Finally, fragility Analyses (SFA) of two sample buildings, based on proposed 
relations, are carried-out and the results are compared against those obtained from Incremental 
Dynamic Analysis (IDA), which is a computer-intensive procedure. 

This paper is organized into five sections. Following this introduction, the next section 
discusses data generation, including a full discussion about ground motion record selection, the 
characteristic of generic frames and incremental dynamic analysis. Next, formulations of 
probabilistic demand model along with Bayesian regression-based equations predicting model 
parameters are presented. Finally the proposed model are implemented in seismic fragility analysis 
of two sample buildings to numerically demonstrate how much availability of such a ready-made 
demand model makes probabilistic decision making analysis feasible and practical. 
 
 
2. Data generation for developing probabilistic demand model 
 

2.1 Ground motion records selection 
 
Developing probabilistic model based on observations obtained from nonlinear dynamic 

analysis requires an appropriate selection of ground motion records. As a general rule, the ground 
motion records should be unbiased to any site-specific seismological characteristic of a probable 
future earthquake event. In addition, the number of records in the bin should be enough to cover 
record-to–record variability in a justified way. According to the mentioned objectives, the general 
far-field ground motions set originally introduced by FEMA-P695 and extended by the authors is 
used. This set includes 41 pairs of horizontal ground motions, taken from 15 strong seismic events, 

recorded at sites with soil shear wave velocity, in upper 30 m of soil, greater than 180 ,
sec

m
 and 

located at distance 10 to 70 km from fault rupture. This paper defines source to site distance as the 
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average of Campbell and Joyner-Boore fault distances provided in the PEER NGA database. All 
selected motions were recorded in free-field or on ground floor of a small building to avoid 
potential soil structures interaction bias in records set. Furthermore, to avoid potential event-based 
bias in the ground motion bin, maximum six records are allowed to be taken from a single seismic 
event. In addition, between different ground motions recorded for a single seismic event, only 

those have a Peak Ground Acceleration and velocity greater than 0.2 g and 15 ,
sec

cm
 and lowest 

usable frequency smaller than 0.25 Hz are selected. 
 
2.2 Generic steel moment resisting frames 
 
The main purpose of the present study is to develop probabilistic drift demand model that is 

capable of predicting seismic performance of real SMRFs. Therefore, it is important to develop 
analytical models that the obtained results can be extended for a wide range of SMRFs with 
different characteristics. To this end, the concept of generic moment resisting frame is adopted in 
this paper. This concept has been widely utilized by various researchers for assessing seismic 
behaviour of moment resisting frames (Chintanapakdee and Chopra 2003, Esteva and Ruiz 1989, 
Medina and Krawinkler 2004, Ruiz-García and Miranda 2010). These studies have shown that the 
response of a multi-bay steel moment resisting frames can be simulated adequately by a single- 
bay generic frame. However, a significant limitation is that the simulation of realistic conditions at 
an interior joint cannot be properly considered. Thus, a family of three-bay generic moment frames 
introduced by Zareian and Krawinkler (2006) is used to overcome this deficiency of one bay-
generic moment frames. The generic SMRFs with the number of stories, N, equal to 4, 6 and 8 are 
utilized in this paper to cover the range of low-rise to mid-rise structures. For each number of 
stories, three fundamental periods equal to 0.1 N, 0.15 N and 0.2 N are considered to cover the 
range of variation of the fundamental periods of SMRFs (Goel and Chopra 1997). For each period, 
three different cases for beam stiffness and strength variation are considered. These three 
categories are denoted as: “Shear”,” Uniform” and “Intermediate” distributions. A “Shear” 
distribution implies that moment of inertia and bending strength of beams are distributed in 
proportion to the story shears obtained from applying the design code, For example ASCE-07-10, 
lateral load pattern. This distribution leads to a straight line deformed shape under mentioned 
loading (Zareian and Krawinkler 2006). A “Uniform” distribution, on the other hand, suggests 
equal moments of inertia and bending strengths for all beams along height. That is, the cross 
section assigned to the beams of the first story is also considered for the beams of other stories and 
provide an upper bound for beams stiffness and strength distributions. This pattern represents 
those structural designs in which the designer decides to use a similar cross section for beams in 
several stories because of availability of structural material, cost of using joints with different 
detailing, simplicity in design and construction, etc. Intermediate is also introduced as the average 
of the mentioned bounding alternates, i.e., Shear and Uniform to capture behaviour of structures 
that fall in between two bounds. For simplicity, column moment of inertia in each story is assumed 
to be equal to the beam moment of inertia. This assumption is supported by the fact that the most 
of lateral deformation of SMRFs is due to beam rotation and less due to column deformation. That 
is, structural deformation is not sensitive to variation along the height of column moment of inertia. 
This is quite reasonable and due mainly to the type of dominated mode of deformation, which is 
mainly shear-type for a SMRF. Moreover, columns strength are assigned with respect to strong 
column–weak beam concept. For each case of stiffness and strength variation along the height, 
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based on different levels of response modification factor, i.e., R factor, different occupancy and 
seismic design categories, three values for yield base shear strength are defined to sweep variation 
range of the designed SMRFs lateral yield strength. Lateral yield strength values are estimated by 
multiplying design value of the seismic base shear calculated according to design code by over-
strength factor. 

