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Abstract.    This paper presents the probabilistic-based assessment of composite steel-concrete structures through an 
innovative framework. This framework combines model identification and reliability assessment procedures. The 
paper starts by describing current structural assessment algorithms and the most relevant uncertainty sources. The 
developed model identification algorithm is then presented. During this procedure, the model parameters are 
automatically adjusted, so that the numerical results best fit the experimental data. Modelling and measurement errors 
are respectively incorporated in this algorithm. The reliability assessment procedure aims to assess the structure 
performance, considering randomness in model parameters. Since monitoring and characterization tests are common 
measures to control and acquire information about those parameters, a Bayesian inference procedure is incorporated 
to update the reliability assessment. The framework is then tested with a set of composite steel-concrete beams, 
which behavior is complex. The experimental tests, as well as the developed numerical model and the obtained 
results from the proposed framework, are respectively present. 
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1. Introduction 
 

Safety assessment embraces all required measures to assess the structural performance of 
existing structures, particularly, its safety. In the past decades, several authors have been using 
probabilistic-based safety assessment procedures, showing that structures classified as unsafe 
according to current design standards have enough performance when assessed by probabilistic 
procedures (Henriques 1998, Enright and Frangopol 1999, Enevoldsen 2001, Casas and 
Wisniewski 2011, Caspeele and Taerwe 2014). Lately, Bayesian inference has been used to update 
the probabilistic models with gathered data from the assessed structure (Strauss et al. 2008, 
Bergmeister et al. 2009). Although most of the applications concern reinforced concrete structures, 
Zona et al. (2010) use these procedures for the safety assessment of continuous composite steel-
concrete girders. 
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Two interesting studies have been also published regarding the reliability assessment of 
composite structures. Mujagić and Easterling (2009) presented a comprehensive study that 
evaluates the reliability of composite beams and proposes revised resistance factors, through the 
use of reliability analysis techniques with analytical strength calculation models, in which a 
method to consider the effect of the degree of shear connection on the strength reduction factor is 
proposed. Barbato et al. (2014) employed a methodology for probabilistic response analysis based 
on the First-Order Second Moment (FOSM) method, in conjunction with a response sensitivity 
computation through the Direct Differentiation Method (DDM), to study the variability in the 
nonlinear structural response of composite steel-concrete beams. 

This paper presents an innovative probabilistic-based structural assessment framework, which 
combines, in a single algorithm, some of the structural assessment techniques mentioned above 
with a new procedure to identify optimal solutions, based on an evolutionary algorithm, a hybrid 
decision-making procedure and a Bayesian inference tool, providing the objective treatment of 
different sources of uncertainty (Matos 2013, Matos et al. 2015), see Fig. 1(a). Initially, model 
identification adjusts model parameters through a procedure that uses a nonlinear finite element 
model (NL FEM) to obtain the structure predicted performance. Then, such procedure seeks the 
minimum difference between observed and predicted performance in order to obtain the most 
likely values of material and mechanical properties, see Fig. 1(b). A convergence criterion, based 
on the accuracy of numerical and experimental data, is established for the optimization algorithm. 
In this case, an evolutionary strategies algorithm, a global optimization algorithm, is used (Beyer 
and Schwefel 2002). This algorithm yields a set of candidate optimal solutions from which the best 
model is selected based on previous knowledge, by considering the probability of each solution to 
occur and an engineering judgment procedure. A probabilistic model is respectively obtained by 
introducing randomness in model parameters, provided by model identification. Each parameter is 
then updated, based on collected data, through a Bayesian inference procedure. At the end, a 
reliability index is computed through a comparison between the resistance and effects of load 
curves. This index provides information about the condition state of the assessed structure. 
According to SAMCO report (Rücker et al. 2006), this framework is classified as a level 5 
assessment class (model-based assessment of existing structures), once it combines probabilistic 
simulation methods, with a stochastic NL FEM and data from measurement of material properties 
and dimensions. 

Although the framework can be applied to any type of structures, its applicability to composite 
structures has very interesting aspects related to its specific behavior and obtained failure modes. 
Accordingly, by applying this framework it will be possible to predict more accurately the 
structural response of composite structures, emphasizing its versatility and potentiality. 
Additionally, and although this methodology can be applied to new structures, its application aims 
at better characterizing existing structures for which there is limited information. Therefore, the 
developed framework, which addresses different sources of uncertainty, is tested and validated 
with a set of composite steel-concrete beams, which were loaded up to failure in laboratory. This 
controlled experiment is crucial since, unlike real structures, destructive tests can be extensively 
employed to evaluate the accuracy of the prediction. 
 
 

2. Probabilistic-based structural assessment 
 

The probabilistic-based structural assessment framework is divided in two main stages (Matos 
2013, Matos et al. 2015), see Fig. 1(a). Firstly, model identification searches for the most likely 
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values of model parameters based on the combination of numerical methods and experimental 
measurements. Within this procedure, numerical results are fitted to collected data from real 
structure, by adjusting model parameter values. This is attained by an optimization algorithm that 
minimizes the distance between both data, given by a fitness function. An evolutionary algorithm, 
which belongs to the global optimization algorithms, is respectively used for this purpose (Beyer 
and Schwefel 2002). Once the improvement in the fitness function is equal or lower than a 
threshold value, the optimization procedure stops. From this stage, an updated NL FEM is 
obtained. This model can predict, more accurately, the structural response. The reliability 
assessment aims to assess the structure performance, considering randomness in model parameters. 
Within this procedure, a distribution is initially assigned to each parameter of the updated 
numerical model. This distribution is then updated through a Bayesian inference procedure, with 
retrieved data from visual inspection, characterization tests or monitoring systems. A Latin 
Hypercube Sampling (LHS) method (Olsson et al. 2003, Shields et al. 2015), with an Iman and 
Conover (1982) algorithm integrated, is respectively used to randomly generate the correlated 
model parameters. A set of failure loads is obtained from the analysis of all generated NL FEMs. 
The resistance curve is then obtained from a distribution fitting procedure to this set. A reliability 
index is finally computed by relating, through a limit state function, the obtained resistance with 
the effects of load curve. This index can be considered as an updated performance indicator for the 
structure under evaluation. 

The main disadvantage of such framework is its computational cost. Therefore, and in order to 
overcome it, a sensitivity analysis procedure is recommended. This procedure consists in 
measuring the fitness function variation with each input parameter, resulting in an importance 
measure, bk, for each evaluated parameter (Matos 2013, Matos et al. 2015), expressed by Eq. (1) 
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being ∆yk the variation in structural response due to a deviation of ∆xk in input parameter mean 
value xm, ym the average response, n the number of generated parameters and CV the parameter 
coefficient of variation. The critical parameters, i.e., those that present a higher influence on the 
overall structural response, are then identified through this analysis. 

