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Abstract.    The dynamic characteristics of continuous steel-concrete composite beams considering the effect of 
interlayer slip were investigated based on Euler Bernoulli’s beam theory. A simplified calculation model was 
presented, in which the Mode Stiffness Matrix (MSM) was developed. The natural frequencies and modes of partial-
interaction composite continuous beams can be calculated accurately and easily by the use of MSM. Proceeding 
from the present method, the natural frequencies of two-span steel-concrete composite continuous beams with 
different span-ratios (0.53, 0.73, 0.85, 1) and different shear connection stiffnesses on the interface are calculated. The 
influence pattern of interfacial stiffness on bending vibration frequency was found. With the decrease of shear 
connection stiffness on the interface, the flexural vibration frequencies decrease obviously. And the influence on low 
order modes is more obvious while the reduction degree of high order is more sizeable. The real natural frequencies 
of partial-interaction continuous beams commonly used could have a 20% to 40% reduction compared with the 
fully-interaction ones. Furthermore, the reduction-ratios of natural frequencies for different span-ratios two-span 
composite beams with uniform shear connection stiffnesses are totally the same. The span-ratio mainly impacts on 
the mode shape. Four kinds of shear connection stiffnesses of steel-concrete composite continuous beams are 
calculated and compared with the experimental data and the FEM results. The calculated results using the proposed 
method agree well with the experimental and FEM ones on the low order modes which mainly determine the 
vibration properties. 
 

Keywords:    partial-interaction; steel-concrete composite continuous beam; shear connection stiffness; 
mode stiffness matrix; dynamic analysis 
 
 
1. Introduction 
 

Steel-concrete composite continuous beams have superior economic performance compared 
with simply supported composite beams for higher span/depth ratios and less deflection etc. (Nie 
et al. 2009). The flexible shear connectors, such as headed studs are usually used to connect the 
steel beam and concrete slab. Owing to the influence of elastic shear connection between two 
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components allowing them to slip relative to each other, so as to provide partial rather than full 
interaction. Furthermore, those composite structures can be subjected to different kinds of dynamic 
loadings, such as wind, earthquake, traffic and impact loadings. The vibration properties of partial-
interaction composite continuous beams need to be explored with an applicable method. 

Studies about dynamic characteristics of partial-interaction steel-concrete composite beams 
have been well established. The dynamic properties of simply supported composite beams with 
partial interaction were analyzed based on Euler-Bernoulli’s beam theory (Girhammar and Pan 
1993, Adam et al. 1997, Wu et al. 2007, Huang and Su 2008, Hou et al. 2012) and Timoshenko’s 
beam theory (Berczynski and Wroblewski 2005, Xu and Wu 2007, Ranzi and Zona 2009, Nguyen 
et al. 2012). The experimental researches (Biscontin et al. 2000, Berczynski and Wroblewski 2010, 
Zhang 2014) and numerical analyses (Inoue and Ishikawa 2010, Wroblewski et al. 2012, 
Chakrabarti et al. 2013) were also carried out. All above researches show that the interlayer slip of 
partial-interaction composite beam results in the decrease of natural frequency. What is more, the 
lower degree of interlayer shear connection, the greater the extent of natural frequency decrease is. 
However, most of these studies were based on single span beams with different boundary 
conditions, such as simply supported, clamped and free. The researches about composite 
continuous beams are relatively few, especially on dynamic properties. 

Traditional analysis procedure on the vibration of continuous beams by means of Dynamic 
Stiffness Matrix (DSM) and finite element method was widely used (Hayashikawa and Watanabe 
1985). And the general dynamic three-moment equation was adopted commonly. However, all of 
these researches are applicable to continuous beams with equal spans or composite beams with full 
interaction. Qi et al. (2010) created three dynamic models by utilizing the principle of force 
balance and deformation compatibility condition based on Euler-Bernoulli’s beam theory and 
Timoshenko’s beam theory. It turned out that the natural frequency reduced obviously and the 
dynamic responses increased significantly when considering the effect of interlayer slip and shear 
deformation while there was no apparent influence on dynamic performance whether taking 
vertical uplift into account or not. Shen et al. (2011, 2012) investigated the dynamic behavior of 
partial-interaction composite beams by the state-space method. It presented the natural frequencies 
of two-span composite continuous beams in different axial force and boundary conditions. The 
results showed that axial compressive force would decrease the natural frequencies and vice versa. 
Zhou et al. (2013) derived the governing differential equation and a new method for analyzing the 
free vibration characteristics of steel-concrete continuous composite box girder, based on Hamilton 
principle, with consideration of the shear lag effect, slip, shear deformation and rotational inertia 
was proposed. Results indicated that the interlayer slip had great influence on the natural 
frequency of the steel-concrete continuous composite box girder. As a result, it is essential to 
propose an applicable method which can be used to investigate the effects of interlayer slip on the 
dynamic characteristics of composite continuous beams definitely. 

