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Abstract.   The paper concerns analysis of effects of shrinkage of slab concrete in a steel-concrete composite deck 
of a through truss bridge span. Attention is paid to the shrinkage alongside the span, i.e., transverse to steel-concrete 
composite cross-beams. So far this aspect has not been given much attention in spite of the fact that it affects not only 
steel-concrete decks of bridges but also steel-concrete floors of steel frame building structures. For the problem 
analysis a two-dimensional model is created. An analytical method is presented in detail. A set of linear equations is 
built to compute axial forces in members of truss girder flange and transverse shear forces in steel-concrete composite 
beams. Finally a case study is shown: test loading of twin railway truss bridge spans is described, verified FEM 
model of the spans is presented and computational results of FEM and the analytical method are compared. 
Conclusions concerning applicability of the presented analytical method to practical design are drawn. The presented 
analytical method provides satisfactory accuracy of results in comparison with the verified FEM model. 
 

Keywords:    concrete shrinkage; transverse shear forces; through truss bridge; steel-concrete composite 
deck 
 
 
1. Introduction 
 

European standards require railway bridges to have tracks placed in a gravel bed. To reduce 
construction depth the deck is often situated between a pair of main girders, near their bottom 
edges. In such cases concrete gravel bed of steel bridges is usually connected to cross-beams – 
steel-concrete composite deck. An example of such structure is a railway through truss bridge 
shown in Fig. 1. 

The deck is connected to truss girder bottom flanges at their modes and between them. Since 
the flanges carry substantial bending their height is significantly larger than in classic truss girders. 
To limit dimensions of gusset plates the flanges are situated eccentrically in reference to the 
theoretical layout of truss members – Fig. 1, bottom left. 

Usually joint action of the deck and truss girders occurs in the span type shown in Fig. 1. It is 
possible because shear connectors located at the interface of steel cross-beam and concrete slab 
transfer not only longitudinal shear forces (labelled “1” in Fig. 2(a)) but also transverse shear 
forces (labelled “2” in Fig. 2(a)). The longitudinal forces (“1”) are caused mainly by cross-beam 
bending in vertical plane. The transverse shear forces (“2”) occur due to span bending, uneven 
heating/cooling of the deck and girders as well as shrinkage of deck slab concrete. 
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Fig. 1 An example of through truss railway bridge with steel-concrete composite deck: elevation 
(top left), cross-section (right) and theoretical layout of truss girder members (bottom left) 

 
 

(a) (b) 

Fig. 2 (a) Cross-beam to girder flange connection (symbols explained in the text); (b) Steel-concrete 
composite deck of a railway through truss bridge: 1 – bottom flange of a truss girder, 2 – RC 
deck slab, 3 – steel cross-beam, 4 –bottom wind bracing plane, 5 – wind bracing gusset plate 

 
 
Intensity of the joint action of the deck and truss girders depends on the stiffness of connection 

between the deck and truss girder flanges adjacent to the deck. The stiffness depends on the 
torsional and flexural (in the horizontal plane) deformability of steel cross-beams within the width 
of the deck slab as well as the deformability of “connecting members”. Such “connecting member” 
is shown in Figs. 2(a) and (b). It consists of a part of steel cross-beam beyond the outermost shear 
connector and the stiffening rib of truss girder flange. The cross-beam web is connected to the rib 
with a pair of steel plates. The connection is usually stiffened in horizontal plane by gusset plates 
of wind bracing – Fig. 2(b). Such arrangement of the connection is responsible for the cross-beam 
torsion – shear forces labelled “2” in Fig. 2(a) are applied to a cross-beam at the plane of its top 
flange while resultant shear forces at the cross-beam tips are transferred to truss girder flanges 
approximately at the half-height of the cross-beam web. 

The joint action of the deck and truss girders provided by the „connecting members” 
unfavourably affects durability of the steel-concrete composite deck and its connection to truss 
girders. The unfavourable effects increase with span length. That is why bridge spans over 50 m 
long have the deck divided into sections with expansion joints in concrete slab – Fig. 3. 