 
2.1 Model identification 
 
According to Fig. 1(b), the first step of proposed structural assessment framework is the model 

identification procedure, which results in an updated deterministic numerical model. During this 
procedure, model parameters are automatically adjusted in order to obtain a deterministic 
numerical model that accurately reproduces the experimental data. The framework runs the 
nonlinear numerical model for each set of input parameters obtaining, from each run, the 
corresponding results. In parallel, experimental data is gathered. The cumulative difference 
between numerical and experimental data, is computed through an objective function, 
denominated by fitness function, f, expressed by Eq. (2) 
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where ynum and yexp are the numerical and experimental values. It is emphasized that this function is 
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(a) (b) 

Fig. 1 Probabilistic-based structural assessment framework (Matos 2013, Matos et al. 2015) 
(a) Flowchart; (b) Model identification procedure 

 
 

normalized and so, it can be used with different transducers, measuring different parameters, and 
placed in different regions of the structure. 

An optimization algorithm is used to adjust the model parameters, minimizing the distance 
between experimental and numerical data, given by fitness function, Eq. (2). After a thorough 
revision of optimization algorithms, presented in (Matos 2013), the evolutionary strategies in its 
plus version was chosen (Beyer and Schwefel 2002). This algorithm presents several stopping 
criteria (Beyer and Schwefel 2002), being the fitness function convergence criterion, expressed by 
Eq. (3), the most important 

  ini fff  (3)
 

with fi and fi+n, respectively, the fitness function values for generation i and i+n, and n the defined 
gap between two generations. When the difference between these two values is less than or equal 
to a pre-defined threshold value, ε, the algorithm ceases. From this procedure, those models that 
verify the convergence criterion are selected, being obtained a population of possible candidate 
models. Then, the population is filtered through a procedure, based in engineering judgment and 
the probability of occurrence of each model. The most likely model is the updated model. 

Two sources of errors may be distinguished within the model identification procedure, namely, 
the experimental and numerical errors. The threshold value is then computed through the 
combination of these two sources of errors (Goulet et al. 2009, Matos 2013, Matos et al. 2015). 
Considering y as the real behavior of a quantity, yexp the experimental and ynum the numerical value, 
the following relationships are then obtained through Eqs. (4)-(5) 
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being uexp and unum, respectively, the experimental and numerical error. This latter, can be 
subdivided in the following components (Goulet et al. 2009, Matos 2013, Matos et al. 2015): (a) 
u1, discrepancy between the behavior of the real structure and that from the theoretical model; (b) 
u2, numerical computation error of the solution of partial differential equations; and (c) u3, 
inaccurate assumptions made during simulation. 

The main purpose of model identification procedure is to minimize the numerator in Eq. (2), 
also known as residual, q. Thus, considering Eqs. (4)-(5), the residual may be expressed by Eq. (6) 
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Then, by considering Eq. (3), the convergence criterion may be simplified to Eq. (7) 
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being f(q) the computed residual and ui and ui+n, respectively, the global uncertainty for generation 
i and i+n. Accordingly, the sum of global uncertainties from two generations corresponds to the 
superior limit of the threshold value. 

The global uncertainty is then computed through the law of propagation of uncertainty (JCGM 
2008). Accordingly, if a null correlation coefficient is considered, Eq. (8) should be used 
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where u(x) is the uncertainty related to each item x, and ∂f/∂x is the partial derivative of the fitness 
function in order to each item x. 

The global uncertainty relates to the fitness function, given in Eq. (2), which is composed by a 
numerical and an experimental component. The partial derivative, in relation to each term, can be 
obtained through ∂f/∂ynum = ∂f/∂yexp = 1/max(yexp). Therefore, in this case, it is firstly necessary to 
compute the experimental and modeling errors in separate. The threshold value is then calculated 
through the fitness function convergence criterion, given by Eq. (3). In this case, the partial 
derivatives ∂∆f/∂ui+n and ∂∆f/∂ui are unitary. 

The combination of global optimization techniques, as evolutionary strategies (Beyer and 
Schwefel 2002), with a model identification procedure, generally, provides a population of models. 
Thus, the same algorithm is run several times, as a measure to avoid the probability of 
underperforming results, resulting in a set of candidate optimal, or near optimal, models. The 
selection of the best models may be based in experience or eventually in more robust algorithms, 
but an expert judgment criterion is always required. Hence, an algorithm based in the probability 
of occurrence of each model, is used to pick the most proper model (Matos 2013, Matos et al. 
2015). This algorithm considers that, except in some particular situations, the material and 
mechanical properties are close to the initial assumption. 
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2.2 Reliability assessment 
 
The second step of the proposed framework, and according to Fig. 1(a), is the reliability 

assessment. This procedure aims to compute a reliability index, which provides information about 
the assessed structure condition. Accordingly, the first step consists in converting the updated 
numerical model into a probabilistic one by considering randomness in its parameters. In order to 
do so, adequate probability density functions (PDFs) are respectively assigned to model 
parameters, being the obtained values from model identification considered as mean values. 

The random generation of model parameter values is performed with a built-in sampling 
technique. In this case, a LHS procedure, combined with an Iman and Conover (1982) algorithm, 
is employed, allowing the generation of correlated parameter values (Olsson et al. 2003, Shields et 
al. 2015). A nonlinear structural analysis is then developed for each set of values, being computed 
the corresponding failure load. Then, a distribution fitting procedure is performed to obtained set 
of failure loads. From this analysis, it is verified that the Normal distribution is that which best fits 
this set. The resistance curve, R, is respectively obtained from this procedure. 

The failure probability, pf, is then calculated by comparing the resistance and the effects of load 
curve, S, through a limit state function. When R and S are independent random variables, this 
function is given by Z(R, S) = R – S. In this case, the failure probability is computed by simulation 
methods. A reliability index, β, is then obtained through the following expression β = ‒Φ-1 (pf), 
where Φ-1 is the inverse cumulative distribution function for a standard Normal distribution 
(Henriques 1998). 

The main purpose of Bayesian techniques is the incorporation of new information into data 
analysis procedure, in order to reduce the statistical uncertainty (Bernardo and Smith 2004, Jacinto 
2011, Matos 2013, Matos et al. 2015). The Bayes theorem weights the prior information with 
evidence provided by new data (likelihood), resulting in a posterior distribution for each model 
parameter. This way it will be possible to continuously update the reliability index. The final step 
of the reliability assessment is the comparison between the obtained reliability index and a target 
value, βtarget, given in bibliography (Matos 2013, Matos et al. 2015). 
 