In the present study, a new method, which utilized the Euler-Bernoulli’s beam theory, was 
presented to analyze the dynamic characteristics of partial-interaction composite continuous beams. 
It created a new model in which the mid-supports of continuous beam would be equivalent to the 
forced loads. And formulas for calculating the natural frequencies of composite continuous beam 
were derived. On the basis of the presented formulas, calculation and analyses on the dynamic 
characteristics of equal-span and unequal-span composite continuous beams were carried out. 
Besides, one dimensional finite element numerical simulations were made to verify the theoretical 
results. Clearer cognition about dynamic characteristics of partial-interaction composite 
continuous beams was gained through these researches. 
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2. Basic analysis model and calculation theory 
 

Referring to the previous researches, the governing differential equations of motion for 
composite beams have been derived based on Euler-Bernoulli’s beam theory (Girhammar and Pan 
1993, Adam et al. 1997, Wu et al. 2007, Huang and Su 2008, Hou et al. 2012). The exact dynamic 
analysis procedure in the next section will be based on their research results. And this section will 
give a brief introduction. Fig. 1 shows the steel-concrete composite beam model and its cross 
section parameters. The x-axis is the neutral axis of the full-interaction composite beam. Ei, Ii, Ai 
and mi (i = 1, 2) denote the Young’s modulus, area moment of inertia, cross-sectional area and the 
mass of the composite beam per unit length, respectively. L is the length of the beam and the 
symbols h, h1, h2, and y2, standing for a few distances, are plotted in Fig. 1. And h = h1 + h2 
signifies the distance of centroid of concrete slab to the centroid of steel beam. The support 
conditions are not specified, since they can be any kinds. 

There are four assumptions used in this mechanical model. 
 

(1) The model is based on Euler-Bernoulli’s beam theory which means the shear deformation 
and rotary inertia will not be considered and plane cross-section assumption is applied to 
concrete slab and steel beam. This assumption can be met since the height-to-length aspect 
ratio of steel-concrete composite beam is usually not very large and Xu and Wu (2007) 
have found that the shear deformation and rotary inertia made little difference on low 
order modes. 

(2) All the constitutive materials behave linearly and the deformations are small. The 
horizontal shear on the contact interface is proportional to the relative slip. 

(3) No transverse separation occurs on the contact interface of steel-concrete composite beam, 
therefore the steel beam and concrete slab meet the vertical deformation compatibility 
condition. Qi et al. (2010) found out that there was no apparent influence on dynamic 
performance whether taking vertical uplift into account or not. 

(4) The shear connectors between steel beam and concrete slab are continuous and uniformly 
distributed longitudinally which signifies the horizontal shear on the contact interface 
uniformly distributed longitudinally. Also the initial cohesive force and damping are 
neglected. 

 

Considering the free-body diagram of a differential element in the composite beam subject to 
transverse load as shown in Fig. 2. Moment, shear force, normal force and slip force per unit 
length are denoted as M, V, N and Qs, respectively. 

 
 

 
Fig. 1 Geometric parameters of steel-concrete composite beam and the coordinate system 
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Fig. 2 Differential element in the composite beam subject to a distributed transverse load 

 
 
A differential equation in terms of the displacement v (x,t) is derived based on the above 

assumptions (in the case of no axial force). 
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 is the equivalent flexural stiffness of the composite beam when the stiffness of the shear 

connector approaches infinity which means the full-interaction composite beam. Factor α2 varies 
with the shear connection degree, which represents the relative relationship between longitudinal 
shear stiffness and axial stiffness of components per unit length. Factor β2 indicates the flexural 
stiffness of the full-interaction composite beam increases 1/β2 times compared to the non-
interaction composite beam. 

