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Abstract.  Most of the early studies on plates vibration are focused on two-dimensional theories, these theories 

reduce the dimensions of problems from three to two by introducing some assumptions in mathematical modeling 

leading to simpler expressions and derivation of solutions. However, these simplifications inherently bring errors and 

therefore may lead to unreliable results for relatively thick plates. The main objective of this research paper is to 

present 3-D elasticity solution for free vibration analysis of continuously graded carbon nanotube-reinforced 

(CGCNTR) rectangular plates resting on two-parameter elastic foundations. The volume fractions of oriented, 

straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. In this study, 

an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective 

constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). The 

proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, 

simply supported and clamped boundary conditions are applied to the other two edges. The formulations are based 

on the three-dimensional elasticity theory. A semi-analytical approach composed of differential quadrature method 

(DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is 

demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. The 2-D 

differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing 

equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate 

the results, comparisons are made between the present results and results reported by well-known references for 

special cases treated before, have confirmed accuracy and efficiency of the present approach. The novelty of the 

present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of 

oriented CNTs, different CNTs distributions, various coefficients of foundation and different combinations of free, 

simply supported and clamped boundary conditions on the vibrational characteristics of CGCNTR rectangular plates. 

The new results can be used as benchmark solutions for future researches. 
 

Keywords:  analytical methods; Mori-Tanaka scheme; three-dimensional free vibration; continuously 

graded carbon nanotube-reinforced (CGCNTR); two-parameter elastic foundation 

 
 

1. Introduction 
 

Recently, Nanocomposites have significant importance for engineering applications that require 

high levels of structural performance and multi-functionality. Carbon nanotubes (CNTs) have 

demonstrated exceptional mechanical, thermal and electrical properties. These materials are 
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considered as one of the most promising reinforcement materials for high performance structural 

and multifunctional composites with vast application potentials (Esawi and Farag 2007). A 

detailed summary of the mechanical properties of CNTs can be found in (Salvetat and Rubio 2002). 

The exceptional mechanical properties of CNTs have shown great promise for a wide variety of 

applications, such as nanotransistors, nanofillers, semiconductors, hydrogen storage devices, 

structural materials, molecular sensors, field-emission-based displays, and fuel cells, to name just a 

few (Endo et al. 2004). The addition of nano-sized fibers or nanofillers, such as CNTs, can further 

increase the merits of polymer composites (Wernik and Meguid 2011). These nanocomposites, 

easily processed due to the small diameter of the CNTs, exhibit unique properties (Thostenson et 

al. 2001, Moniruzzaman and Winey 2006), such as enhanced modulus and tensile strength, high 

thermal stability and good environmental resistance. This behavior, combined with their low 

density makes them suitable for a broad range of technological sectors such as telecommunications, 

electronics (Valter et al. 2002) and transport industries, especially for aeronautic and aerospace 

applications where the reduction of weight is crucial in order to reduce the fuel consumption. For 

example, Qian et al. (2000) showed that the addition of 1wt.% (i.e., 1% by weight) multiwall CNT 

to polystyrene resulted in 36-42% and ~25% increases in the elastic modulus and the break stress 

of the nanocomposite properties, respectively. In addition, Yokozeki et al. (2007) reported the 

retardation of the onset of matrix cracking in the composite laminates containing the cup-stacked 

CNTs compared to those without the cup-stacked CNTs. Most studies on CNT-reinforced 

composites (CNTRCs) have focused on their material properties (Hu et al. 2005, Fidelus et al. 

2005, Bonnet et al. 2007, Han and Elliott 2007, Odegard et al. 2003). Jin and Yuan (2003) 

determined the elasticity properties of single wall CNTs applying the molecular dynamic method. 

In fact, this macroscopic behavior was analyzed by studying the interaction of the atomic force and 

dynamic response in nanostructures affected by insignificant strain. Chang and Gao (2003) studied 

the dependence of single wall CNT elastic properties on its dimensions according to the molecular 

mechanics model. In fact, this model is one of the first studies for developing the analytical 

method application of molecular mechanic for modeling of nanostructures. Griebel and Hamaekers 

(2004) analyzed the elastic modulus of composite structures under CNTs reinforcement by 

simulating the molecular dynamic. The research was carried out on the composite structures made 

of polyethylene reinforced by carbon nonotubes. 