 
3. Composite steel-concrete beams 
 

3.1 Experimental tests 
 
A set of simply supported composite beams with a span length of 4.50 m, L, and made up of a 

laminated steel profile connected to a solid lightweight concrete slab through headed stud steel 
connectors, Fig. 2(a), were tested up to failure in laboratory (Valente and Cruz 2010). Used 
lightweight concrete and reinforcing steel were, respectively, classified as LC 50/55 and S500B 
(EN 1992-1-1 2004). An IPE 120 laminated steel profile, in S275 steel (EN 1993-1-1 2004), was 
chosen to guarantee that the composite cross section is of class 1 (EN 1994-1-1 2004), and that the 
neutral axis is positioned at concrete slab when the beam is submitted to bending moments. The 
shear connection was provided by headed stud steel connectors, fabricated by Köco, with steel 
type S235J2+C450 (EN 10025-1 2004, EN 10025-2 2004). These studs have 13 mm diameter and 
50 mm length, being equally spaced along the beam. They were welded to the steel beam and later 
embedded in the lightweight concrete slab after casting. 

One of the tested beams, designated as Beam 1, is designed for full shear connection. In this 
case, the cross section ultimate strength does not depend on the connection resistance (Valente and 
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(a) Beam cross section 
  

(b) Beam 1 (c) Beam 2 

Fig. 2 Experimental tests (Valente and Cruz 2010) 
 
 

Cruz 2010). The adopted distribution is of 8 shear studs, uniformly disposed along half beam span, 
according to Fig. 2(b). This means that failure occurs in one of the composite section components, 
before the connection failure happens. The other tested beam, labeled as Beam 2, was designed for 
partial shear connection and presents a distribution of 4 studs in half beam span (Valente and Cruz 
2010), Fig. 2(c). For this situation, a connection failure is expected. 

These beams were submitted to a short-term static load with two closely spaced concentrated 
loads, F, applied on the beam mid span region, according to Figs. 2(b)-(c). A steel plate was used 
to divide the actuator load into two equal loads, avoiding stress concentration on beam mid span 
and the possibility of concrete crushing. During laboratory test, the applied load and vertical 
displacements at quarter and mid span were measured. The experimental procedure and the 
analysis of obtained results were an extensive work performed and reported by Valente (2007) and 
Valente and Cruz (2010). Accordingly, the pre-processing of experimental data, and all the details 
about the developed tests, may be consulted in those references. 

Beam 1 suffered bending failure. Concrete crushed near the point load, with a longitudinal 
crack at mid height of concrete section, growing towards the beam mid span. The steel 
reinforcement near the crushing zone shows some local buckling. Beam 2 suffered a bending 
failure associated to a shear connection failure. Concrete crushes near the point load and, at a final 
stage of the test, stud failure takes place. For this beam, tensile cracks appear at bottom face of 
concrete slab. Additionally, the horizontal slip between steel profile and concrete slab is visible 
(Valente and Cruz 2010). For both beams it was verified a bending failure with yielding on the 
steel section lower fibbers and cracking on the concrete slab lower fibbers. The connection 
deformability induced a stress redistribution along the cross section, which resulted in successive 
changes of the neutral axis (NA) position. During load application, the NA tended to move 
towards the upper fibers of the cross section. The connection deformability also changed the 
longitudinal shear flow. Initially, the connectors positioned near the supports were more loaded 
than those at beam middle span, but as load increases, they began to yield and to transfer the 
applied load to other connectors, positioned closer to the beam middle span. With respect to Beam 
2 (partial connection), where the number of shear studs along the beam is smaller, a shear 
connection failure was also verified, meaning that all the connectors yielded. 
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3.2 Numerical model 
 
A 2D NL FEM was developed with software ATENA® (Červenka et al. 2009), considering both 

shear connection and the materials nonlinear behavior. The NL FEM is composed by a uniform 
quadrilateral finite element mesh, with a total number of 4934 elements, for concrete slab and steel 
profile, by truss elements, embedded in concrete slab, for reinforcing steel, and by interface 
elements, for steel to concrete connection, see Fig. 5(a). This model was used to analyze the tested 
composite beams behavior (Valente and Cruz 2010, Matos et al. 2011, 2012). Only half of the 
beam was modeled, taking advantage of the existent symmetry, reducing thus the computational 
cost. In order to do so, it was necessary to introduce horizontal supports along the symmetry line. 
Additionally, a vertical support was included in the model to simulate the real supports. Fig. 3(a) 
presents the adopted lightweight concrete stress-strain law (Červenka et al. 2009), defined by the 
following parameters: (a) tensile strength, flt; (b) fracture energy, Glf; (c) compressive strength, flc; 
(d) elasticity modulus, Elc; (e) compressive strain at compressive strength, εlc; and (f) critical 
displacement, wld. The stress-strain laws for reinforcement bars and laminated steel profile are 
respectively given in Figs. 3(b)-(c) (Červenka et al. 2009). These laws are characterized by the 
following parameters: (a) elasticity modulus, Es,l and Es,p; (b) yield strength, σy,l and σy,p; (c) 
reinforcing steel limit strain, εlim,l; (d) reinforcing steel limit strength, σu,l; (e) steel profile 
hardening modulus, Hp. The initial values for steel profile parameters are given at EN 1993-1-1 
(2010), while for steel reinforcement, they are provided at EN 1992-1-1 (2004). Regarding the 
lightweight concrete, these values are obtained from expressions given at EN 1992-1-1 (2004), 
considering an initial estimate for its density. In this case a value of 1811.50 kg/m3 was 
respectively assigned to this parameter (Valente 2007). Some lightweight concrete parameter 
values, such as fracture energy and critical displacement, were obtained from specialized 
bibliography (Červenka et al. 2009). The majority of these values are mean values. In some 
occasions this does not happens, being necessary to obtain them from the Probabilistic Model 
Code (JCSS 2001). 

The concrete slab and steel profile connection, provided by headed stud steel connectors, is 
modeled with an interface material model (Červenka et al. 2009). This model is based on a 
Mohr-Coulomb criterion with tension cut-off. This law is given in terms of shear, τ, and normal 
stresses, σ. According to Fig. 4(a), the dry friction, ϕ, is considered to be very low and therefore 
the initial failure corresponds to the moment when cohesion value, c, is reached. For shear stresses, 
and for positive slip, ΔuT, this law is characterized by an initial shear stiffness, KTT, until the Mohr-
Coulomb criterion is reached, and then it presents a minimum shear stiffness, KTT,min, that is 1% of 

 
 

 
(a) (b) (c) 

Fig. 3 Stress-strain law (Červenka et al. 2009): (a) concrete; (b) reinforcing steel; (c) steel profile 
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KTT, Fig. 4(b). This behavior tries to replicate the relation between shear stress and slip at steel to 
concrete interface, verified in push-out tests. For normal stresses, and for positive uplifts, ΔuN, it is 
defined by an initial normal stiffness, KNN, until the tensile strength, ft, is reached. Once attained, 
the normal stress is reduced to 0, being this law defined by a minimum normal stiffness, KNN,min, 
that is 1% of KNN, Fig. 4(c). 