 
 

 
(a) 1st order (n = 1) (b) 2nd order (n = 2) (c) 3rd order (n = 3) 

Fig. 3 Relationships of ζn‒ β
2 and ζn‒(αL)2 
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Taking into consideration of the simply supported boundary conditions, the formula for 
calculating the natural frequencies of partial interaction composite beam can be expressed as 

 

n n n     (2)
 

where subscript n denotes the n-th order mode of composite beam. And ζn is a reduction factor of 
n-th order natural frequency of partial-interaction composite beams relative to full-interaction ones 
which are represented by .~
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Fig. 3 demonstrates the effects of the parameter β2 and (αL)2 upon the reduction factor ζn. It is 

readily found that relationship of ζn and β2 is a positive correlation. For a composite beam with 
uniform cross section and certain materials, parameter β2 is a constant. The reduction factor ζn 
gradually tends to 1 with the increase of the parameter (αL)2. And it has a wider effect range on 
higher orders. 

As a result, it can be known that the effect of connection degree on composite beams is 
significant. Especially, it directly influences the dynamic characteristics of composite beams. The 
reduction factor ζn varies with shear connection stiffness. All above analyses are based on simply 
supported beam. However, composite continuous beams are used more frequently in the actual 
projects. It is essential to have a clear understanding on the vibration properties of part-interaction 
composite continuous beams. 

 
2.1 Natural vibration characteristics analysis 
 
Fig. 4 shows the calculation model of continuous steel-concrete composite beam. The mid-

supports are substituted equivalently for the forced loads Pi (t). The origin of coordinates is at the 
first support and the coordinate value of the i-th mid-support is defined as xi. (i = 1, 2, 3…N, and N 
indicates the number of mid-supports). As a result, the vibration problem of continuous steel- 

 
 

 
Fig. 4 The calculation model of continuous composite beam and the coordinate system 
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concrete composite beam is equivalent to the forced vibration problem of simply supported 
composite beam. And two conditions must be considered: (i) the boundary condition is same as the 
simply supported beam; (ii) the mid-supports meet the continuity condition including the 
continuity of force and deformation. Given that the varying patterns with time of constrained 
forces of mid-supports are same as the natural vibration of composite continuous beam. And the 
following formulas are satisfied. 

 

( , ) ( ) j tv x t x e    (5)
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Substituting Eqs. (5)-(7) into Eq. (1) yields 
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Introducing a parameter 
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Making the Laplace transform of Eq. (9) produces 
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where the superscript (i) (i = 1, 2, 3, 4, 5) indicates the differential to coordinate x. Considering the 
boundary condition of simply supported beam and Eq. (11) can be simplified as 
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Focusing on the formula as follow 
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2 6 2 4 2 2 2 2+ 0s s t s t      (13)
 
Introducing a symbol Λ = s2, Eq. (13) becomes 
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It is a cubic equation of one variable. It can be shown that all three roots of Eq. (14) are real 
and one is negative while the other two are positive (see Appendix A in detail). Letting Λ1 < 0, Λ2 
> 0, Λ3 > 0 and they can be calculated as 
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So the six roots of Eq. (13) are s1,2 =  λ1j, s3,4 =  λ2, s5,6 =  λ3, (j is the imaginary unit.), with 
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Where constants ci (i = 1, 2, 3, 4, 5, 6) can be determined by the boundary conditions. And H(x 
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Taking into consideration of the boundary conditions of simply supported beam, ci can be 

obtained (see Appendix B in detail) 
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2 4 6 0c c c    (21)
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Substituting Eqs. (21)-(23) into Eq. (19), the mode shape function of composite continuous 

beam can be got 
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Letting x = xk (k = 1, 2, 3…N), and considering the deformation constraint conditions at each 

supports in Eq. (6). Eq. (25) becomes 
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The Eq. (26) can be expressed as 
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For the full-interaction composite beam, Aki can be expressed as 
 

 sin ( )sin sinh ( )sinh
sinh ( ) sin ( ) ( )

sin sinh
i k i k

ki k i k i k i

L x x L x x
A x x x x H x x

L L
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 

 
 

        (29)
 

where 
 

4
1

~
2











IE

m
t

  (30)

 

And Aki means the deformation value in the k-th support when i-th support under unit force. 
The matrix A is named “Mode Stiffness Matrix (MSM)” in this paper. It has following 
characteristic 

ki ikA A  (31)
 
The Eq. (31) can be proved easily by Eqs. (28)-(29). And it means MSM is a symmetric matrix. 