Concentrated plasticity is also used to model nonlinear behaviour of SMRFs elements. To this 
end, elastic beam column element associated with nonlinear rotational spring at two ends is 
adopted to model nonlinearity. The Bilin-Materials (Lignos and Krawinkler 2010) are assigned to 
end springs to demonstrate hysteretic behaviour. The hysteretic behavior of rotational springs is 
modeled using Bilin material with parameters set to the mean value of data obtained from 350 
experimental tests conducted on steel beam-to-column connections (Lignos and Krawinkler 2010). 
Basic strength, post capping strength and unloading stiffness deterioration modes are considered in 
formulation of this material according to Rahnama and Krawinkler (1993) deterioration rule. 
According to above criteria, 81 generic steel moment resisting frames are developed. The 
OpenSees, a software proposed by PEER as the computational platform for simulating the seismic 
response of structural and geotechnical systems, is utilized to perform Incremental Dynamic 
Analysis. P-Delta effects have also been accounted for in the models and a Rayleigh damping 
matrix is computed using 2% of the critical damping applied in the 1st and 3rd vibration periods of 
the structures. It should be noted, the mentioned technique of modeling nonlinearity in 
combination with Rayleigh damping results in damping force becomes unrealistically large 
(Medina and Krawinkler 2004, Zareian and Krawinkler 2006). Thus, the simple methodology first 
proposed by (Medina and Krawinkler 2004) and enhanced by (Zareian and Krawinkler 2006) is 
implemented, in the present study, to solve this deficiency. Fig. 1 schematically describes generic 
moment frame and modelling techniques implemented to develop analytical model. 

 
 

 
Fig. 1 Analytical model of generic steel moment frame 

2.3 Incremental Dynamic Analyses (IDA) 
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Incremental Dynamic Analysis (IDA) is a computer-intensive procedure which depicts the 

performance of structures over the full range of structural behaviour, from initial elastic response 
through to global Instability, under seismic loads (Vamvatsikos and Cornell 2002). IDA is usually 
referred as the dynamic equivalent of the well-known static pushover analysis. It entails 
performing multiple nonlinear time history analyses of a structural model under an appropriate 
number of ground motion records scaled to several levels of seismic intensity. The scaling levels 
initiate at an appropriate low value and continuously increase until global dynamic instability will 
occur. Seismic demand of interest is monitored during each nonlinear dynamic analysis and the 
maximum value of the demand is plotted versus intensity level. In this paper, the spectral 
acceleration at the fundamental period of buildings Sa(T1) which is suitable for low to mid-rise 
SMRFs was employed to represent earthquake intensity (Adeli et al. 2011a, b, Shome and Cornell 
2000). Overall maximum inter-story drift (θmax) is also considered as a demand of interest to 
evaluate seismic performance of existing building. The IDA solution algorithm implemented in the 
present study proceeds until structure experiences excessive θmax for a slight increase in earthquake 
intensity, this means Sa(T1) ‒ θmax curve becomes flat. A comprehensive structural data-base is 
established due to these extensive nonlinear dynamic analyses. The data-base is divided into two 
parts, collapse and non-collapse data. The non-collapse data is applied to develop probabilistic 
maximum inter-story drift model for a wide range of SMRFs in terms of some building 
characteristics. Based on FEMA 350, collapse point can be defined as a point proximity at which 
the local tangent of IDA curve reaches 20% or θmax exceeds 10%, each occurs first. Nevertheless, 
it seems the first criterion is somewhat conservative in some cases. It is observed that structures 
represent acceptable level of lateral resistance after collapse point. Hence, this paper defines 
collapse limit as a point at which IDA curve starts to flatten, i.e., the structure has exhausted most 
of its lateral resistance provided that θmax shall not exceed 10%. As an example, in the following, 
the IDA curve related to one of 81 generic moment frames (model with Number of story = 4, 
Fundamental Period = 0.4, Stiffness and Strength distribution = Int, and Yield based shear = 0.3) is 
shown. 
 