Both tensile strength and normal stiffness are assumed to present high values in order to 
guarantee that the connection is working when submitted to normal stresses. The cohesion value 

 
 

 

(a) (b) (c) 

Fig. 4 Interface law (Červenka et al. 2009): (a) failure criteria; (b) shear stress and slip; 
(c) normal stress and uplift 

 
 

(a) NL FEM 

Finite element 
mesh and 
boundary 
conditions 

of half beam 
 

(b) Beam 1 

Normal stresses 
and cracking in 
concrete slab 

 

Interface stresses 

 

(c) Beam 2 

Normal stresses 
and cracking 

in concrete slab 
 

Interface stresses 

 

Fig. 5 Numerimerical model (top: Beam 1 / bottom: Beam 2) (Matos 2013): (a) failure mechanism; 
(b) interface stresses 
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depends from the connection maximum load capacity, which is computed based on expressions 
from EN 1994-1-1 (2004), and considering both the lightweight concrete and the headed stud 
material and geometric parameters values. Then, the mean value of the connection maximum load 
capacity is multiplied by the ratio number of studs per beam length, and divided by the interface 
width, being calculated a mean value for the cohesion interface parameter. The shear stiffness is 
obtained from a similar way as for cohesion, but now considering the connection stiffness. In this 
case, a mean value of 220 kN/mm is estimated from the literature (Valente 2007, Valente and Cruz 
2010). 

Fig. 5(a) provides the deformation, crack pattern in concrete slab and horizontal strains of 
analyzed Beam 1, for chosen numerical model and considering the initial values. This figure also 
shows the interface stresses between concrete slab and steel profile. It is possible to observe that 
cohesion value, in blue color, is only reached in a small region of the interface. In Beam 2, Fig. 
5(b), the obtained failure mode is bending with concrete crushing and yielding of steel profile, 
together with a lack of capacity to redistribute more shear stress as the cohesion value is reached 
along the whole steel-concrete interface (Červenka et al. 2009). It is verified for both that obtained 
behavior is similar to experimental one. A higher failure load is obtained for Beam 1, full shear 
connection, being verified a full redistribution of shear stresses. In Beam 2, there is also a total 
redistribution of shear stresses, but the shear strength is lower, less shear studs disposed, and 
therefore earlier attained. 

 
3.3 Sensitivity analysis 
 
It is known that within the probabilistic-based assessment framework, the computational cost 

increases with the number of variables to be identified. Therefore, it is important to select those 
who are critical. This can be done by performing a sensitivity analysis. Within this analysis, the 
importance measure of each model parameter is evaluated by adding or subtracting a standard 
deviation value to the studied parameter mean (or nominal) value, and keeping all the other 
parameters fixed. Then, for each set of parameter values, a nonlinear analysis is developed, being 
applied the Eq. (1) to compute the assessed parameter importance measure. These steps are 
repeated to all model parameters. The obtained importance measure values are then normalized 
with relation to the maximum value, being the results presented in a bar plot. In this case, if 
obtained importance measure value is equal or higher than 10%, blim, the parameter will be 
considered as critical (Matos 2013). Two sensitivity analyses are developed, one for service phase, 
Fig. 6, and other until failure load, Fig. 7. 

From the analysis performed in service region, it is possible to identify as critical parameters: (a) 
concrete elasticity modulus, Elc; (b) steel profile elasticity modulus, Es,p; (c) slab width, bslab; (d) 
slab height, hslab; (e) steel profile web thickness, bweb; (f) steel profile height, hweb; (g) steel profile 
superior flange width, bfl,sup; and (h) steel profile inferior flange thickness, hfl,inf. Accordingly, from 
26 possible parameters, only 8 of them were considered, reducing the computational cost. 

From the performed analysis in failure region, it is concluded that critical parameters identified 
during the analysis for service phase still present a significant influence in structural behavior. In 
this evaluation, all concrete parameters become critical, mainly those that describe its behavior in 
compression. These parameters present a higher impact, as bending failure with concrete crushing 
is identified. In the same way, steel profile parameters, with exception of hardening modulus, Hp, 
are critical as steel material yields before concrete crushing. In respect to interface parameters, for 
higher loads, the maximum stress at interface element is reached in some regions. Consequently, 
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the cohesion parameter, c, becomes an important parameter too. In a general way, the geometric 
parameters related to concrete slab and laminated steel profile dimensions, with exception of 
inferior flange width, bfl,inf, present a high influence on structural behavior. In this situation, from 
26 possible initial parameters, only 16 were considered in the study. 

The sensitivity analysis performed for Beam 2 is identical to that developed for Beam 1. The 
only difference consists in some of the interface parameters, namely, cohesion, c, and shear 
stiffness, KTT, for which the initial values are different, resulting from the specific number of shear 
studs disposed in each beam. The importance of these two parameters increased, as expected, but 
still only cohesion in the analysis up to failure is considered as critical. 

Zona et al. (2006) performed a sensitivity analysis on composite structures, more specifically in 
continuous steel-concrete girders, for both monotonic and cyclic loads. The following parameters 
were studied with detail within this analysis: (i) steel profile elasticity modulus; (ii) steel profile 
yield strength; (iii) steel profile hardening modulus; (iv) concrete elasticity modulus; (v) concrete 
compressive strength; (vi) steel reinforcement elasticity modulus; (vii) steel reinforcement yield 
strength; and (viii) shear connection tensile strength. For monotonic load case, and for the service 
region, the authors pointed out the concrete elasticity modulus and steel profile elasticity modulus 
as the most influent parameters. In respect to failure region, the most important parameters were 
the steel profile yield strength and hardening modulus, the concrete compressive strength, the steel 
reinforcement yield strength and the shear connection tensile strength. Although in the present 

 
 

 

Fig. 6 Importance measure (in service) (Matos 2013) 
 
 

 

Fig. 7 Importance measure (up to failure) (Matos 2013 
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study more parameters were assessed, namely the geometric parameters, it is possible to identify 
the following similarities: (i) for service region, the same parameters were identified as critical in 
both studies; (ii) for failure region, the present study indicates that the steel profile hardening 
modulus, the steel reinforcement yield strength and the shear connection tensile strength are not 
critical. Instead, the steel profile elasticity modulus and the concrete elasticity modulus are 
considered as critical. This is somehow justified by the obtained failure mode, and by the 
developed sensitivity analysis procedure. Nevertheless, it is possible to verify that the obtained 
results by Zona et al. (2006) are similar to those from the present sensitivity analysis, being very 
interesting to verify that different finite element models and sensitivity analysis procedures lead to 
identical results. 

 
3.4 Model identification 
 
Once the numerical model and critical parameters are obtained, the following step consists in 

the application of proposed model identification methodology, Fig. 1(b). In this situation, the 
fitness function, Eq. (2), is the quadratic sum of two independent components, the degree of 
approximation between experimental and numerical load for each registered quarter and mid span 
displacements, δ, i.e., the fitness function characterizes the approximation between numerical and 
experimental values for applied load. Then, the threshold value, ε, to be used in fitness function 
convergence criterion is computed. In order to do it, the identification of experimental, uexp, and 
numerical, unum, sources of errors should be firstly developed, Table 1. 