1238



 
 
 
 
 
 

Analysis of concrete shrinkage along truss bridge with steel-concrete composite deck 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 3 Division of deck slab (darkened) into sections (symbols || mark expansion joints in concrete 
slab): (a) no expansion joints; (b) one expansion joint; (c) two expansion joints 

 
 
2. Effects of shrinkage of concrete deck slab 
 

Shrinkage of concrete slab of steel-concrete composite deck induces both types of shear forces 
at the steel-concrete interface (marked “1” and “2” in Fig. 2(a)). The effects of shrinkage alongside 
steel-concrete composite beams (in the direction of forces marked “1”) have been investigated by 
Roll (1971), Montgomery et al. (1983) and Zuk (1961). Current analytical methods of analysis that 
account for material nonlinearities, time dependency and connectors flexibility have been applied 
by Johnson (1987), Bradford and Gilbert (1989), Gilbert and Bradford (1995), Ranzi and Bradford 
(2006). Recent analyses of concrete shrinkage effects in steel-concrete composite beams concern 
long-term flexural stiffness and have been presented by Fan et al. (2010a, b), Al-Deen et al. 
(2011a, b). Reviews of current achievements have been completed by Tanebe et al. (2009) and 
Ranzi et al. (2013). On the contrary the effects of concrete shrinkage in the direction transverse to 
a group of steel-concrete composite beams have not been investigated so far. The effects occur not 
only in such decks of bridge spans but also in steel structure buildings with steel-concrete 
composite floors. 

The slab concrete shrinkage alongside a bridge span with steel-concrete composite deck (i.e., 
transverse to the cross-beams) causes the following: 

 

– tension of concrete slab, 
– bending of cross-beams in horizontal plane, 
– torsion of cross-beams, 
– compression and bending of main girders. 
 

A method of analysis of the mentioned phenomena is described in the following chapters of 
this paper. 
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3. Assessment of concrete shrinkage effects with finite element method 
 

Finite element method analyses of shrinkage effects in composite beams accounting for 
material nonlinearities, such as concrete cracking, connector flexibility have been reported by 
Kwak and Seo (2002), Fragiacomo et al. (2004), Virtuoso and Vieira (2004), Jurkiewiez et al. 
(2005), Ranzi (2006), Gara et al. (2006), Chaudhary et al. (2009), Sakr and Sakla (2008). However 
advanced and thorough the analyses are, their application in structural design and assessment of 
shrinkage effects in engineering structures is rather limited. 

A useful method of FEM assessment of the effects of concrete shrinkage is based on application 
of an equivalent loading, as reported by Kianoush et al. (2008), Ma and Gao (2006). Namely it is 
uniform cooling applied to FE elements modelling concrete members. Since the coefficient of 

thermal expansion of concrete equals ,
1

101 5

C
 the value of concrete shrinkage of 

εs = 1·10‒5 refers to equivalent cooling of T = 1C. 
Such approach may be applied in the case of a concrete slab of steel-concrete composite decks 

in through truss bridges. To do so the concrete slab should be modelled with shell elements or 
brick elements. 
 
 
4. Analytical method of assessment of concrete shrinkage effects 
 

4.1 Initial assumptions 
 
The described construction of steel-concrete composite deck and the way it is connected to 

truss girders require rather complex analysis, hardly useful in engineering practice. Thus some 
simplifying assumptions are made: 

 

– effects of concrete shrinkage alongside a bridge span do not depend on concrete shrinkage 
across the bridge, 

– concrete strain due to shrinkage is constant across the slab width, 
– shear connectors at the steel-concrete interface are rigid – absence of concrete slab slip over 

steel cross-beams, 
– steel-concrete composite cross-beams behave as rigid bodies in horizontal plane – absence 

of bending in horizontal plane and torsion. 
 
4.2 Strain and deformation analysis 
 
4.2.1 Computational model 
Two-dimensional computational model is created to analyze effects of concrete shrinkage 

alongside a bridge span – Fig. 4. It refers to a half of a single section of a deck slab (Fig. 3) – 
between expansion joints – up to longitudinal symmetry axis. The model consists of deck slab 
(labelled “2” in Fig. 2(b)), cross-beams (labelled “3” in Fig. 2(b)) and the truss girder flange 
adjacent to the deck (labelled “1” in Fig. 2(b)) – the bottom flange is assumed. The flange is 
simply supported at its ends. Appropriate kinematical constraints are introduced along span 
longitudinal symmetry axis. The only load carried by the modelled structure is concrete shrinkage. 