 
3. Probabilistic demand model formulation 
 

3.1 Bayesian statistical inference 
 
Consider h(x) as a vector of explanatory functions formulated in terms of independent variables 

collected in vector x. y is a response variable predicted by 
 

     1 1 2 2 .......... k ky h x h x h x         (1)
 
Where θi indicates model parameters, ε is a standard normal random variable demonstrating 

model error, and σ is standard deviation of model error. 
Traditionally, classical regression technique is applied to compute point estimation of model 

parameters, i.e., (θi, σ). It is clear that point estimation based on information obtained from a 
finite–size sample population is incomplete and uncertain. In contrast, Bayesian linear regression 
can express our uncertainty about (θi, σ) by considering model parameters as random variables and 
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Fig. 2 An example IDA curves 
 
 

determines probability distribution of the coefficients using the Bayesian updating rule (Box and 
Tiao 2011) 

     , . , . ,i i if c L P       (2)
 
Where f(θi, σ) denotes posterior distribution representing our updated knowledge about the 

coefficients, L(θi, σ) indicates the likelihood function representing the objective information on(θi, 
σ) gained from a set of observations, p(θi, σ) represents the prior distribution reflecting our 
knowledge about parameters prior to obtaining observations and c is a normalizing factor . 

According to the type of obtained data, three algorithms for calculating of Eq. (2) are discussed 
in (Gardoni et al. 2002), one of which, implemented in this paper, is Close-form solution that is 
valid for models with linear formulation in respect to θi. By assuming a normally distributed error 
term, ε, and in case of non-informative priors, Box and Tiao (2011) demonstrated that the posterior 
distribution of model parameters, θi, and squared standard deviation, σ2, are multivariate t and 
inverse chi-square distributions, respectively. 
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Where H is a n‒by‒k dimensional matrix containing all n observations of explanatory functions, 

Y is the n-dimensional vector of response variable observations. Once posterior distributions are 
known, mean values and covariance matrix, Σθθ, can be effortlessly computed as 
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Fig. 3 Procedure of developing regression-based demand model 
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According to the above description and those presented in the previous section, the procedure 

implemented in the present study to develop demand model is graphically exhibited in the Fig. 3. 
 
3.2 Drift demand model formulation 
 
Probabilistic demand model constitutes central theme of probabilistic decision-making analyses 

such as seismic fragility analysis. These models are commonly developed based on observations 
obtained from experimental tests and/or numerical analyses. It should be noted that a model that 
matches past observations would not necessarily predict future events. Therefore both aleatory and 
statistical uncertainty should be explicitly embedded within the predictive demand models. To this 
end, linear model with random parameters in the logarithmic space have been employed to 
describe relation between overall maximum inter-story drift as the structural demand parameters 
(D) and earthquake intensity, the spectral acceleration at fundamental period Sa(T1). The 
logarithmic transformation is also utilized to approximately satisfy the normality assumption (i.e., 
model error has normal distribution) and homoscedasticity assumption (i.e., Standard deviation of 
model error is constant). Eq. (5) illustrates general form of the predictive model considered in this 
study 

    1Ln D a b Ln Sa T u    (5)

 
where D represents the target response (overall maximum inter-story drift ), Ln denotes natural 
logarithm, u is a term reflecting model error and supposed to be a normal random variable with 
zero mean and unknown standard deviation equals σD, and Θ = (a, b) is a vector of unknown 
normal random model parameters. 