 
 

Table 1 Errors, sources and quantification 

Error source Quantification method Error [%] 

Experimental 

Sensor accuracy 
Manufacturer (includes cable 

and acquisition equipment losses) 
0.20 (displacement 

transducer) 

Stability 
Static load test (no fatigue 

problems detected) 
→ 0.00 

Robustness 
Short term test (environmental 

effects neglected) 
→ 0.00 

Load positioning Test assembly perfectly controlled → 0.00 

Load intensity 
Manufacturer (includes cable 

and acquisition equipment losses) 
0.10 (load cell) 

Numerical 

Finite element 
method 

Based on preliminary study 
(by comparing to a refined mesh model)

0.34 (δ1/4 vs. F) a; 
0.74 (δ1/2 vs. F) a 

Inaccurate 
assumptions 

Based on preliminary study (by 
comparing to a short load step model)

0.70 (δ1/4 vs. F) a; 
1.42 (δ1/2 vs. F) a 

Model exactitude Model “as built” → 0.00 

Considered 
hypothesis 

Other hypothesis are negligible → 0.00 

a Computed values for the analysis up to failure load (JCSS 2001) 
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Table 2 provides the experimental and the numerical uncertainty computation, through the law 
of propagation of uncertainty (JCGM 2008), for the analysis until failure load (Beam 1). The 
standard error is obtained considering that a uniform PDF, type B, is respectively assigned to each 
component error j (JCGM 2008). The partial derivative of each error, with respect to each 
component of error, is unitary. Then, it is possible to compute the fitness function uncertainty for 
each fitness function component i, Table 3, through the law of propagation of uncertainty (JCGM 
2008). In order to do so, it is required to calculate the fitness function partial derivative in relation 
to each error source. The fitness function value improvement uncertainty and the corresponding 
threshold value computation, supported on the law of propagation of uncertainty (JCGM 2008), is 
respectively provided at Table 4. 

The same laboratory equipment and numerical model was adopted for Beam 1 and 2. 
Consequently, the only difference on threshold values computation remains on the derivative of 

 
 

Table 2 Computation of experimental and numerical uncertainty (JCGM 2008) 

Component, i δ-F1/4 δ-F1/2 

E
xp

er
im

en
ta

l 

Error, j [%] 0.10 (load cell, Table 1) 0.10 (load cell, Table 1) 

Standard 
error, uexp,ij 

[-]   

∂yexp/∂uexp,ij [kN] 1 1 

Experimental 
error, uexp,i 

[kN]   

N
um

er
ic

al
 

Error, j [%]
0.34 (finite element method, Table 1)

0.70 (inaccurate assumptions, Table 1)
0.74 (finite element method, Table 1)

1.42 (inaccurate assumptions, Table 1)

Standard 
error, unum,ij 

[-] 

 

 

 

 

∂ynum/∂unum,ij [kN] 1 1 

Numerical 
error, unum,i 

[kN]  

 
 

Table 3 Uncertainty calculation for each fitness function component (JCGM 2008) 

Component, 
i 

∂f/∂yexp,ik ∂f/∂ynum,ik Fitness uncertainty, uf,ik ∂f/∂fik Fitness uncertainty, uf,i 

[kN-1] [kN-1] [-] [-] [-] 

δ-F1/4 4.20×10-2 4.20×10-2 1 

δ-F1/2 4.20×10-2 4.20×10-2 1 

41077.5
3

1

100
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3

1
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the fitness function with respect to experimental and numerical results, as the maximum 
experimental load is different in this situation, ∂f/∂ynum = ∂f/∂yexp = 1/max(yi

exp) = 4.20  10-1 kN-1, 
for Beam 1, and equal to 4.70  10-1 kN-1, for Beam 2. Table 4 presents obtained threshold values, 
for service and up to failure, for both beams. 

This means that, for instance, for Beam 1, if the improvement in minimum fitness function 
value, until failure load, of a population from two generations separated of a specified gap, n, is, 
respectively, less than or equal to 0.12% than the algorithm stops, as the fitness function 
convergence criteria is achieved. In this case it was considered a gap of 100 (Matos 2013). This 
means that it is not meaningful to improve the fitness function of a value that is less than or equal 
to the precision itself. Obtained results from model identification procedure are given in Table 5. 

Obtained values from model identification until failure load indicate a concrete material quality 
close to expected and a steel material quality higher than predicted. The initial estimate for steel- 

 
 

Table 4 Threshold value calculation (JCGM 2008) 

∂Δf/∂fi ∂Δf/∂fi+n 
Improvement 

uncertainty, uΔf 

Coverage 
factor, k

Threshold 
value, ε 

Threshold value 
for both beams, ε 

[-] [-] [-] [-] [-] [%] Beam 1 Beam 2 

1 1 2 1.2210-3 0.12 

Service: 
0.08% 

Service: 
0.09% 

Failure: 
0.12% 

Failure: 
0.25% 

 
 

Table 5 Model identification results 

Parameter PDF 
Initial value Service Failure 

Beams 1 (and 2) Beam 1 Beam 2 Beam 1 Beam 2 

Elc [GPa] Normal 25.09 30.00 30.00 23.71 26.73 

flt [MPa] Normal 3.67 - - 3.56 3.16 

flc [MPa] Normal 58.00 - - 59.19 58.93 

Glf [N/m] Normal 91.75 - - 91.18 91.67 

εlc [‰] Normal 2.20 - - 2.69 2.80 

wld [m] Normal 1.50  10-3 - - 1.51  10-3 1.71  10-3 
Es,p [GPa] Normal 210.00 230.00 216.51 215.65 199.75 

y,p [MPa] Normal 293.50 - - 297.98 350.00 

c [MPa] Normal 2.95 (and 1.47) - - 3.00 1.55 

bweb [mm] Normal 4.40 4.20 4.80 5.22 4.79 

bfl,sup [mm] Normal 64.00 63.00 63.74 63.95 63.81 

bslab [mm] Normal 350.00 348.63 354.91 353.83 349.56 

hfl,inf [mm] Normal 6.60 7.60 7.60 6.64 6.50 

hweb [mm] Normal 106.80 106.04 106.92 106.89 106.86 

hfl,sup [mm] Normal 6.60 - - 7.21 6.60 

hslab [mm] Normal 60.00 61.26 59.49 62.14 59.85 
 

4
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242
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(a) (b) 

Fig. 8 Numerical results (Matos 2013): (a) Beam 1; (b) Beam 2 
 
 

Table 6 Minimum fitness function values 

Numerical 
model 

Service Failure 

Beam 1 Beam 2 Beam 1 Beam 2 

Value 
[%] 

Improvement 
[%] 

Value
[%]

Improvement 
[%] 

Value
[%]

Improvement 
[%] 

Value 
[%] 

Improvement 
[%] 

Initial values 4.65 - 3.85 - 19.35 - 20.43 - 

Model 
identification 

0.80 82.80 0.95 75.30 2.13 89.00 5.82 71.50 

 
 

concrete interface is confirmed by model identification until failure load. Steel profile and concrete 
slab dimensions are close to those expected in design for both model identification procedures and 
for most of assessed parameters. 