Fig. 4 shows numbering of slab spans (span …) and cross-beams (Pp…) as well as introduces 
the following symbols: Ea, Ec – elastic module of steel and concrete, respectively, Aa,i, Ac – cross- 
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Fig. 4 Computational model for analysis of shrinkage of concrete slab in steel-concrete composite 
deck of a through truss bridge 

 
 

section area of the i-th member of the truss girder flange adjacent to the deck and cross-section 
area of half of the deck slab respectively, ri – lengths of the i-th deck slab span, equal to the length 
of the i-th member of the truss girder flange adjacent to the deck, b/2 – half of deck slab width, d – 
distance between truss girder longitudinal symmetry plane and the outermost shear connectors 
situated on steel-concrete composite cross-beams, δc,i – displacements of the i-th cross-beam, wi – 
relative displacements alongside the bridge span of the tips of the i-th “connecting member”, 
caused by its deformation in horizontal plane, Δra.i – deformation of the i-th member of the truss 
girder flange adjacent to the deck. 

The deformations δc,i, wi and Δra.i result from the shrinkage of slab concrete alongside a bridge 
span. 

 
4.2.2 Deformation of a “connecting member” 
In general the ability of a planar computational model to replicate the response of the spatial 

system of through truss bridge span to concrete shrinkage is limited. In detail the flexural stiffness 
of a “connecting member” in horizontal plane and its torsional stiffness are difficult to establish 
precisely. The main reasons for that are plate action of flange rib, flexibility of steel-to-concrete 
connection in steel-concrete composite cross-beam and local stiffening provided by gusset plate of 
wind bracing. Hence the following technique is applied: 

 
– the stiffness of a “connecting member” is taken as stiffness of steel cross-beam itself, 
– variable boundary conditions for a “connecting member” are considered to take into account 

a spectrum of possible responses of through truss bridge span, 
– three sets of boundary conditions in the horizontal plane for a “connecting member” are 

considered: fixed/fixed (Fig. 5(a)), fixed/hinged (Fig. 5(b)) and “averaged” of the two. 
 
So the behaviour of a “connecting member” in the horizontal plane is described by the equation: 
– for the fixed-fixed boundary conditions (Fig. 5(a)) 
 
 

 
(a) (b) 

Fig. 5 Boundary conditions for a “connecting member”: (a) fixed/fixed; (b) fixed/hinged 
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– for the fixed-hinged boundary conditions (Fig. 5(b)) 
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– for the “averaged” of the two above 
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where: wi – deformation of the i-th “connecting member” (m), Pi – horizontal force acting 
perpendicular to the i-th cross-beam (kN), d – length of the “connecting member” (m), Ea – 
modulus of elasticity for steel (MPa), Iah – moment of inertia of the “connecting member” in 
bending in horizontal plane (m4). 

The force Pi equals the difference of longitudinal forces in the members of truss girder adjacent 
to the cross-beam in question 
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For clarity of notation the following coefficient is introduced 
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So the displacement wi equals 
 

   1,, iaiai PPw  (6)
 
4.2.3 Deformation of members of truss girder flange 
The slab concrete shrinkage induces tension of the slab as well as compression and bending of 

truss girders. Fig. 6 shows effects of slab concrete shrinkage (marked with white arrows) in a 
through truss bridge with composited deck. The shrinkage generates internal forces in the concrete 
slab and truss girder members. Only dominant internal forces, i.e., axial forces, are analysed. The 
symbols in Fig. 6 are: Pc – axial force in concrete slab due to shrinkage, Pa1, Pa, Pd – axial forces 
in the top flange, the bottom flange and the diagonal bracing respectively, zc – distance between 
neutral axes of truss girder and concrete slab centre plane, za – distance between neutral axes of 
truss girder and bottom flange centre line, ht – truss girder theoretical height, hc – distance between 
neutral axis of top flange and centre plane of concrete slab, ha – distance between neutral axes of 
top and bottom flange. 
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Fig. 6 Analysis of forces in truss girder members due to shrinkage of slab concrete 
 
 
The equilibrium of moments of forces in respect to point B requires 
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The strain at the neutral axis of the i-th member of the truss girder bottom flange caused by 
shrinkage of slab concrete is given as 
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where: Δra,i – deformation (shortening) of the i-th member of truss girder flange due to shrinkage 
of slab concrete (m), I – moment of inertia of the truss girder (m4), Aa – average cross-sectional 
area of the truss girder flanges (m2). 

