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Abstract.    The present investigation is to study the plane problem in initially stressed thermoelastic half-space with 
voids due to thermal source. Lord-Shulman (Lord and Shulman 1967) theory of thermoelasticity with one relaxation 
time has been used to investigate the problem. A particular type of thermal source has been taken as an application of 
the approach. Finite element technique has been used to solve the problem. The components of displacement, stress, 
temperature change and volume fraction field are computed numerically. The resulting quantities are depicted 
graphically for different values of initial stress parameter. The relaxation time and the initial stress parameter have a 
significant effect on all distributions. 
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1. Introduction 
 

Biot (1956) introduced the theory of coupled thermoelasticity to overcome the first 
shortcoming in the classical uncoupled theory of thermoelasticity where it predicts two phenomena 
not compatible with physical observations. The theory of couple thermoelasticity was extended by 
Lord and Shulman (1967) and Green and Lindsay (1972) by including the thermal relaxation time 
in constitutive relations. In the decade of the 1990’s Green and Naghdi (1991, 1992, 1993) 
proposed three new thermoelastic theories based on an entropy equality rather than the usual 
entropy inequality. During the second half of twentieth century, non-isothermal problems of the 
theory of elasticity become increasingly important. This is due to their many applications in widely 
diverse fields. First, the high velocities of modern aircraft give rise to aerodynamic heating, which 
produces intense thermal stresses that reduce the strength of the aircraft structure. Second, in the 
nuclear field, the extremely high temperature and temperature gradients originating inside nuclear 
reactors influence their design and operations. 

The linear theory of elastic materials with voids is one of the generalization of the classical 
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theory of elasticity. This theory has practical utility to investigate various types of geological, 
biological and synthetic porous materials for which the elastic theory is inadequate. This theory is 
concerned with elastic materials consisting of a distribution of small pores (voids), in which the 
voids volume is included among the kinematics variables, and in the limiting case of volume 
tending to zero, the theory reduces to the classical theory of elasticity. The presence of voids is 
known to affect the estimation of the physical-mechanical properties of the composite and weaken 
the bond as these pores are spread over a wide area. The intended applications are to the materials 
like rock, soil and to manufactured porous materials. 

A nonlinear theory of elastic materials with voids was developed by Nunziato and Cowin 
(1979). Later, Cowin and Nunziato (1983) developed a theory of linear elastic materials with voids 
for the mathematical study of the mechanical behavior of porous solids. They considered several 
applications of the linear theory by investigating the response of the materials to homogeneous 
deformations, pure bending of beams, and small amplitudes of acoustic waves. Puri and Cowin 
(1985) studied the behavior of plane waves in a linear elastic material with voids. Iesan (1986) 
developed a linear theory of thermoelastic material with voids. Rusu (1987) studied the existence 
and uniqueness in thermoelastic materials with voids. Saccomandi (1992) presented some remarks 
about the thermoelastic theory of materials with voids. Ciarletta and Scalia (1993b) investigated 
the uniqueness and reciprocity theorems in linear thermoelasticity of material with voids. Ciarletta 
and Scalia (1993a) discussed the nonlinear theory of nonsimple thermoelastic materials with voids. 
The domain of influence theorem in the linear theory of elastic materials with voids was discussed 
by Dhaliwal and Wang (1994), Scarpetta (1995) studied well-posedness theorems for linear elastic 
materials with voids. Ciarletta and Scarpetta (1995) discussed some results on thermoelasticity for 
dielectric materials with voids. Dhaliwal and Wang (1995) developed a heat-flux dependent theory 
of thermoelasticity with voids. Marin (1997a, b) studied uniqueness and domain-of-influence 
results in thermoelastic bodies with voids. Marin (1998) also presented the contributions on 
uniqueness in thermoelastodynamics for bodies with voids. Marin and Salca (1998) obtained the 
relation of Knopoff-de Hoop type in thermoelasticity of dipolar bodies with voids. Birsan (2000) 
established existence and uniqueness of a weak solution in the linear theory of elastic shells with 
voids. Chirita and Scalia (2001) studied the spatial and temporal behavior in linear 
thermoelasticity of materials with voids. Pompei and Scalia (2002) studied the asymptotic spatial 
behavior in linear thermoelasticity of materials with voids. Ciarletta et al. (2003) studied stress 
analysis for cracks in elastic materials with voids. Iesan (1987) developed a theory of initially 
stressed thermoelastic material with voids. Singh et al. (2006) discussed the reflection of 
generalized thermoelastic waves from a solid half-space under hydrostatic initial stress. Fahmy and 
El-Shahat (2008) studied the effect of initial stress and inhomogeneity on the thermoelastic 
stresses in a rotating anisotropic solid. Effect of magnetic field and initial stress on the propagation 
of interface waves in transversely isotropic perfectly conducting media was investigated by 
Acharya et al. (2009). 