In the consideration of function H (x ‒ xi) in Eq. (20), Aki (k ≤ i) can be simplified as 
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 (32)

 

And for the full-interaction composite beam 
 

sin ( )sin sinh ( )sinh

sin sinh
i k i k

ki

L x x L x x
A

L L

   
 

 
   (33)

 
Making a discussion of the Eq. (27): 
 

(1) When Pi = 0 (i = 1, 2, 3…N), Eq. (27) is always true obviously, that is the antisymmetric 
modes of continuous composite beam with equal spans and uniform cross section. In this 
case, its vibration performance is equivalent to the simply supported composite beam, as 
shown in the Fig. 5. 
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(a) Mode equivalent of the first antisymmetric vertical mode 
 

(b) Mode equivalent of the third antisymmetric vertical mode 

Fig. 5 Antisymmetric mode equivalent of continuous composite beam with equal spans and uniform 
cross section 

 
 

As a result, the natural frequencies of composite continuous beam can be calculated by Eq. 
(2). And the L in Eq. (2) can be defined as the length of a single-span of composite 
continuous beam. 

(2) In another case, A non-trivial solution of the Pi, (i = 1, 2, 3…N) can be obtained only when 
the determinant of the MSM vanishes. In this manner, the following frequency equation 
for composite continuous beam is determined 

 

11 12 1

21 22 2

1 1

0

N

N

N N NN

A A A

A A A

A A A







   



or  0A (34)

 
 
3. Application and discussion 
 

In this section, numerical examples are presented for illustrating the proposed method and 
depicting the effect of shear connection stiffness of connectors upon the frequencies of the partial-
interaction composite continuous beams. Fig. 6 shows the cross section of the beams. The shear 
stiffness of a single shear connector is determined by push-out test result (Zhang 2014). As shown 
in the Fig. 7, the total Q-s constitutive relationship of a stud in nonlinear. Johnson and May (1975) 
defined the tangent stiffness on the point of half ultimate capacity of studs as shear stiffness. Wang 
(1998) suggested the shear stiffness could be valued as tangent stiffness when slip was equal to 0.8 
mm. Nie (2011) proposed a formula (Eq. (35)) to calculate the shear stiffness of a single shear 
connector based on a mass of experiments. Chinese specification GB 50017-2003, “Code for 
design of Steel structures” (2003), presented a method to calculate the shear stiffness of studs, as 
shown in Eq. (36). 

=0.66 uK V  (35)
 

c
v=K N  (36)

 
where Vu and 

c
vN  both denote the ultimate capacity a single shear connector. 

According to above different methods, the values of shear connection stiffness for a single 
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Fig. 6 Cross section of the continuous 
composite beam (mm) 

Fig. 7 Q-s constitutive relationship 
of a single stud 

Fig. 8 Computation 
procedures 

 
 

connector are 61.8 kN/mm (Johnson and May 1975), 54.3 kN/mm (Wang), 37.5 kN/mm (Nie), 
56.9 kN/mm (Chinese specification GB 50017-2003), respectively. The first two results are 
approximate to the result obtained by Chinese specification GB 50017-2003. Therefore, the 
average of first two results is defined as the shear connection stiffness of a single connector in this 
paper. The value is 57.6 kN/mm. 

The shear connection stiffness of the shear connector per unit length can be defined as 
 

/s sk n K p  (37)
 

where ns, K, p denote the transversal rows of stud connectors, shear connection stiffness of a single 
connector, and longitudinal space, respectively. The composite continuous beams are divided into 
two kinds, one is with equal spans and the other is with unequal spans. And the mathematical 
software MATLAB is used to calculate the natural frequencies of the composite continuous beams. 
The computation procedures are showed in Fig. 8. 