Substituting Eq. (8) for Pc in Eq. (9) gives 
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The value of za may be computed as 
 

,
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where: At, Ab – averaged cross-sectional area of top and bottom flange of truss girder respectively 
(m2). 

The moment of inertia of the truss girder equals 
 

  ,22
abbaatt zAIzhAII   (12)

 

where: It, Ib – an average moments of inertia of top and bottom flanges of the truss girder 
respectively. 
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Diagonal members of trusses provide smaller shear stiffness in comparison to the web of a 
similar plate girder. Hence, effective moment of inertia of the truss girder is smaller than given by 
the Eq. (12). The difference depends on truss static scheme – type of supports and loading. In the 
case of bridge truss girders, a simply supported and uniformly loaded beam may be assumed as 
representative scheme. For such conditions the moment of inertia of a truss girder reflecting its 
actual shear stiffness, given by Pałkowski (2001), is 
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where: Iv – moment of inertia of the truss girder reflecting its actual shear stiffness (m4), Lt – 
theoretical span length of the truss girder (m), Sv – shear stiffness coefficient of the truss girder 
(kN). 

For the truss girder with parallel flanges and “W” bracing the shear stiffness coefficient is given 
by Pałkowski (2001) as 

   ,cossin 2   dav AES  (14)
 

where: α – an inclination angle of diagonal bracing members (degrees), Ad – an average cross-
sectional area of diagonal members (m2). 

Finally, the deformation of the i-th member of the truss girder flange is given as 
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Since all slab spans are usually equal in length the auxiliary coefficient γ is introduced 
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where r is slab span length. Then 
 

.,.  iaia Pr  (17)
 
4.2.4 Moment of inertia of the truss girder near support 
 
The height of the girders with “W” bracing (Figs. 1 and 6) decreases linearly near supports 

from theoretical height at the end of a top flange to zero at supports, i.e., over the length of support 
diagonal. 

The equivalent moment of inertia valid over the outermost slab span (Ieq1) is computed based on 
cantilever analogy. The trussed system and the cantilever of equivalent moment of inertia are 
shown Fig. 7. 
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In the trussed system shown in Fig. 7 (top) the force T generates: 
– horizontal reactions R 
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r
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– compressive axial force in the outermost member of bottom flange 
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– tensile axial force in the support diagonal 
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– bending moment in the outermost member of bottom flange (constant along its length) 
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The length of the support diagonal over the outermost slab span 
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Vertical displacement under the force T is computed based on virtual work principle. Internal 
forces generated by the force T and virtual force

 
1

 
pointing downwards are put together in 

Table 1. Note: all axial forces and bending moments are constant over the given member length. 
Based on the data given in Table 1 one may compute the displacement v 
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Fig. 7 Computational model for setting flexural stiffness of truss girder near support 
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Table 1 Data to compute the displacement v (Fig. 7) 

Member 
Member 
length 

Stiffness
Axial force or bending moment (last row) generated by

T 1  
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In the case of the cantilever shown in Fig. 7 (bottom) the displacement of its tip equals 
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Comparing right sides of the Eqs. (24) and (25) the equivalent moment of inertia Ieq1 equals 
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If the support diagonal covers more than one slab span then the moments of inertia for the truss 

girder within consecutive spans may be computed as linear interpolation between Ieq1 and Iv. 
 
4.3 Internal forces caused by concrete shrinkage alongside a bridge span 
 
In the computational model shown in Fig. 4 the shrinkage of slab concrete causes: 

 

– tension of the deck slab, 
– bending of the „connecting members” in horizontal plane, 
– compression of members of the truss girder flange adjacent to the deck. 