Functionally graded materials (FGMs) are a new class of advanced composite materials in 

which the microstructural details are spatially varied through smooth and continuous distribution 

of the reinforcement phase. The concept of FGM can be utilized for the management of a 

material’s microstructure so that the vibrational behavior of a plate/shell structure made of such 

material can be improved. In recent years, two kinds of FGMs are designed to improve mechanical 

behavior of plate/shell structures. One is functionally graded fiber-reinforced composites that have 

a smooth variation of material volume fractions, and/or in-plane fiber orientations, through the 

radial direction (Sobhani Aragh et al. 2011, Yas and Sobhani Aragh 2010, Batra and Jin 2005, Yas 

and Sobhani Aragh 2010, Vel 2010). Another one is functionally graded metal/ceramic composites 

with continuous composition gradation from pure ceramic on one surface to full metal on the other 

one (Reddy and Cheng 2001, Matsunaga 2008, Jabbari et al. 2006). According to a comprehensive 

survey of literature, the authors found that there are few research studies on the mechanical 

behavior of functionally graded CNTRC structures. Shen (2009) for the first time suggested that 

the nonlinear bending behavior can be considerably improved through the use of a functionally 

graded distribution of CNTs in the matrix. He introduced the CNT efficiency parameter to account 

load transfer between the nanotube and polymeric phases. Compressive postbuckling and thermal 
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buckling behavior of functionally graded nanocomposite plates reinforced by aligned, straight 

single-walled CNTs (SWCNTs) subjected to in-plane temperature variation were reported by Shen 

and Zhu (2010) and Shen and Zhang (2010). They found that in some cases the CNTRC plate with 

intermediate CNT volume fraction does not have intermediate buckling temperature and initial 

thermal postbuckling strength. Moreover, Ke et al. (2010) investigated the nonlinear free vibration 

of functionally graded CNTRC Timoshenko beams. They found that both linear and nonlinear 

frequencies of functionally graded CNTRC beam with symmetrical distribution of CNTs are 

higher than those of beams with uniform or unsymmetrical distribution of CNTs. To the best of 

authors’ knowledge the review of open literature showed that the studies on functionally graded 

CNTRCs were restricted to nanocomposite structures having graded aligned, straight CNTs in the 

thickness direction, and effective material properties of CNTRCs were estimated through the 

extended rule of mixture. This motivates us to employ the Eshelby-Mori-Tanaka approach to 

calculate the elastic stiffness properties of nanocomposite materials reinforced by graded oriented, 

straight CNTs. 

Plates resting on elastic foundations have found considerable applications in structural 

engineering problems. Reinforced-concrete pavements of highways, airport runways, foundation 

of storage tanks, swimming pools, and deep walls together with foundation slabs of buildings are 

well-known direct applications of these kinds of plates. The underlying layers are modeled by a 

Winkler-type elastic foundation. The most serious deficiency of the Winkler foundation model is 

to have no interaction between the springs. In other words, the springs in this model are assumed 

to be independent and unconnected. The Winkler foundation model is fairly improved by adopting 

the Pasternak foundation model, a two-parameter model, in which the shear stiffness of the 

foundation is considered. A closed-form solution for the vibration frequencies of simply supported 

Mindlin plates on Pasternak foundations and subjected to biaxial initial stresses was presented by 

Xiang et al. (1996). The buckling load of Mindlin plates on Pasternak foundations was obtained in 

terms of the thin plate solution. Based on first-order shear deformation plate theory, the buckling 

and vibration analysis of moderately thick laminates on Pasternak foundations were presented by 

Xiang et al. (1994). The effects of foundation parameters, transverse shear deformation, and rotary 

inertia and the number of layers on the buckling and vibration of cross-ply laminates were 

examined. Wang et al. (1997) presented relationships between the buckling loads of simply 

supported plates on a Pasternak foundation determined by classical Kirchhoff plate theory, 

Reissner-Mindlin plate theory, and Reddy plate theory. The vibration of polar orthotropic circular 

plates on an elastic foundation has been investigated by Gupta et al. (1994). The Mindlin shear 

deformable plate theory was employed and the Chebyshev collocation method was applied to 

obtain the frequency parameters for the circular plates. Ju and Lee (1995) developed a finite 

element model to study the vibration of Mindlin plates with multiple stepped variations in 

thickness and resting on non-homogeneous elastic foundations. Gupta et al. (Gupta et al. 1990, 

Gupta and Ansari 2002) studied the effect of elastic foundation on axisymmetric vibrations of 

polar orthotropic circular plates of variable thickness by taking approximating polynomials in 

Rayleigh–Ritz method. Laura and Gutierrez (1991) analyzed the free vibration of a solid circular 

plate of linearly varying thickness attached to Winkler foundation using the Ritz method. 