Due to the effect of computing time, two-span continuous beams with the different span-ratios 
are calculated. The span-ratios, 0.58 (2.8 m + 4.8 m), 0.73 (3.2 m + 4.4 m), 0.85 (3.5 m + 4.1 m), 
1.00 (3.8 m + 3.8 m), are chosen. The shear connection stiffnesses of connectors per unit length ks 
(N/mm2) are taken as 200 N/mm2 to 1000 N/mm2 at intervals of 100 N/mm2. And four particular 
values, 311.4 N/mm2, 384 N/mm2, 500.9 N/mm2, 768 N/mm2, are also chosen in order to make a 
comparison with some experimental and computational results. 

Fig. 9 shows the first six modes of two-span continuous beams. To illustrate the different span-
ratios, four sub-labeled (a)-(d) are presented. They indicate the span-ratios, 0.58, 0.73, 0.85, 1.00, 
respectively. For the two-span continuous beams, with the decrease of span-ratio, the modes will 
change. Seen from the vibration energy perspective, it’s a process of energy transmission. When 
span-ratio is small, the vibration of long span is excited more easily than the short span. As a result, 
the wave number of a certain mode on short span will decrease while it increases on long span 
with the reduction of span-ratio. 

Fig. 10 shows that how the frequencies change in different shear connection stiffnesses (a) and 
the frequency reduction ratios of partial-interaction composite beams to fully-interaction ones (b). 
It turns out, however, that with the shear connection stiffness increasing, so does the frequency of 
composite continuous beam. And it changes closely in a linear trend with the increase of mode 
order. The natural frequencies of composite continuous beams with equal spans have several 
compact zones. It’s same as the general continuous beams. And the other continuous beams with 
unequal spans are between each pair of compact zones. By comparison with the fully- interaction 
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Fig. 9 First six modes of two-span continuous beams with different span-ratios 
 
 

composite beams, the frequencies of partial-interaction ones get a reduction. That means the real 
natural frequencies of partial-interaction continuous beams commonly used could have a 20% to 
40% reduction compared with the fully-interaction ones. Besides, the higher modes order, the 
higher reduction is. And span-ratios have little effect on the reduction of the natural frequencies. 
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Fig. 10 Natural frequencies of two-span composite continuous beams with different span-ratios and 
shear connection stiffnesses 

 
 

 
(a) A view of the beam (b) Cross-section (c) Element selection 

Fig. 11 The FE model of the steel-concrete composite beam 
 
 

4. Verification of numerical analysis results 
 

This section will give the experimental results and computational results based on FE software 
ANSYS to verify the theoretical and numerical results. And the experimental results refer to Zhang 
(2014) which carried out four ordinary steel-concrete composite beams (CB1~CB4) with the 
different shear connection stiffness on the interlayer. The values of ks (N/mm2) are 311.4, 384.0, 
500.9, 768.0, respectively. 

The finite element model is established for the continuous composite beams, as shown in Fig. 
10. The concrete slab and steel beam are modeled, respectively, with elements SOLID 65 and 
SHELL 43. The nonlinear spring element COMBIN39 is selected to simulate the stud connector. 
And the conjunction nodes between concrete slab and steel beam are coupled on the vertical and 
transverse direction, but not on the longitudinal direction. The shear connection stiffness of a 
single connector is 57.6 kN/mm. Applying the same parameters showed in Fig. 6 to the FE model, 
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Table 1 Natural frequencies and modes of composite continuous beams (vertical bending vibration) 

Mode 
order 

Ks/ 
N/mm 

(3.8 m + 3.8 m) (4.8 m + 2.8 m) 

Mode shape and 
frequencies by FEM/Hz 

Theoretical
results/Hz

Experimental
results/Hz 

Mode shape and 
frequencies by FEM/Hz 

Theoretical
results/Hz

The 1st 

311.4 

 

30.20 29.72 28.74 

 

23.46 23.43 

384.0 30.49 30.42 29.99 23.68 23.97 

500.9 30.71 31.29 31.25 23.88 24.63 

768.0 31.07 32.56 32.52 24.16 25.60 

The 2nd 

311.4 

 

41.69 42.39 — 

 