In Figs. 8(a)-(b), the applied load is plotted against the mid span displacements, respectively, 
for Beam 1 and 2, for measured data and for numerical results, considering the initial values, and 
those from model identification in service phase and until failure load. By studying both figures it 
is possible to conclude that model identification until failure load, presents the numerical curve 
that best fits the experimental data. 

Table 6 indicates the minimum fitness function values obtained by considering the initial values 
and those from model identification. It is verified that obtained value from model identification in 

 
 

Table 7 Failure load, FR, and corresponding vertical displacement, δR 

Obtained values 

Failure load Vertical displacement 

Beam 1 Beam 2 Beam 1 Beam 2 

Value 
[kN] 

Error 
[%]* 

Value 
[kN] 

Error 
[%]* 

Value 
[mm]

Error 
[%]* 

Value 
[mm] 

Error 
[%]* 

Experimental values 23.86 - 21.20 - 129.80 - 239.50 - 

Initial values 19.99 16.22 17.18 18.97 122.66 5.50 262.76 9.71 

Model 
identification 

Service 21.06 11.74 17.41 17.88 105.03 19.08 244.06 1.90 

Failure 23.26 2.51 20.04 5.47 119.79 7.71 273.70 14.28

* Comparing with the real failure load and correspondent vertical displacement 
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service phase is lower than that determined until failure. In fact, in service region, experimental 
and numerical results are closer than those for higher applied loads. Nevertheless, for these two 
situations the applied methodology revealed an important improvement of this value. 

Table 7 indicates the failure load, FR, and the corresponding vertical displacement, δR, 
measured at beam middle span. Obtained values from model identification until failure load are, in 
most situations, those that present a lower error, as when applying the methodology in service 
phase, the model identification is performed for this region, not being possible to guarantee the 
curve fitting for failure region. Obtained error for the situation of model identification until failure 
load is, for most situations, less than 10%, which is considered to be very good, being thus the 
most accurate model. 

 
3.5 Reliability assessment 
 
At this point a deterministic numerical model was developed and adjusted to obtained 

experimental data, through a model identification procedure. The next step of this methodology 
consists in computing a resistance statistical distribution, supported in a reliable probabilistic 
numerical model, Fig. 1(a) (Matos et al. 2011, Matos et al. 2012). This model is obtained by 
considering randomness in some input parameters, such as those related to concrete slab, steel 
profile and interface between these two components. 

The majority of the adopted statistical distributions for model parameters, as well as the 
corresponding correlation values, are obtained from the Probabilistic Model Code (JCSS 2001). 
However, there are some parameters for which the existing data is few, such as some lightweight 
concrete parameters like the fracture energy, with information solely in specialized references 
(Leming 1988, Valum and Nilsskog 1999, EuroLightCon 2000, Nowak et al. 2008), and the 
interface cohesion, i.e., the connection maximum load capacity, for which it was possible to find 
some material in the work of Valente (2007) and Roik et al. (1989). From all distribution types, the 
Normal distribution is the most used. As mean value, µ, it was considered the initial values or 
those from model identification in service phase and until failure load, being the standard 
deviation, σ, obtained from the literature. These values are given at Table 11. 

In some situations, when there is complementary data (or likelihood), a Bayesian inference 
approach can be used (Bernardo and Smith 2004, Matos 2013). An informative and a non-
informative (Jeffrey’s) prior were used in the Bayesian inference procedure with the aim of 
computing the posterior distribution, being the considered posterior distribution that which 
presents the lowest standard deviation value. Once each critical parameter PDF is defined, the next 
step consists in the random generation of these parameter values. This procedure is based in a LHS 
technique (Olsson et al. 2003). The correlation between critical random variables is assured by the 
Iman and Conover (1982) algorithm. A set of values are respectively obtained from the 
probabilistic analysis. These values are then statistically processed and fitted to a Normal 
distribution, in order to compute the resistance curve. 

In this case, complementary tests were developed at laboratory to characterize the material and 
interface parameters as to provide means to quantify the accuracy of the model identification 
procedure, and to increase the existing knowledge about these parameters (Valente 2007). With 
respect to concrete, the compressive strength and elasticity modulus were obtained in uniaxial 
compression tests, and both the concrete tensile strength and fracture energy in bending tests. 
Accordingly, from the whole set of performed tests, only 10 observations for compressive strength 
and elasticity modulus, and 5 observations for tensile strength and fracture energy were taken into 
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account. The concrete specimens were produced at the same time of the corresponding composite 
beam and tested at the same date (31 days for beam 1, and 35 days for beam 2). In order to 
characterize the steel material used in stud connectors, reinforcement bars and laminated profile, 
uniaxial tensile tests were performed. Due to the small size of the headed studs (13 mm diameter 
and 50 mm length), no experimental test was done on the steel properties of these connecting 
devices. However, the obtained values in tested studs with higher diameters, also produced by 
Köco, were considered. From the entire set of tests, only the results from 8 specimens of headed 
studs, 3 specimens of reinforcement bars, and 3 specimens of laminated steel profile were 
considered. Additionally, some push-out tests were developed to study the steel-concrete 
connection behavior. During these tests it was used the same type of lightweight concrete and an 
identical type of shear connectors as that used in tested beams. Tested proofs were cast at the same 
time of the corresponding beam and also tested at same date. From the developed push-out tests it 
was obtained the connection maximum load capacity and stiffness, being then computed the 
cohesion and the shear stiffness for each beam type. In this case, only 5 observations were 
considered. The pre-processing of obtained data, as well as any more detail about these tests, can 
be consulted in Valente (2007) and in Valente and Cruz (2010). A statistical analysis was 
performed for each parameter and the corresponding mean and standard deviation values are 
provided in Table 8. 