The finite element method is a powerful technique originally developed for numerical solution 
of complex problem in structural mechanics, and it remains the method of choice for complex 
system. A further benefit of this method is that it’s allow physical effects to be visualized and 
quantified regardless of experimental limitations. The counterparts of our problem in the contexts 
of the thermoelasticity theories have been considered by using analytical and numerical methods 
(Zenkour and Abbas 2014, Abbas and Kumar 2014, Abbas 2013, 2014a, b, Abbas and Othman 
2011, Tomar and Ogden 2014, Marin 1999, 2009, Abo-Dahab and Singh 2013, Sharma and Grover 
2012, Bachher et al. 2014, 2015). 
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In the present paper, the components of displacement, stress, and temperature change and 
volume fraction field are obtained in an initially stressed thermoelastic half-space due to thermal 
source. The resulting quantities are computed numerically by finite element technique and 
depicted graphically for different values of initial stress parameter. The initial stress parameter has 
a significant effect on all distributions. 
 
 
2. Basic equations 
 

Following Lord and Shulman (1967), Iesan (2004), the basic equations for homogeneous 
initially stressed generalized thermoelastic with voids material are 

The stress- strain relation in isotropic medium 
 

0 *
, , , ,( )     ij ij l l i j j i i j ij ijt u u u t u T        (1)

 
Equations of motion 
 

0 *( ) ( )       t grad div grad gard T      u u u . (2)
 
Equations of equilibrated forces 
 

* *
0 1( )      d div b T     u . (3)

 
Equation of heat conduction 
 

* *
0 0 1(1 ) ( )
       

  C T T b div k T
t

    u
,

(4)

 
where λ, μ are Lame’s constants, ρ is the density, u = (u, v, w) is the displacement vector, σij is the 
stress tensor, t0

jm is the initial stress parameter, ξ, *d, b*
1, ω0, ζ are the constitutive constant of the 

medium C* is the specific heat, β = (3λ + 2μ) αt, αt is the coefficient of linear thermal expansion. Δ 
is the Laplacian operator, ϕ (= ν ‒ ν0) is the volume fraction field and ν0 is the matrix volume 
fraction at the reference state. T is the temperature change which is measured from the absolute 
temperature T0 (T0 ≠ 0). We assume that T0 and ν0 are constants. τ0 is thermal relaxation time. 
 
 
3. Formulation of the problem 
 

We consider the medium of isotropic generalized thermoelastic with voids under initial stress. 
The origin of the Cartesian coordinate system (x, y, z) is taken at any point and z-axis taking 
vertically downward into the medium. For two dimensional problem, we have 

 
( u ,0, w)u . (5)

 
We define the dimensionless quantities 
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* * * *
' ' ' * ' '1 1 1 1

1
1 1 1 1

*2
' ' ' ' * ' *1

0 1 0 1 1 12 2
01 1

, , , , ,

, , , , ,

    

    ij
ij

x z u w
x z t t u w

c c c c

tT
T t

Tc c

   

        


 (6)

 

where 

*
*
1

( 2 )


C

k

 
and 

2
1

2
,


c
 
  

Eqs. (2)-(4) with the aid of Eqs. (5) and (6), yield after suppressing the primes 
 

1 2 3 ,
e T

u u
x x x

    
    

  
  (7)

 

1 2 3 ,
e T

w w
z z z

    
    

  
  (8)

 

4 5 6 7 8( ) ,e T
t

      
     


  (9)

 

 0 0 9 10 11(1 ) ( ) ,m e T k T
t

     
    


 (10)

 

where 
 

0 *

1 2 3 4*2
1

, , , ,
2 2 ( 2 )

 
   

  
t d       
        

*
0

5 6 7*2 *
1 1

, , ,
2

     


    
    

2* * 2 * 2
01 0 1 1 1

8 9 10 11* *3 *
1 1 1

, , , ,   
Tb T b c C c      

     
2 2 2
1

12 *2 2 2
1

, , .
   

     
   

Bc u w
e

x z x z



 

(11)

 

From the Eq. (1) with the aid of Eq. (6), we obtain the stress components in dimensionless form 
as 

0 2
, , 12 1

0

1
[( 2 ) ],xx x zt t u w c T

T
     


       (12)

 

0 2
, , 12 1

0

1
[ ( 2 ) ],zz x zt u t w c T

T
     


       (13)
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0
xz ,z ,x

0

1
t [( t )u w ].

T
   


 (14)

 
 
4. Initial and boundary condition 
 

The above Eqs. (7)-(10) are solved subjected to initial conditions 
 

0, 0, 0.         u w T u w T t   (15)
 
The boundary condition for the problem may be taken a 

 

0(0, , ) ( ) (2 ), 0, (0, , ) 0, (0, , ) 0,


    
 xx xzT z t T H t H l z z t z t
x

    (16)

 
where H() is the Heaviside unit step. 
 