58.38 58.17 

384.0 42.58 43.35 — 59.31 59.52 

500.9 42.90 44.65 — 60.0 61.33 

768.0 43.79 46.82 — 61.32 64.38 

The 3rd 

311.4 

 

105.93 102.33 97.18 

 

71.63 79.35 

384.0 108.65 104.33 99.54 72.78 80.89 

500.9 109.95 107.19 102.52 73.80 83.07 

768.0 113.32 112.41 109.90 75.50 87.01 

The 4th 

311.4 

 

120.26 125.84 — 

 

140.56 148.59 

384.0 123.95 127.79 — 143.70 150.90 

500.9 124.80 130.65 — 146.87 154.30 

768.0 128.50 136.11 — 152.03 160.86 

The 5th 

311.4 

 

185.85 217.40 194.13 

 

163.90 201.32 

384.0 191.35 220.04 198.07 168.34 203.77 

500.9 194.57 224.05 201.37 170.92 207.46 

768.0 202.76 232.14 205.41 177.87 214.86 

The 6th 

311.4 

 

190.02 252.79 — 

 

201.05 260.15 

384.0 199.15 255.30 — 206.85 262.78 

500.9 202.40 259.12 — 211.24 266.78 

768.0 209.30 266.98 — 220.07 274.99 
 
 

the natural frequencies and mode shapes are computed, as described in Table 1. 
Tables 1-3 show the results and ratios of computational and experimental data of first six 

vertical bending vibration frequencies. As presented in Tables 1-2, theoretical results are little 
higher than the experimental results. And it shows the results calculated by proposed method agree 
well with the experimental results, with mean fMSM / FEXP values of below 1.12, and standard 
deviation values of below 0.016. Besides, the difference shows almost no change with the increase 
of shear connection stiffness. However, it shows a rising trend with the increase of mode orders, 
i.e., the mean value increases from 1.01 to 1.12. It is closely related to the local distortion since 
MSM is based on the Euler-Bernoulli beam theory. The stiffness of composite beam based on the 
proposed theoretical model will be little higher than the actual structure. Besides, the shear 
connector and natural cohesive action between concrete slab and steel beam are not completely 
equivalent to the uniformly distributed shear force. 
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Table 2 MSM method versus experiment and FEM results of first six natural frequencies (3.8 m + 3.8 m) 

Ks/ 
N/mm 

EXPMSM

VBVB ii ff * FEMMSM

VBVB ii ff * 

1st order 3rd order 5th order 1st order 2nd order 3rd order 4th order 5th order 6th order

311.4 1.03 1.05 1.12 0.98 1.02 0.97 1.05 1.17 1.33 

384.0 1.01 1.05 1.11 1.00 1.02 0.96 1.03 1.15 1.28 

500.9 1.00 1.05 1.11 1.02 1.04 0.97 1.05 1.15 1.28 

768.0 1.00 1.02 1.13 1.05 1.07 0.99 1.06 1.14 1.28 

Mean 1.01 1.04 1.12 1.01 1.04 0.97 1.05 1.15 1.29 

Standard 
deviation 

0.016 0.013 0.009 0.028 0.025 0.014 0.012 0.011 0.026 

* EXPMSM

VBVB ii ff and FEMEXPMSMFEMMSM

VBVBVBVBVB
  ,  ,: iiiii fffff denote the natural frequency of i-th vertical bending 

vibration mode gained by presented theoretical method based MSM, experiment and FEM, respectively 
(similarly hereinafter) 

 
 

Table 3 MSM method versus FEM results of first six natural frequencies (4.8 m + 2.8 m) 

Ks/ 
N/mm 

FEMMSM

VBVB ii ff * 

1st order 2nd order 3rd order 4th order 5th order 6th order 

311.4 1.00 1.00 1.11 1.06 1.23 1.29 

384.0 1.01 1.00 1.11 1.05 1.21 1.27 

500.9 1.03 1.02 1.13 1.05 1.21 1.26 

768.0 1.06 1.05 1.15 1.06 1.21 1.25 

Mean 1.03 1.02 1.12 1.05 1.22 1.27 

Standard 
deviation 

0.026 0.024 0.020 0.004 0.009 0.019 

 
 
 
As can be seen in Tables 1 and 3, the first six vertical bending frequencies calculated by the 

MSM and FEM are compared. The comparisons show good agreement between the experimental 
and predicted frequencies, with mean f MSM / f FEM values of below 1.29 (3.8 m + 3.8 m) and 1.27 
(4.8 m + 2.8 m), and standard deviation values of below 0.028 and 0.026, respectively. Similarly, 
the shear connection stiffness has little effects on the difference of the same order. Overall, it 
shows a rising trend with the increase of mode orders. The solid and shell element used on FE 
analysis could generate local deformation. The spring element is also not really match the real stud 
connector. So, the relative deviations between the theoretical results and FEM results are inevitable. 