Matsunaga (2008) analyzed the natural frequencies and buckling stresses of FG plates using a 

higher order shear deformation theory which are based on the through the thickness series 

expansion of the displacement components. Zhou et al. (2004) used Ritz method to analyze the 

free-vibration characteristics of rectangular thick plates resting on elastic foundations. Matsunaga 

(2000) investigated a two-dimensional, higher-order theory for analyzing the thick simply 
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supported rectangular plates resting on elastic foundations. Liew et al. (1996) employed the 

differential quadrature method for studying the Mindlin’s plate on Winkler foundation. Cheng and 

Batra (2000) used Reddy’s third-order plate theory to study steady state vibrations and buckling of 

a simply supported functionally gradient isotropic polygonal plate resting on a Pasternak elastic 

foundation and subjected to uniform in-plane hydrostatic loads. Malekzadeh (2009) studied free 

vibration analyses of functionally graded plates on elastic foundations based on the three-

dimensional elasticity. 

In structural mechanics, one of the most popular semi-analytical methods is differential 

quadrature method (DQM), remarkable success of which has been demonstrated in many research 

works including vibration analysis of plates (Tahouneh 2014a, b, Tahouneh and Naei 2014, 

Tahouneh and Yas 2012, 2013, 2014, Tahouneh et al. 2013, Yas and Tahouneh 2012), shells 

(Tahouneh and Naei 2015a), and even sandwich structures (Tahouneh and Naei 2015b). The 

differential quadrature method (DQM) is found to be a simple and efficient numerical technique 

for structural analysis. Better convergence behavior is observed by DQM compared with its peer 

numerical competent techniques viz. the finite element method, the finite difference method, the 

boundary element method and the meshless technique. 

This paper is motivated by the lack of studies in the technical literature concerning to the three-

dimensional vibration analysis of a continuously graded carbon nanotube-reinforced (CGCNTR) 

rectangular plates resting on a two-parameter foundation. To the authors’ best knowledge, research 

on the vibration of thick a continuously graded carbon nanotube-reinforced (CGCNTR) 

rectangular plates resting on a two-parameter foundation based on the three-dimensional theory of 

elasticity has not been seen until now. In this study, the volume fractions of oriented, straight 

single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. 

An equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to 

estimate the effective constitutive law of the elastic isotropic medium (matrix) with dispersed 

elastic inhomogeneities (oriented CNTs). A sensitivity analysis is performed, and the natural 

frequencies are calculated for different sets of boundary conditions and different combinations of 

the geometric, and foundation parameters. Therefore, very complex combinations of the material 

properties, boundary conditions, and foundation stiffness are considered in the present semi-

analytical solution approach. 

 

 

2. Problem description 
 

Consider a CGCNTR rectangular plate with length a, width b, and thickness h as depicted in 

Fig. 1. The plate is supported by an elastic foundation with Winkler’s (normal) and Pasternak’s 

(shear) coefficients. The deformations defined with reference to a Cartesian coordinate system (x, 

y, z) are u, v and w in the x, y and z directions, respectively. We assume that CGCNTR rectangular 

plate is made from a mixture of oriented, straight SWCNT, graded distribution in the thickness 

direction, and polymer matrix which is assumed to be isotropic (Shi et al. 2004). 