 

Carrying out the analysis presented in the Chapter 4.2.3 for truss girder members within each 
span of concrete slab leads to the set of equilibrium equations similar to the Eq. (8) 
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where: Pc,i – tensile axial force in the i-th span of concrete slab (kN), Pa,i – compressive axial force 
in the i-th member of the truss girder bottom flange (kN). 

The axial forces may be expressed as functions of strains and displacements. 
 

Axial forces in the concrete slab 
The forces may be expressed based on Hooke’s law, with total strain being resultant of the 

concrete shrinkage strain (εs) and composited cross-beam displacements (δc,i) alongside a bridge 
span (Fig. 4) 
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Usually all slab spans have the same length. Thus an auxiliary coefficient  may be introduced 
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So the Eq. (28) are 
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Axial forces in the members of the truss girder bottom flange 
According to the Eq. (17) the forces may be expressed as 
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The changes of lengths of the truss girder members may be expressed as functions of 
displacements of steel-concrete composite cross-beams and deformations of the “connecting 
members” 

),( 11...   iiicicia wwr   (32)
 

where displacements wi are given according to the Eq. (6). 
Substituting Eq. (32) for Δra.i in Eq. (31) one may write the equation for each member of the 

truss girder bottom flange 
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After rearranging the equations are 
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Substituting Eq. (30) for Pc,i in Eq. (34) gives axial forces in the members of the truss girder 
bottom flange (Pa,i) as functions of the displacements of the composited cross-beams (δc,i) and the 
concrete shrinkage strain (εs) 
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Displacements of the outermost cross-beam Pp0 
Due to assumed kinematical constrains the displacement δc,0 equals the deformation of the 

“connecting member” under force Pc,1 
 

,1,0,   cc P  (36)
 

where: Pc,1 – axial force in the span 1 of the concrete slab (see Fig. 4). 
 
4.4 Effects of concrete shrinkage alongside a bridge span 
 
Eqs. (27) and (36) form a set of linear equations 
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Substituting Eqs. (30) and (35) for Pc,i and Pa,i respectively in the set Eq. (37) gives a set of n+1 
equations with n+1 unknowns δc,i. There is a unique solution. 

To find axial forces in the concrete slab spans (Pc,i) and in the members of truss girder bottom 
flange (Pa,i) one may use Eqs. (30) and (35). Axial forces in slab spans enable computation of 
transverse shear forces in composited cross-beams 
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 (38)

 

where: Vi – total transverse shear force in the i-th composited cross-beam (kN); it is a load acting 
on shear connectors over half of i-th cross-beam length in the transverse direction. 
 
 

5. Case study – verification of the analytical method 
 

5.1 Introduction 
 
The presented analytical method was verified indirectly with the results of test loading of twin 

railway truss bridge spans with steel-concrete composite decks. The indirect verification means 
that: 

– test loading of the twin spans was carried out, 
– results of the test loading were used to verify a FEM model of the bridge spans, 
– the verified FEM model was then used for verification of the presented analytical method. 
 
5.2 Analyzed bridge spans 
 
Test loading of the twin railway truss bridge spans with composited deck was carried out. The 

structure of the spans is shown in Fig. 1. Dimensions and details are as follows: 
 

– theoretical length: 51.0 m, 
– truss theoretical height: 8.00 m, 
– distance between centres of gravity of top and bottom flange: 8,85 m, 
– truss girder spacing: 5.30 m, 
– flange node spacing: 12.75 m, 
– cross-beam spacing: 3.19 m, 
– deck slab: 25÷33 cm thick, made of C30/35 class concrete, reinforced with 64 25 steel bars 

in two layers (near top and bottom of the slab), divided into two sections – transverse 
expansion joint in the middle of the span – as in Fig. 3(b). 