Although the relative deviations get lager with the increase of order, in actual practice, the low 
order modes are focused on more since the vibration properties of composite beam are determined 
by them to great extent. The mean frequency ratios of the first four orders are below 1.05 (equal 
spans) and 1.12 (unequal spans). Consequently, the results gained by present calculation method 
based on MSM are consistent with the experimental and FEM results well as a whole. And it meet 
the needs of practical engineering. 
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5. Conclusions 
 

On the strength of previous researches, a “Model Stiffness Matrix (MSM)” was obtained from 
an exact analysis procedure based on the one-dimensional linear elastic partial-composite action 
theory. The natural frequencies and modes of composite continuous beams can be calculated 
accurately by the MSM with the help of mathematical software. The proposed method is general in 
nature and can be applied to different span arrangement, material and geometry parameters. And 
an exact analysis of natural vibration properties of composite continuous beams with different 
span-ratios and shear connection stiffnesses on the interface was carried out by use of the present 
method. The previous experimental and finite element results were compared to verify the 
theoretical results. Several main conclusions that can be drawn from above investigations: 

 
 The natural frequencies of composite continuous beam increase in a linear trend along with 

the shear connection stiffnesses on the interface. The natural frequencies of composite 
continuous beams with equal spans have several compact zones. It’s same as the general 
continuous beams. And natural frequencies of the other continuous beams with non-equal 
spans are between each pair of compact zones. 

 It’s obviously that the frequencies of partial-interaction composite continuous beams get a 
reduction compare with the fully-interaction ones. And the real natural frequencies of 
partial-interaction composite continuous beams commonly used could have a 20% to 40% 
reduction. The higher order and the lower shear connection stiffness, the higher reduction. 
Meanwhile, the reduction ratio is in the inverse proportional relationship to the shear 
stiffness of connectors. And its magnitude of higher order modes is bigger. The higher order, 
the smoother variation trend is. In addition, span-ratio has little effects on the reduction of 
the natural frequencies. 

 With respect to the natural frequencies of low order modes which mainly determine the 
vibration properties, the results conduct by experiments and FEM agree well with the results 
gained by present theoretical method based on MSM. In other words, the present method 
has enough precision and meet the needs of practical engineering. 

 
As a result, the reduction of natural frequencies for partial-interaction composite continuous 

beams cannot be ignored. And the proposed method will help a lot to make the dynamic analyses 
of composite continuous beams. 

In the analysis, however, the influence of shear deformation, rotary inertia and other nonlinear 
factors was not considered, and the MSM was derived from the specific boundary condition which 
was simply supported and with uniform section. It’s worth mentioning that further research on 
those aspects is in the works. 
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Appendix A 
 
 
Solutions of Eq.(14) 
 
Eq. (14) can be wrote as 
 

2 3 2 2 2 2 2 0t t         (A1)
 
And comparing to the standard form of a cubic equation in one variable can be wrote as ax3 + bx2 

+ cx + d = 0, the real coefficients a, b, c and d in Eq. (A1) can be got 
 

2 2 2 2 2, , ,a b c t d t        (A2)
 
In order to work out the Eq. (A1), three constants should be introduced 
 

2 4 2 23 3A b ac t     (A3)
 

2 2 29 (1 9 )B bc ad t      (A4)
 

2 2 2 43 ( 3 )C c bd t t     (A5)
 
And there is a discriminant Δ of Eq. (A1) 
 

8 2 6 4 4 4 4
2 4 4 4

4 2 4 2

12 12 3 54
4 ( 81 )

t t t t
B AC t

   
   

        
 

(A6)