 

2.1 Estimation of effective material properties of CNTRC 
 

In this research work, we exploit an equivalent continuum model based on the Eshelby-Mori-

Tanaka approach in order to estimate the effective constitutive law of the elastic isotropic medium 

(matrix) with dispersed elastic inhomogeneities (carbon nanotubes). The major step towards 
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Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates 

 

Fig. 1 The sketch of an elastically supported thick continuously graded carbon nanotube reinforced 

rectangular plate and setup of the coordinate system 

 

 

modeling materials with fully dispersed inhomogeneities was undertaken by Mori and Tanaka 

(1973). In particular, they accounted for the presence of multiple inclusions and boundary 

conditions and their interactions. Giordano et al. (2009) used the homogenization procedure, based 

on the Eshelby theory, under small deformations and small volume fractions of the embedded 

phases, to determine the bulk and shear moduli and Landau coefficients of the composite material. 

Previous studies had established the validity of the Eshelby-Mori-Tanaka approach in determining 

the effective properties of composites reinforced with misaligned, carbon fibres, and with carbon 

nanotubes (Odegard et al. 2003, Benveniste 1987, Chen and Cheng 1996). In this paper, the 

proposed model is framed with the Eshelby theory for elastic inclusions. The original theory of 

Eshelby (1957, 1959) is restricted to one single inclusion in a semi-infinite elastic, homogeneous 

and isotropic medium. The theory, generalized by Mori-Tanaka, allows to extend the original 

approach to the practical case of multiple inhomogeneities embedded into a finite domain. The 

Eshelby-Mori-Tanaka approach, based on the equivalent elastic inclusion idea of Eshelby and the 

concept of average stress in the matrix due to Mori-Tanaka, is also known as the equivalent 

inclusion-average stress method (Formica et al. 2010). 

 

2.1.1 Nanocomposite reinforced by aligned, straight CNTs 
Consider a linear elastic polymer matrix reinforced by a large number of dispersed straight 

CNTs. First, we consider a polymer composite reinforced with aligned and straight CNTs. 

According to Benveniste’s revisitation (1987), the following expression of the effective elastic 

tensor is obtained 

  1
)(


 rrmrmrrm AfIfACCfCC  (1) 

 

where fr and fm are the fiber and matrix volume fractions, respectively, I is the identity tensor, Cm is 

the stiffness tensor of the matrix material, Cr is the stiffness tensor of the equivalent fiber, and Ar is 

the dilute mechanical strain concentration tensor for the fiber 
 

  11 )()(
  mrmr CCCSIA  (2) 

 

the tensor S is Eshelby’s tensor, as given by Eshelby (1957) and Mura (1982). The terms enclosed 

with angle brackets in Eq. (1) represent the average value of the term over all orientations defined 

by transformation from the local fiber coordinates (o ‒ x′1x′2x′3) to the global coordinates (o ‒ x1x2x3), 

Fig. 2. The matrix is assumed to be elastic and isotropic, with Young’s modulus Em and Poisson’s 

ratio υm. Each straight CNT is modeled as a long fiber with transversely isotropic elastic properties. 
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Therefore, the composite is also transversely isotropic. The substitution of non-vanishing 

components of the Eshelby tensor S for a straight, long fiber along the x2- direction in Eq. (2) gives 

the dilute mechanical strain concentration tensor. Then the substitution of Ar (Eq. (2)) into Eq. (1) 

gives the tensor of effective elastic moduli of the composite reinforced by aligned and straight 

CNTs. In particular, the Hill’s elastic moduli are found as (Shi et al. 2004) 

 

 
(3) 

 

 
(4) 

 

 

(5) 

 

 
(6) 

 

 
(7) 

 

where k, l, m, n, and p are Hill’s elastic moduli of the composite; k is the plane-strain bulk 

modulus normal to the fiber direction, n is the uniaxial tension modulus in the fiber direction, l is 

the associated cross modulus, m and p are the shear moduli in planes normal and parallel to the 

fiber direction, respectively. kr , lr , mr , nr , and pr are the Hill’s elastic moduli for the reinforcing 

phase (CNTs). The elastic moduli parallel and normal to CNTs are related to Hill’s elastic moduli 

by 

 
(8) 

 

2.1.2 Nanocomposite reinforced by oriented, straight CNTs 
In this section, the influence of oriented, straight CNTs is investigated. The orientation of a 

straight CNT is characterized by two Euler angles α and β, as shown in Fig. 2. The orientation 

distribution of CNTs in the CNTRC is characterized by a probability density function for oriented 

nanotubes in which case the composite is isotropic. The base vectors ei and e′i of the global (o ‒ 

x1x2x3) and the local coordinate systems (o ‒ x′1x′2x′3) are related via the transformation matrix g 