Obtained values for concrete parameters are close to initial values. The exception goes to 
fracture energy, who obtained lower values than the initial ones. Coefficients of variation, CV, are 
all less than 10% which indicates that the variability of such parameters is small. Regarding steel 
parameters, obtained values indicate that used material is of better quality than expected in design. 
Obtained CV values are, in general, lower than 5% which indicates a small variation of these 
properties. Table 8 also presents the push-out tests results for both beams, respectively, with full 

 
 

Table 8 Concrete, steel and interface parameters (Valente and Cruz 2010, Matos 2013) 

Parameter PDF 
Initial 
value 

Mean 
value, µ 

Standard 
deviation, 

Concrete 

Elasticity modulus, Elc [GPa] Normal 25.09 24.81 2.23 

Tensile strength, flt [MPa] Normal 3.67 3.78 0.16 

Compressive strength, flc [MPa] Normal 58.00 57.96 4.64 

Fracture energy, Glf [N/m] Normal 91.75 78.42 1.83 

Steel - 
laminated profile 

Yield strength, σy,p [MPa] Normal 293.50 335.67 9.10 

Hardening modulus, Hp [GPa] Normal 1.04 0.72 0.09 

Steel - 
reinforcement 

Yield strength, σy,l [MPa] Normal 560.00 583.41 8.02 

Ultimate strength, σu,l [MPa] Normal 604.80 606.06 8.32 

Steel - Studs Tensile strength, ft [MPa] Normal - 567.57 18.95 

Beam 1 - 
Interface 

Shear stiffness, KTT 
[MPa] 

(per mm)
Normal 12.22 10.89 1.27 

Cohesion, c [MPa] Normal 2.95 3.15 0.09 

Beam 2 - 
Interface 

Shear stiffness, KTT 
[MPa] 

(per mm)
Normal 6.10 5.44 0.63 

Cohesion, c [MPa] Normal 1.47 1.58 0.05 
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(Beam 1) and partial connection (Beam 2). As the considered value of maximum applied load (per 
connector) and of connection stiffness is the same, the main difference between both beams 
consists in the number of used studs (EN 1994-1-1 2004). 

From characterization tests, new information regarding material and interface parameters is 
available. These observations can be used, within a Bayesian inference procedure, to update the 
prior distributions which are those that have, as a mean value, the initial parameter value or that 
obtained from model identification (Table 11). Used Bayesian inference methodology is 
exemplified with an application to the lightweight concrete compressive strength, considering a 
Jeffrey’s and a conjugate prior. The choice of a prior distribution is a crucial step in Bayesian 
inference. The use of a non-informative prior is particularly helpful when no prior information is 
available, but it is always required to verify if the computed posterior distribution is proper 
(Bernardo and Smith 2004). A typical non-informative prior is the Jeffrey’s prior, which 
commonly results in a proper posterior distribution. When there is any information regarding the 
parameter of interest, the informative prior may be used instead. Conjugacy is the property of a 
posterior distribution to belong to the same family of the prior distribution (Bernardo and Smith 
2004). Conjugate families are thus useful, from a mathematical perspective, since the posterior 
distribution follows a known parametric form. Table 9 presents both prior distributions considered 
in the present study. In this case, it is considered a conjugate prior with a mean value of 58,00 MPa, 
initial value, and a standard deviation of 5,80 MPa (Table 11). The likelihood represents the 
observations about the assessed parameter. In this situation, it is obtained from uniaxial 
compressive test specimens, with a mean value of 57,96 MPa and a standard deviation of 4,64 

 
 

Table 9 Used formula to compute the posterior distribution values 
for lightweight concrete compressive strength 
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Table 10 Posterior distributions, considering different prior distributions, 
for lightweight concrete compressive strength 

Parameter Jeffrey’s Conjugate 

µ0 - 58.00 

σ0 - 5.80 

µ1 57.97 57.98 

σ (µ1) 1.74 1.20 

σ1 5.34 5.28 

σ (σ1) 1.44 1.07 

µpop 57.97 57.98 

σpop 5.82 5.50 
 
 

Table 11 Parameter values 

Parameter PDF 
Initial value * 

Model identification 
(in service) * 

Model identification 
(at failure) * 

µ σ µ σ µ σ 

Beam 1 

Elc [GPa] Normal 
25.09 

(24.81) 
2.51 

(2.20) 
30.00 

(24.81) 
3.00 

(2.20) 
23.71 

(24.81) 
2.37 

(2.20) 

flt [MPa] Normal 
3.67 

(3.78) 
0.73 

(0.28) 
3.67 

(3.78) 
0.73 

(0.28) 
3.56 

(3.78) 
0.71 

(0.28) 

flc [MPa] Normal 
58.00 

(57.98) 
5.80 

(5.50) 
58.00 

(57.98) 
5.80 

(5.50) 
59.19 

(57.98) 
5.92 

(5.50) 

Glf [N/m] Normal 
91.75 

(78.33) 
9.18 

(7.13) 
91.75 

(78.33) 
9.18 

(7.13) 
91.18 

(78.33) 
9.12 

(7.13) 

y,p [MPa] Normal 
293.50 

(337.61) 
14.68 

(37.75) 
293.50 

(337.61) 
14.68 

(37.75) 
297.98 

(337.61) 
14.90 

(37.75) 

c [MPa] Normal 
2.95 

(3.12) 
0.37 

(0.10) 
2.95 

(3.12) 
0.37 

(0.10) 
3.00 

(3.08) 
0.38 

(0.10) 

Beam 2 

Elc [GPa] Normal 
25.09 

(24.81) 
2.51 

(2.21) 
30.00 

(24.81) 
3.00 

(2.21) 
26.73 

(24.81) 
2.67 

(2.21) 

flt [MPa] Normal 
3.67 

(3.78) 
0.73 

(0.28) 
3.67 

(3.78) 
0.73 

(0.28) 
3.16 

(3.78) 
0.63 

(0.28) 

flc [MPa] Normal 
58.00 

(58.31) 
5.80 

(5.02) 
58.00 

(58.31) 
5.80 

(5.02) 
58.93 

(58.31) 
5.89 

(5.02) 

Glf [N/m] Normal 
91.75 

(78.33) 
9.18 

(7.13) 
91.75 

(78.33) 
9.18 

(7.13) 
91.67 

(78.33) 
9.17 

(7.13) 

y,p [MPa] Normal 
293.50 

(337.61) 
14.68 

(37.75) 
293.50 

(337.61) 
14.68 

(37.75) 
350.00 

(342.81) 
17.50 

(24.63) 

c [MPa] Normal 
1.47 

(1.56) 
0.18 

(0.07) 
1.47 

(1.56) 
0.18 

(0.07) 
1.55 

(1.56) 
0.19 

(0.07) 

* Bayesian inference values are given between brackets 
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Table 12 Failure load, FR 

Numerical model PDF 
Beam 1 Beam 2 

µ [kN] σ [kN] µ [kN] σ [kN] 

Initial values Normal 19.00 2.21 16.49 2.02 

Initial values + Bayesian inference Normal 22.76 2.50 19.14 1.58 

Model identification (service) Normal 20.47 1.76 18.16 1.96 

Model identification (service) 
+ Bayesian inference 

Normal 23.87 2.28 20.86 1.55 

Model identification (failure) Normal 21.89 2.56 19.35 2.54 

Model identification (failure) 
+ Bayesian inference 

Normal 24.42 2.49 19.56 0.92 

 
 

 
(a) (b) 

Fig. 9 Failure load, FR (Matos 2013): (a) Beam 1; (b) Beam 2 
 
 
MPa (Table 8). In Table 9 it is also provided the most important formula for the computation of the 
posterior distribution values. A more detailed explanation is given at Matos (2013). Table 10 
presents the lightweight concrete compressive strength values, obtained from the application of the 
Bayesian inference analysis. 