 

Cross-sectional characteristics of structural members are given in Table 2. Indices: (1) half of 
the member length near D11; (2) half of the member length near D13; (3) half of the member 
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Table 2 Cross-sectional characteristics of main structural members 

Member (see Fig. 1a for symbols) AX [cm2] IX [cm4] IY [cm4] IZ [cm4] 

D11, D121) 364 231 1669197 33358 

D122), D13, D143) 394 337 1878496 39608 

D144), D215) 494 1012 2586517 60441 

D216), D22÷D24 474 794 2466298 56274 

G1 310 432 158183 41711 

G2 405 958 221373 58398 

K1 244 243 87208 37514 

K2 184 110 59471 25014 

K3 134 58 40572 12803 

K4 98 32 27393 4503 

Pp (steel cross beam) 170 150 157119 5439 

Deck slab description in the text 

 
 

 

Fig. 8 Test loading layout 
 
 

length near D13; (4) half of the member length near D21; (5) half of the member length near D14; 
(6) half of the member length near D22. Note: the axis OY is horizontal and perpendicular to webs 
of members D, G, K and Pp. 

The same locomotive set, shown in Fig. 8, was used for both spans. In the case of both spans, 
railway track is located symmetrically between truss girders. It may be concluded that four truss 
girders were test loaded in the same way. 

During testing the following were recorded: 
 

– vertical displacement of bottom flange nodes, at: ¼·Lt, ½·Lt, ¾·Lt (where Lt is the 
theoretical span length) under loading as in Fig. 8, 

– strains at the top fibres of truss bottom flanges at the cross-section located 3.5 m away from 
the D14/D21 node (Fig. 1) towards midspan, during locomotive set crossing the span at very 
low speed (≤ 5 km/h) – quasi-static loading. 

 
5.3 Computational model of finite element method 
 
The FEM computational model of test loaded bridge spans was created in Autodesk Robot 

package (2013). It is shown in Fig. 9. 
Members of truss girders, cross-beams, wind bracings were modelled with 2-node beam 

elements of general purpose. Their characteristics were taken as in Table 2 (the symbols according 
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Fig. 9 Computational model of finite element method 
 
 

to Fig. 1). The deck slab was modelled with 4-node thin shell elements – 8 elements across and 32 
elements along the slab. Slab width was assumed as 4.7 m, and thickness – variable, from 29.5 cm 
for the elements near the width centre up to 31.0 cm for the elements near slab side edges. 

The computational model reflects eccentricities of bottom flange at their connections to 
diagonal members as well as actual levels of neutral axes of bottom flange members, cross-beams, 
bottom wind bracing and actual level of bearings. Tip nodes of the outermost elements modelling 
cross-beams and respective nodes of elements modelling bottom flange are mutually constrained 
to assure compatibility of deformations. In Fig. 9 the kinematical constraints are marked with short 
vertical lines connecting bottom flange nodes and cross-beam tips. 

In the model it is assumed that the characteristics of the “connection members” are the same as 
respective characteristics of steel cross-beams. 

Results recorded during test loading and computed are put together in Tables 3 and 4. Table 3 
gives vertical displacements of bottom flange nodes and Table 4 – extreme values of normal stress 

 
 

Table 3 Vertical displacements u [mm] of bottom flange nodes 

Result 
Location of bottom flange nodes 

¼·Lt ½·Lt ¾·Lt 

ucomp 9,37 13,24 9,23 

urec 8,16 11,78 8,07 

ucomp / urec 1,15 1,12 1,14 
 
 

Table 4 Extreme values of normal stress in the top fibre of bottom flange 

Result 
Extreme values of normal stress σ [MPa] (see Fig. 10) 

I II III IV V 

σcomp 6,8 11,5 8,7 9,9 9,0 

σrec 4,4 10,5 8,9 10,1 8,4 

σcomp / σrec 1,55 1,10 0,98 0,98 1,07 
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Fig. 10 Stress variation in top fibre of bottom flange at the instrumented cross-section during 
passage of test loading along the span 

 
 

at the top fibre of bottom flange at the instrumented cross-section (stress variation diagram is 
given in Fig. 10). Both tables give also the relationship of computed and recorded values. Tables 3 
and 4 show that computational results provided by the FEM model comply with recorded data well. 

The presented FEM model was then used for computation of effects of shrinkage of concrete 
slab alongside the bridge span. The shrinkage of 0,0002 was represented in the model by slab 
cooling of ΔT = ‒20C. 