 

 (9) 

where g is given by 
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Fig. 2 Representative volume element (RVE) including straight CNTs 

 

 

 

(10) 

 

The orientation distribution of CNTs in a composite is characterized by a probability density 

function P(α, β) satisfying the normalization condition (Shi et al. 2004) 
 

 
(11) 

 

If CNTs are completely oriented, the density function is 
 




2

1
),( p  (12) 

 

According to the Mori-Tanaka method, the strain εr (α, β) and the stress ζr (α, β) of the CNT are 

related to the stress of matrix ζm by 
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where the strain concentration tensor A(α, β) is given by Eq. (2). Then the average strain and stress 

in all oriented CNTs can be written as 
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The angle brackets represent the average over special orientations. Using the average theorems 

ζ = fmζm + fr ζr and ε = fmζm + fr ζr in conjunction with the effective constitutiverelation ζ = Cε, 
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one can get the effective modulus of the composite according to Eq. (1).When CNTs are 

completely oriented in the matrix, the composite is then isotropic, and itsbulk modulus K and shear 

modulus G are derived as 

( 3 )

3( )
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
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where Km and Gm are the bulk and shear moduli of the matrix, respectively. kr, mr, nr and lr are the 

Hill’s elastic moduli for the reinforcing phase. The effective Young’s modulus E and Poisson’s 

ratio υ of the material are given by 

9

3
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 (21) 
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In addition, Vf and Vm are the volume fractions of the CNTs and the matrix, which satisfy the 

relationship of Vf + Vm = 1. Similarly, mass density ρ can be calculated by 

 

   f f m mV V  (23) 

 

where ρf and ρm are the mass density of the CNTs and the matrix, respectively. 

In order to examine the effect of different CNTs distribution on the free vibration 

characteristics of CGCNTR rectangular plates resting on elastic foundations, various types of 

material profiles through the plate thickness (ηz = z/h) are considered. In this work, we assume 
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only linear distribution of CNTs volume fraction for the different types of the CGCNTR 

rectangular plate, as follow 
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where V*
f is the volume fraction of CNTs (Fidelus et al. 2005, Shen 2009, 2011) that is calculated 

from the mass fraction of nanotubes, mf, assuming two phases and no trapped air, using (Fidelus et 

al. 2005) 
1
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r
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f
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where ρr = ρf /ρm is the ratio of nanotube to matrix density. Note that Vf = V*
f corresponds to the 

uniformly distributed CNTR rectangular plate, referred to as CNTR-UD. With V*
f defined in Eq. 

(28), both the CGCNTR plate and CNTR-UD plate have the same value of CNTs mass fraction. 

For type V, the top surface of the plate (ηz = 0.5) is CNT-rich, referred to as CGCNTR-V (Fig. 3). 

As can be seen from Fig. 3, for type Λ, the distribution of CNTs reinforcements is inversed and 

the bottom surface of the plate (ηz = ‒0.5) is CNT-rich, referred to as CGCNTR- Λ. For type X, a 

mid-plane symmetric graded distribution of CNTs reinforcements is achieved and both top and 
 

 

 

Fig. 3 Variations of CNTs volume fractions through the thickness of the plate for different 

types of CNT distribution 
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bottom surfaces are CNT-rich, referred to as CGCNTR-X. For type ◊, the distribution of CNTs 

reinforcements is inversed and both top and bottom surfaces are CNT-poor, whereas the reference 

surface (ηz = 0) is CNT-rich, referred to as CGCNTR-◊. 

 

 

3. Theoretical formulations 
 

The mechanical constitutive relations that relate the stresses to the strains are as follows (Fung 

and Tong 2001) 

2    ij kk ij ij  (29) 

 

where λ and μ are the Lame constants, εij is the infinitesimal strain tensor and δij is the Kronecker 

delta. In the absence of body forces, the equations of motion are as follows 
 

 

(30) 

 

The infinitesimal strain tensor is related to the displacements as follows 
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where u, v and w are displacement components along the x, y and z axes, respectively. Upon 

substitution Eq. (31) into Eq. (29) and then into Eq. (30), the following equations of motion are 

obtained in terms of displacement components 
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(34) 