 
5. Finite element formulation 
 

In this section, the governing equations of generalized thermoelastic with voids are summarized, 
followed by the corresponding finite element equations. In the finite element method, the 
displacement components u, w, volume fraction φ and temperature change T are related to the 
corresponding nodal values by 

 

1 1 1 1

( ), ( ), ( ), ( )
   

      
m m m m

i i i i i i i i
i i i i

u N u t w N w t T N T t N t   (17)

 
where m denotes the number of nodes per element, and Ni are the shape functions. The eight-node 
isoparametric, quadrilateral element is used for displacement components, volume fractional field 
and temperature calculations. The weighting functions and the shape functions coincide. Thus 

 

1 1 1 1

, , ,
   

      
m m m m

i i i i i i i i
i i i i

u N u w N w N T N T         (18)

 
It should be noted that appropriate boundary conditions associated with the governing Eqs. (7)-

(10) must be adopted in order to properly formulate a problem. Boundary conditions are either 
essential (or geometric) or natural (or traction) types. Essential conditions are prescribed 
displacements u, w, volume fraction φ and temperature change T while, the natural boundary 
conditions are prescribed tractions, heat flux and equilibrated stress which are expressed as 

 

, , ,  ,       xx x xz z x xz x zz z z x x z z x x z zn n n n q n q n q h n h n h       (19)
 

where nx and nz are direction cosines of the outward unit normal vector at the boundary, zx    ,  
are the given tractions values, q  is the given surface heat flux and h  is the given equilibrated 
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stress value. In the absence of body force, the governing equations are multiplied by weighting 
functions and then are integrated over the spatial domain Ω with the boundary Γ. Applying 
integration by parts and making use of the divergence theorem reduce the order of the spatial 
derivatives and allows for the application of the boundary conditions. Thus, the finite element 
equations corresponding to Eqs. (7)-(10) can be obtained as 

 

11

22

3333

41 42 43 4441 42 43 44

11 12 13 14

21 22 23 24

31 32 33 34

44

0 0 0 0 0 0 0

0 0 0 00 0 0

0 0 00 0 0

0 0 0

M uu

wM w

RM

R R R RT TM M M M

K K K K u

K K K K w

K K K K

TK

 



      
      

                             
  
  

   
 

   



 

 

 

1 1

2

3

4

m

e F

F

F

F



 
 
 
 
 
 
 
          

   
       

  (20)

 

where the coefficients in Eq. (20) are given below 
 

           11 22 33d , d , d ,
  

       
T T T

M N N M N N M N N
 

   41 0 9 42 0 9d , d ,
T TN N

M N M N M
x z

   
 

               
 

   43 0 10 d ,
T

M N N 


 
  

   44 12 0 d ,
T

M N N 


 
 

       33 6 44 11d , d ,
T T

R N N R N N 
 

    
 

     41 9 42 9 43 10d , d , d ,
T T TN N

R N R N R N N
x z

  
  

                  
 

11 1 2 1( )  d ,


                              
T T

N N N N
K

x x z z
  

   
12 2 d ,



            
T

N N
K

x z


 

   13 3 14d , d ,
T TN N

K N K N
x x


 

                

(21)
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21 2  d ,


            
T

N N
K

z x


   
22 1 2 1( ) d ,



                              
T T

N N N N
K

z z x x
  

 

   23 3 24d , d ,
 

                
T TN N

K N K N
z z


 

   31 7 32 7d , d ,
T TN N

K N K N
x z

 
 

               
 

   33 4 5 34 8d , d ,
T T

T TN N N N
K N N K N N

x x z z
  

 

                                        
 

44 d ,


                                 


T T
N N N N

K k
x x z z

 

1 2 3 4[ ] d , [ ] d , [ ] d , [ ] d .
   

          T T T T
x yF N F N F N q F N h 

 

(21)

 
Symbolically, the discretized equations of Eq. (20) can be written as 
 .. .

 ,extM d Rd Kd F   (22)
 

where M, R, K and Fext represent the mass, damping, stiffness matrices and external force vectors, 
respectively; d = [u w φ T]T. On the other hand, the time derivatives of the unknown variables have 
to be determined by Newmark time integration method (see Wriggers 2008). 