In practice, estimating the statistical characteristics of the model parameters a, b and σD 

99



 
 
 
 
 
 

M. Kia and M. Banazadeh 

requires collecting a large quantity of observations that is often time-consuming and expensive. 
This provides motivation for developing relations, in terms of building characteristics, to estimate 
mean and standard deviation of (a, b, σD) without conducting time-consuming building-specific 
nonlinear response history analyses. In each of these relations, a, b and σD, are regressed, 
separately, through Bayesian statistical inference to reflect statistical uncertainty arising due to use 
of finite-size sample population (See Section 3.1). Of course, in studies where the statistical 
uncertainty, for simplicity, are decided to be overlooked, only the mean value of regression 
coefficients would be used. Otherwise, this paper supposes normal marginal distribution for 
regression coefficients to reflect statistical uncertainty on the proposed relations. This assumption 
is supported with the fact that t-distribution, posterior distribution resulting from Bayesian 
regression, asymptotically approaches a normal distribution when the number of data is large. In 
addition, for improving the accuracy of the proposed Bayesian regression equations, the 
explanatory functions have utilized generic frame characteristics, namely T, N, SSD, CY in the 
form of Eq. (6) instead of considering each generic frame characteristics as an individual 
explanatory variable, and the power terms, m1 to m4, are picked from {-3,-2,-1, 0, 1, 2, 3} 
collection so that the coefficient of variation of the model parameters were minimized. This was 
achieved using the algorithm provided in the RT software (Mahsuli 2012) 

 

  31 2 4. . .mm m mh x T N SSD CY  (6)

 
In the following, the regression equations derived for estimating model parameters a, b and σD 

are provided 
2

3
1 2 4

N T
a N CY

CY T CY
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 (9)

 
Where T demonstrates the structural fundamental period, N is the number of stories and CY 

indicates the yield base shear coefficient. It equals ,
W

Vy
 where W represents effective seismic 

weight and Vy is the yield base shear strength. Vy can be directly obtained from pushover analysis 
or estimated by multiplying design value of the seismic base shear by over-strength factor 
provided in design codes. Moreover, SSD is a numerical index indicating the beams 
strength/stiffness distribution pattern along building height and varies from 1 to 3. It takes values 
ranging from 1 to 3 which correspond, respectively, to “Shear” and “Uniform” distributions 
described in Section 2.2. For a designed steel moment frame, stiffness and strength variation along 
height is not governed by any of the above mentioned bounding patterns, but it falls in between 
these two bounds. This is mainly due to structural elements geometry and their configuration in 
structure. Therefore, in the present study, following equation is suggested to calculate SSD value. 
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where Ii and Mi indicate, respectively, moment of inertia and plastic moment of ith story beams, 
and Vi represents design story shear calculated at ith story. According to Eq. (10), the overall SSD 
of a structure is computed by, first, calculating the SSD index at each story level using 
interpolation technique and, then, averaging the story indices over building height. In the 
following, posterior statistical characteristics of the model parameters and correlation between 

 
 

Table 1 Posterior statistics of the coefficients of the Eqs. (7)-(9) 

 Eq. (7) Eq. (8) Eq. (9) 

 μ* SD* Μ SD μ SD 

α1 -0.15 0.012 0.831 0.013 0.145 0.028 

α2 0.001 0.00013 0.175 0.0078 -0.1243 0.025 

α3 -0.335 0.008 0.0005 9.08e-05 ------- ------- 

α4 -4.795 0.143 -0.822 0.161 0.043 0.006 

σ 0.0134 0.00212 0.0344 0.0028 0.058 0.005 

* μ
: Mean; SD: Standard Variation 

 
 
Table 2 Correlation coefficients of the parameters of Eqs. (7)-(9) 