 
5.4 Computational model of the analytical method 
 
The deck slab is divided into two identical sections. The analysis concerns one of them. The 
 
 

 

Fig. 11 Computational model of analytical method 
 
 

 

Fig. 12 Arrangement of structural members of analysed steel-concrete composite deck 
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computational model is shown in Fig. 11 and structural member arrangement – in Fig. 12. It can be 
seen that besides previously stated assumptions wind bracing are neglected in the computational 
model. 

Characteristics of elements shown in Fig. 11 are as in Table 2. The actual width of concrete slab 
is taken into account while its thickness is averaged – 30 cm. 

Cross-sectional areas and moments of inertia of flanges and diagonal members for computing 
the moment of inertia of the truss girder (over its part where flanges are parallel) are taken as 
weighted average of respective characteristics. Variation of moment of inertia of truss girder 
within support diagonal length is reflected. 

Deformations of the “connecting members” are defined for two alternative patterns of boundary 
conditions. Within each of them the behaviour of outermost “connecting members” differ from the 
behaviour of intermediate ones. This reflects the fact that the outermost “connecting members” 
arte situated near concrete slab edges. In the pattern A the outermost “connecting members” are 
assumed to behave as the beam in Fig. 5(b) while behaviour of the others is assumed as 
“averaged”. In the pattern B the behaviour of the outermost “connecting members” is assumed as 
“averaged” while the others are assume to behave as the beam in Fig. 5(a). 

 
5.5 Comparison of computed results 
 
The results obtained from both models are compared in diagrams. The diagrams show: 
 

– values of compressive axial forces in the members of bottom flange (Fig. 13), 
– values of total shear forces transverse to composited cross-beams (Fig. 14). 
 

Results of pattern A and B of boundary conditions of the “connecting members” in the 
analytical method are distinguished. 

Fig. 13 shows that pattern B of analytical method and the FEM model give similar assessment 
of axial forces in bottom flange in terms of quality of results. Discrepancies fall within the range 
from ‒15% (underestimation) up to +8% (overestimation) in respect to the FEM results. In the 
case of pattern A of analytical method the discrepancies are significantly bigger (the analytical 
method underestimates results). 

 
 

 

Fig. 13 Axial forces in members of bottom flange 
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Fig. 14 Total shear forces transverse to composited cross-beams (positive sign means that 
given force points right) 

 
 
Fig. 14 shows that pattern A of analytical method and the FEM model give similar distribution 

of transverse shear forces. Discrepancies fall within the range from -28% up to +9% in respect to 
the FEM results. In the case of pattern B of analytical method the discrepancies are bigger locally 
– particularly for slab spans adjacent to the outermost ones. In spite of that, for practical purposes, 
the results of pattern B are applicable for design. Since all cross-beams are usually identical the 
most unfavourable shear force obtained governs the design. For the pattern B the overestimation is 
about 20% while pattern A gives underestimation of about 16% with respect to FEM model results. 

The reasons for the reported discrepancies are: 
 

(a) deformability of deck slab across its width in its plane, 
(b) torsion and constrained bending of cross-beams in horizontal plane due to wind bracing, 
(c) spatial, instead of planar, response of the steel structure do deck slab shrinkage. 
 
 

6. Conclusions 
 
Analysis of effects of concrete shrinkage alongside a through truss bridge span with steel-

concrete composite deck is possible with an aid of 2D analytical model. The model consists of half 
of width of the deck and adjacent truss girder flange. 

Concrete shrinkage acts on the 3D system of though truss bridge span. This makes difficult to 
replicate its response with 2D computational model. To cope with the problem variant analysis is 
applied – two computational models with different patterns of boundary conditions of the 
“connecting members” in horizontal plane are considered. For the analysed bridge spans the 
pattern B turned out to be applicable to practical design. 

It is possible to improve the 2D model of analytical method by taking into account torsional 
and flexural (in the horizontal plane) deformability of steel cross-beams. In general it will reduce 
the intensity of the joint action of the steel-concrete composite deck and the truss girders. Internal 
forces in the deck slab and the adjacent members of truss girder flanges due to concrete shrinkage 
will decrease while their distribution may change moderately. 
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The presented analytical method is applicable also to plate girder spans with steel-concrete 
composite decks as well as steel-concrete composite floors of steel frame building structures. 
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