 
 

6. Numerically results and discussion 
 
With the view of illustrating theoretical results derived in the preceding sections, and compare 

these in the context of various theories of initially stressed thermoelastic with voids, we now 
present some numerical results for crystal-like material. The physical constants used are 

 

,1086.3,1076.7 21102110   smKgsmKg   

10954.8,386 3311   mKgKmWk   

.10293.0,103831.0,1078.1 33
0

113*15   mKgTKKgJCKt
 

(23)

 
The voids parameter, initial stress parameters and relaxation times are 
 

5 2 15 2 5
0 0.687 10 Nsm , 0.610 10 m ,d 0.9798 10 N,            

* 10 2 0 10 2 4 2
00.4 10 N m , t 0.5 10 N m , 0.02s,, 0.196 10 N m            . 

(24)
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The grid size has been refined until the values of u, w, volume fraction φ and temperature 
change T, stabilizes. Further refinement of mesh size over 500 × 500 elements does not change the 
values considerably. Thus, elements with x × y = 500 × 500 were used for this study. 

Figs. 1-7 depict the variation of displacement, temperature variation and stress components for 
different values of initial stress parameters with fixed relaxations time (Case I). In these figure 

 solid line, ------ dash line, . Dot line, dash   correspond to t0 = 0 , 5 × 1010, 10 × 1010, 
15 × 1010 respectively. 

Figs. 8-14 show the variation of these quantities for different values relaxations times with 
fixed initial stress parameters (Case II) and in Figs. 8-14 the above lines correspond to 0 = 0,0 .05, 
0.1, 0.2 respectively. 

Near the application of the source the values of u increase whereas the values of w decrease 
and away from the source, both converges to the boundary surface, these variations are shown in 
Figs. 1 and 2. 

 
 

 
Fig. 1 Variation of normal displacement with distance 

 
 

 
Fig. 2 Variation of Tangential displacement with distance 
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Fig. 3 Variation of Temperature change with distance 

 

 
Fig. 4 Variation of volume fraction field with distance 

 

 
Fig. 5 Variation of stress component txx with distance 
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In Fig. 3, the values of temperature T decrease monotonically with distance x for all values of 
initial stress parameter with difference in their magnitude value. 

The values of  depict the oscillatory behavior for small value of x and shown dispersionless 
behavior at the boundary surface, these variations are shown in Fig. 4. 

At the application of the source, the values of txx, tzz, start with similar values, increase with 
small magnitude, decrease monotonically, again increase and take the stationary value as x 
increases, these variations are shown in Figs. 5 and 7. 

The behaviour of variation of txz is of oscillatory when the source is applied for small values of 
x and as x increases, the variation is small and obtained the stationary values at the boundary 
surface and these variations are shown in Fig. 6. 

The behaviour and trend of variation of u and w near the application of the source is opposite to 
each other and away from the source, both attained the similar trend. These variations are shown in 
Figs. 8 and 9. 

Fig. 10 depicts the variation of T. The values of T are small for small relaxation time and more 
 
 

 
Fig. 6 Variation of stress component txz with distance 

 
 

 
Fig. 7 Variation of stress component tzz with distance 

 

1112



 
 
 
 
 
 

2D deformation in initially stressed thermoelastic half-space with voids 

 
Fig. 8 Variation of normal displacement with distance 

 

 
Fig. 9 Variation of tangential displacement with distance 

 

 
Fig. 10 Variation of Temperature change with distance 
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Fig. 11 Variation of volume fraction field with distance 

 

 
Fig. 12 Variation of stress component txx with distance 

 

 
Fig. 13 Variation of stress component txz with distance 
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Fig. 14 Variation of stress component tzz with distance 

 
 

as relaxation time takes the higher value. The opposite trend is noticed as x ≥ 0.65 whereas in the 
intermediate values there is oscillatory behavior. 

The values of  increase monotonically as x increases with different magnitude and as x 
increases further, the values remain stationary with difference in their magnitude values and these 
variations are shown in Fig. 11. 

The behavior and variations of txx, tzz, are similar with difference in their values, the values of 
these quantities are oscillatory for all values of relaxations times, and these variation are shown in 
Figs. 12 and 14. 

The value of txz decrease monotonically near the source application for all values of relaxation 
times except at 0 = 0, 0.05, whereas it has oscillatory behavior with small values of x. For higher 
values of x, it increase and then attain stationary values with difference in their magnitude values 
as x ≥ 1.4. 

 
 

7. Conclusions 
 
The aim of the present study is to enhance our knowledge about the application of finite 

element method in initially stressed thermoelastic half-space with voids. All the curves converge to 
zero as distance from surface of medium increases, this satisfies the conditions for surface wave 
propagation. The effect of relaxation times and initial stress have significant effects on all the field 
quantities except the temperature respect to initial stress. Near the application of the source, the 
effect of initial stress and relaxation times are highly predominated on u, w, , tzz whereas on other 
quantities effect are small predominated. Away from the source, they depict the stationary behavior. 
Also these effect decrease the value of u, w, T and increase the value of , txx, tzz, tzz, and converges 
to the boundary surface. 
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