Correlation coefficients between parameters of the Eq. (7) 
 α1 α2 α3 α4 

α1 1.00    
α2 -0.78 1.00   
α3 -0.33 -0.05 1.00  
α4 -0.81 0.70 -0.15 10 

Correlation coefficients between parameters of the Eq. (8) 

 α1 α2 α3 4  
α1 1.00    
α2 -0.49 1.00   
α3 -0.62 -0.25 1.00  
α4 -0.36 -0.43 0.58 1.00 

Correlation coefficients between parameters of the Eq. (9) 

 α1 α2 α4 

α1 1.00   
α2 0.24 1.00  

α4 -0.83 0.096 1.00 
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them are respectively presented in the Tables 1-2. It is worthy noted that all above Bayesian 
regression-based relations are graphically investigated against diagnoses (such as normality, 
heteroscedasticity…) may suffer the reasonableness of the model. 

The potential dependency between demand model parameters, i.e., a and b, is also evaluated 
and regressed in Eq. (11). 

 

2

, 1.66 0.315 1.27 1.61
2a b

T
Sin T CY CY

N CY


  

          
 (11)

 
 
4. Numerical example 
 

As an application of the proposed relations, seismic fragility analysis for 4 and 5-story SMRF 
designed with respect to American Institute of Steel Construction (AISC) and ASCE 7-10 
specifications are performed. The building is rectangular in plane with a length of 22 meters and a 
width of 16 meters for 5-story building. Square plane with a length of 20 meters is also considered 
for four story building. The first story is 2.8 meter high, and the height of the remaining stories is 
3.2 meter. Two perimeter steel moment frames in each direction associated with composite steel 
deck floor are employed to carry lateral and gravity loads, respectively (See Fig. 4). 

The model takes advantage of the building’s regularity, so a two dimensional analytical model 
was used to perform IDA in longitudinal direction. The effect of gravity load system during 
nonlinear dynamic analysis is also considered by introducing leaning columns. Rigid zones are 
used to define the joint regions, and the inelastic behavior is concentrated at the end of beam and 
column elements. Table 3 shows beams and columns geometry. 

Also, the buildings characteristics intended for use with generic drift demand model are 
presented in the following table. It is worthwhile to mention that CY was directly obtained from 
pushover analysis. 

 
 

 
(a) (b) 

Fig. 4 Plan view of (a) four story-building; (b) five-story building 
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Table 3 Beam and column geometry 

STORY 
4-Story Building 5-Story Building 

Beam-Section Column-Section Beam-Section Column-Section 

1 IPE 450 TUBE 400×400×12 IPE 450 TUBE 350×350×12 

2 IPE 450 TUBE 400×400×12 IPE 450 TUBE 350×350×12 

3 IPE 400 TUBE 350×350×12 IPE 450 TUBE 350×350×12 

4 IPE 400 TUBE 350×350×12 IPE 330 TUBE 300×300×12 

5 ---- --- IPE 330 TUBE 300×300×12 

 
 

Table 4 The example buildings characteristics 

Number of stories T SSD CY 

4 0.74 2.05 0.29 

5 0.88 2.06 0.26 

 
 
4.1 Seismic fragility analysis 
 
Seismic fragility is defined as the conditional probability of attaining or exceeding a specific 

threshold value d for spectral acceleration equals x. Generally, fragility is computed by 
 

 
   

 

|

|

, | 1
Ln D Sa

Ln D Sa

Ln d
P D Sa d Sa x






  
              

 (12)

 
Where λLn(D|Sa) and σLn(D|Sa) are the median and standard deviation of the seismic demand given 

Sa in the logarithmic space. φ indicates cumulative standard normal distribution function. 
According to Eq. (12), probabilistic demand model is required to perform fragility analysis. Thus, 
maximum drift demand model, in the form of Eq. (5), is developed once based on Non-collapse 
data obtained from IDA, and once again using proposed relations. The results are presented in 
Tables 5-6. 