In this case, as the conjugate prior gives a lower standard deviation value for the lightweight 
concrete compressive strength, it will be this distribution to be used in a further probabilistic 
analysis. Table 11 presents, between brackets, the Bayesian inference results for all parameters 
(Matos 2013). In a general way, the Bayesian updating provided mean values close to initial values 
and those from model identification. Moreover, and with exception of steel profile yield strength, 
for which obtained experimental data is far from numerical results, the Bayesian inference 
procedure reduced the standard deviation values. 

Then, a set of failure load, FR, values is respectively computed through the probabilistic 
analysis. A Normal PDF, which represents the structural resistance, is then adjusted to this set. 
Obtained resistance PDF parameter values for Beam 1 and 2 is given in Table 12. 

From the analysis of obtained results, it is possible to conclude that: (1) The mean value 
increases as model identification procedures are applied; (2) The Bayesian inference approach 
increases the mean and reduces the CV of obtained resistance PDF. Figs. 9(a)-(b) represents the 
obtained resistance PDF, for Beam 1 and 2, respectively, whose parameter values (mean and 
standard deviation) are given in Table 12. 
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Table 13 Safety assessment 

Numerical model 
pf β 

Beam 1 Beam 2 Beam 1 Beam 2

Initial values 1.05 × 10-3 2.53 × 10-3 3.07 2.81 

Initial values + Bayesian inference 2.90 × 10-4 8.32× 10-4 3.44 3.15 

Model identification (service) 5.44 × 10-4 1.31 × 10-3 3.27 3.00 

Model identification (service) + Bayesian inference 1.82 × 10-4 4.51 × 10-4 3.57 3.31 

Model identification (failure) 4.06 × 10-4 1.04 × 10-3 3.34 3.08 

Model identification (failure) + Bayesian inference 1.57 × 10-4 6.46 × 10-4 3.60 3.22 

 
 
4. Example 
 

Obtained resistance model is now used in a simple example of reliability assessment of a 
building structure, regarding safety (Matos et al. 2012). In this case, the resistance model is given 
by the failure load model, FR, whose parameters are provided at Table 12 for both beams. In order 
to compare resistance and loading curves it is necessary to transform the obtained resistance model 
into a model for maximum bending moment at middle span, MR, being the beam span, L, in this 
situation, equal to 4.50 m. Then, it is necessary to determine the loading curve, according to JCSS 
(2001). In order to do that it is required to determine the influence length of the analyzed beam, Linf, 
which is, in this example, of 4.00 m. The applied load, p, is the sum of self-weight and live-loads 
multiplied by the beam influence length. It is then possible to compute the maximum bending 
moment, MS. 

Obtained values are then adjusted to a Normal PDF. In order to compare resistance and loading 
curves a limit state function, Z, is defined. This limit state is exceeded when loading is higher than 
resistance, Eq. (9) 

SR
S

FRR
MMZ

LpM

LLFM










8/)(

)2/(2/)2(
2

 (9)

 
The further steps consist in computing the failure probability. On Table 13 are represented both 

failure probabilities and reliability indexes for all models, considering Beam 1 and 2. 
In this example, the building is of class 2 (apartment building – risk to life, given a failure, is 

medium or economic consequences are considerable) and of class B (normal cost of safety 
measure), according to JCSS (2001). Therefore, a target reliability index, βtarget, of 3.30 is 
recommended. 

The following conclusions are then obtained for Beam 1: (1) when considering the initial 
values or those from model identification in service phase the beam is classified as unsafe; (2) 
when the values from model identification until failure are taken into account, the beam is 
considered to be safe; (3) obtained results for all models, considering a Bayesian inference 
approach, indicate that the beam is classified as safe. This means that the probabilistic-based 
assessment revealed an additional strength capacity which was not accounted in design. Regarding 
Beam 2 it is possible to verify that all evaluated models are considered to be unsafe. 
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5. Conclusions 
 

A cutting-edge methodology for probabilistic-based assessment of existing structures is 
presented in this paper. The developed algorithm consists in two main steps: (1) model 
identification, in which the numerical model is updated until an established stopping criterion is 
met; (2) reliability assessment, in which the updated deterministic model, coming from the model 
identification step, is converted into a probabilistic model, being then executed the probabilistic 
module. Within the probabilistic module, each parameter PDF could be updated through a built-in 
Bayesian inference procedure, based on complementary gathered data. 

The probabilistic assessment of two composite beams which were loaded at laboratory up to 
failure is then presented. The first beam presents a full shear connection, while the other is 
partially connected. All other properties are maintained. Consequently, while the former presents a 
typical failure mode of bending with concrete crushing and yielding of steel profile, the latter 
presents a combined failure mode of bending and shear connection. 

In this analysis, a nonlinear numerical model was developed. A sensitivity analysis is further 
executed to identify the most important parameters. Some of them were characterized with detail 
at laboratory. The developed numerical model is then adjusted to experimental data, through a 
model identification procedure. To perform that, an optimization technique, based in the 
evolutionary strategies algorithm in its plus version, was used. Both modelling and measurement 
errors were considered in the algorithm stopping criteria. This procedure was developed for both 
service region and up to failure. 

Further, a nonlinear probabilistic analysis was executed. In order to do so, a PDF is respectively 
assigned to each critical parameter. Such parameters are then updated with complementary data 
from laboratory characterization tests, through a Bayesian inference approach. From the 
probabilistic analysis it was obtained an updated resistance PDF for both analyzed beams. These 
models are then used in a safety assessment example. 

The following conclusions were obtained from the probabilistic-based assessment of composite 
steel-concrete beams: (1) model identification up to failure load gives very good results (errors less 
than 10%); (2) obtained values from model identification confirmed that used materials quality is 
closer, or slightly higher, to the initial estimates; (3) model identification in service phase only 
gives good results in service region, being the obtained results in failure region unsatisfactory; (4) 
complementary tests, such as non-destructive tests or permanent monitoring systems, are thus 
recommended when performing model identification in service phase; (4) Bayesian inference 
increases the accuracy of the probabilistic models; (6) an additional strength capacity is identified. 

The structural behavior of composite steel-concrete structures is complex, with high uncertainty, 
being hard to predict. Thus, it is verified that, by collecting information regarding some model 
parameters and by applying the developed framework, it is possible to forecast its behavior with a 
higher accuracy. Moreover, the fitness function allows to incorporate several measurement sources 
at the same time, making the model identification more robust and efficient, particularly, when 
studying the interface, whether in service or failure region, which behavior is extremely hard to 
quantify and predict. Accordingly, with this framework it will be possible to assess the structural 
behavior through a more robust and accurate way, being also possible to quantify any additional 
strength capacity. Therefore, the obtained results pointed out a relevant improvement in reliability 
assessment, allowing a more fundamental decision regarding the repair and strengthening of 
existing composite steel-concrete structures. 
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