 
In consideration of β2 < 1, it is clear that 
 

8 2 6 8 2 6 4 4
4 4

4 2 4 2 3

12 12 24
12 2 24

t t t t t
t

   
    

      (A7)
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
 and 

4 4
4 4

4

3
3

t
t

 



 

(A8)

 
Substituting Eqs. (A7)-(A8) into Eq. (A6) produces 
 

0  (A9)
 
It means that Eq. (A1) has three different real roots and one is negative while the other two are 

positive by using the relation of roots and coefficients a, b, c, d 
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(A10)

 
Going further, three roots can be obtained 
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(A10)

 
where 
 

arccosT  , 
 

6 2 2 2 2 2 4

3 4 2 2 3

2 3 2 9 27

2 2 ( 3 )

Ab aB t t
T

A t

    

 

   
 


(A10)

 
And A > 0, ‒1 < T < 1 must be met. 
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Appendix B 
 
 
Solutions of constants ci (i = 1, 2, 3, 4, 5, 6) 
 
Considering the boundary conditions of simply supported beam 
 

2 4 6(0) 0c c c     (B1)
 

(2) 2 2 2
2 1 4 2 6 3(0) 0c c c        (B2)

 
(4) 4 4 4

2 1 4 2 6 3(0) 0c c c       (B3)
 
Eqs. (B1)-(B3) can be wrote as 
 

2
2 2 2

1 2 3 4
4 4 4

1 2 3 6

1 1 1

0

c

c

c

  
  

   
       
      

(B4)

 
And the determinant of coefficient matrix 
 

2 2 2 2 2 2 2 2 2
1 2 3 1 2 1 3 3 2
4 4 4

1 2 3

1 1 1

( )( )( ) 0        
  
      (B5)

 
In other words 
 

2 4 6 0c c c   (B6)
 
Meanwhile, another three equations can be got when considering the boundary conditions 
 

2 2
1 1

1 1 3 2 5 3 2 2 2 2
1 1 2 1 3 1

2 2 2 2
2 2 3 3

2 2 2 2 2 2 2 2
2 1 2 3 2 3 1 3 2 3

( )sin ( )
( ) sin sinh sinh

( )( )

( )sinh ( ) ( )sinh ( )
0

( )( ) ( )( )

N
i

i
i

i i

L x
L c L c L c L P

L x L x

  
  

    

     
         



  
       

   
      



 

(B7)

 
2 2 2

(2) 2 2 2 1 1 1
1 1 1 3 2 2 5 3 3 2 2 2 2

1 1 1 2 1 3

2 2 2 2 2 2
2 2 2 3 3 3

2 2 2 2 2 2 2 2
2 1 2 3 2 3 1 3 2 3

( )sin ( )
( ) sin sinh sinh

( )( )

( )sinh ( ) ( )sinh ( )
0

( )( ) ( )( )

n
i

i
i

i i

L x
L c L c L c L P

L x L x

   
     

    

       
         



  
        

   
      



 

(B8)
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4 2 2
(4) 4 4 4 1 1 1

1 1 1 3 2 2 5 3 3 2 2 2 2
1 1 2 1 3 1

4 2 2 4 2 2
2 2 2 3 3 3

2 2 2 2 2 2 2 2
2 1 2 3 2 3 1 3 2 3

( )sin ( )
( ) sin sinh sinh

( )( )

( )sinh ( ) ( )sinh ( )
0

( )( ) ( )( )

n
i

i
i

i i

L x
L c L c L c L P

L x L x

   
     

    

       
         



  
       

   
      



 

(B9)

 
The constants c1, c3, c5 can be obtained from Eqs. (B7)-(B9) 
 

2 2
1 1

1 2 2 2 2
1 1 2 1 3 1 1

( )sin ( )

( )( )sin

n
i

i
i

L x
c P

L

  
     

 


  (B10)

 
2 2
2 2

3 2 2 2 2
1 2 1 2 3 2 2

( )sinh ( )

( )( )sinh

n
i

i
i

L x
c P

L

  
     

 


  (B11)

 
2 2
3 3

5 2 2 2 2
1 3 1 3 2 3 3

( )sinh ( )

( )( )sinh

n
i

i
i

L x
c P

L

  
     

 


  (B12)
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