 
 

Table 5 Mean value of the demand model parameters computed using IDA 

Number of Story a b σD 

4 -3.520 0.858 0.408 

5 -3.155 0.954 0.355 

 
 

Table 6 Mean value of the demand model parameters computed by Eq. (7)~Eq. (9) 

Number of Story a b σD 

4 -3.514 1.071 0.447 

5 -3.376 1.049 0.437 
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(a) (b) 

Fig. 5 Fragility curves: (a) four-story building; (b) five-story building 
 
 

Table 7 Percentage errors at different exceedance probabilities 

4-
S

to
ry

 b
ui

ld
in

g 

Probability of exceedance d = 1% d = 3% d = 7% 

16% 

Sa-Exact 0.185 0.64 1.37 

Sa-predicted 0.30 0.815 1.49 

Percentage-error 62 % 27% 9.0% 

50% 

Sa-Exact 0.29 1.01 2.03 

Sa-predicted 0.45 1.23 2.08 

Percentage-error 55% 22% 2.5% 

84% 

Sa-Exact 0.46 1.55 2.93 

Sa-predicted 0.69 1.79 2.86 

Percentage-error 50% 15% -2.38 

5-
S

to
ry

 b
ui

ld
in

g 

16% 

Sa-Exact 0.178 0.54 1.23 

Sa-predicted 0.26 0.73 1.32 

Percentage-error 46% 35% 7.4% 

50% 

Sa-Exact 0.25 0.78 1.71 

Sa-predicted 0.39 1.1 1.85 

Percentage-error 56% 41% 8.2% 

84% 

Sa-Exact 0.36 1.12 2.34 

Sa-predicted 0.6 1.59 2.55 

Percentage-error 66% 42% 9% 

 
 
Seismic fragility analysis, using regression/IDA-based demand model, is performed for two 

example buildings, and results presented in the form of fragility curves are compared. Fragility 
curves are developed for d equals 0.01, 0.03 and 0.07 (Fig. 5). These values are quite arbitrary 
choice, but according to FEMA 350 limitation on collapse and immediate occupancy limit-states, 
it can be expected that selected thresholds reflect light to severe damage states and named SD1, 
SD2 and SD3 respectively. 

As shown in the Fig. 5, the results produced based on the proposed relations give an 
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appropriate agreement with the results obtained from building-specific demand models. Building-
specific demand models are referred to the models specifically developed for each of 4 and 5-story 
buildings using IDA. It should be also noted, the computational efforts required to develop 
fragility curves based on proposed relations would be dramatically less than what requires to 
develop same curves using IDA. To numerically examine accuracy of the regression equations-
based curves, percentage errors at exceedance probabilities equal 16%, 50% and 84% are 
computed and presented in the Table 7. 

According to the results of the Table 7 and considering the regression-based fragility curves are 
developed with much less computational efforts, it is concluded that implementing proposed 
regression equations in a seismic fragility analysis provide a reasonable approximation of the exact 
results, especially for damage-states having high consequences, i.e., SD2 and SD3, and would be 
important for decision making. For light damage state, i.e., SD1, albeit errors up to 66% are 
observed, it is not important for a decision maker due to low consequences imposed to the building. 
 
 
5. Conclusions 
 

The vision of the present study is to develop a technical basis on which probabilistic decision-
making analysis could be readily implemented for practical purposes. To this end, generic drift 
demand model of the regular low to mid-rise steel moment resisting frames are presented. The 
model considers aleatory and epistemic uncertainties by introducing model coefficients as random 
variables. A set of relations in terms of building characteristics are presented to estimate unknown 
model coefficients. These equations which are based on Bayesian regression technique eliminates 
need of time-consuming collecting data procedure. To demonstrate a novel application of the 
proposed relations, fragility curves are developed for two example buildings designed according to 
ASCE-07-10. The results are compared with those developed based on buildings-specific drift 
demand model. The results indicate that the proposed relations provide acceptable level of 
accuracy when implemented in probabilistic framework to develop fragility curve. Note that this 
level of accuracy is achieved with low computational cost in comparison with the convenient 
method proceeded based on time-consuming nonlinear dynamic analysis. Indeed, the main 
advantage on the use of proposed relations is balance between accuracy and computational cost 
which is appealing for practical purposes. 
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