 

Eqs. (32) and (33) represent the in-plane equations of motion along the x- and y- axes, 

respectively; and Eq. (34) is the transverse or out-of-plane equation of motion. The related 

boundary conditions at z = ‒h/2 and h/2 are as follows 
 

at z = ‒h/2 

 

(35) 

 

at z = h/2 

 

(36) 

 

where ζij are the components of stress tensor; Kw and Kg are Winkler and shearing layer elastic 

coefficients of the foundation. Different types of classical boundary conditions at the edges of the 

plate can be stated as 
 

 Simply supported (S) 
 

;0,0,0  uwyy  (37) 
 

 Clamped (C) 
 

;0,0,0  wvu  (38) 
 

 Free (F) 
 

0,0,0  yzxyyy   (39) 
 

Here, plates with two opposite edges at x = ‒a/2 and a/2 simply supported and arbitrary 

conditions at edges y = ‒b/2 and b/2 are considered. For free vibration analysis, by adopting the 

following form for the displacement components the boundary conditions at edges x = ‒a/2 and 

a/2 are satisfied. 

ti

m

ti

m

ti

m

eaaxmtzyWtzyxw

eaaxmtzyVtzyxv

eaaxmtzyUtzyxu













))2(sin(),,(),,,(

,))2(sin(),,(),,,(

,))2(cos(),,(),,,(







 (40) 

 

where m is the wave number along the x-direction, ω is the natural frequency and i )1(   is the 

imaginary number. Substituting for displacement components from Eq. (40) into Eqs. (32)-(34), 

the coupled partial differential equations are reduced to a set of coupled ordinary differential 
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equations (ODE) as follows: 
 

Eq. (32) 

 

(41) 

 

Eq. (33) 

 

(42) 

 

Eq. (34) 

 

(43) 

 

The geometrical and natural boundary conditions stated in Eqs. (35)-(39) can also be simplified, 

however, for brevity purpose they are not shown here. 
 

 

4. DQM solution for equations of motion and boundary conditions 
 

It is necessary to develop appropriate methods to investigate the mechanical responses of 

continuously graded carbon nanotube-reinforced structures. But, due to the complexity of the 

problem, it is difficult to obtain the exact solution. In this paper, the differential quadrature method 

(DQM) approach is used to solve the governing equations of continuously graded carbon 

nanotube-reinforced (CGCNTR) rectangular plates. One can compare DQM solution procedure 

with the other two widely used traditional methods for plate analysis, i.e., Rayleigh-Ritz method 

and FEM. The main difference between the DQM and the other methods is how the governing 

equations are discretized. In DQM the governing equations and boundary conditions are directly 

discretized, and thus elements of stiffness and mass matrices are evaluated directly. But in 

Rayleigh-Ritz and FEMs, the weak form of the governing equations should be developed and the 

boundary conditions are satisfied in the weak form. Generally by doing so larger number of 

integrals with increasing amount of differentiation should be done to arrive at the element matrices. 

Also, the number of degrees of freedom will be increased for an acceptable accuracy. The basic 

idea of the DQM is the derivative of a function, with respect to a space variable at a given 

sampling point, is approximated as a weighted linear sum of the sampling points in the domain of 

that variable. In order to illustrate the DQ approximation, consider a function f (ξ, η) defined on a 

rectangular domain 0 ≤ ξ ≤ a and 0 ≤ η ≤ b. Let in the given domain, the function values be known 

or desired on a grid of sampling points. According to DQM method, the rth derivative of the 

function f (ξ, η) can be approximated as 
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(44) 

 

where Nξ represents the total number of nodes along the ξ-direction. From this Equation one can 

deduce that the important components of DQM approximations are the weighting coefficients

)( )(r
ijA

 and the choice of sampling points. In order to determine the weighting coefficients a set of 

test functions should be used in Eq. (44). The weighting coefficients for the first-order derivatives 

in ξ-direction are thus determined as (Bert and Malik 1996) 
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where 
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The weighting coefficients of the second-order derivative can be obtained in the matrix form 

(Bert and Malik 1996) 
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In a similar manner, the weighting coefficients for the η-direction can be obtained. 

The natural and simplest choice of the grid points is equally spaced points in the direction of 

the coordinate axes of computational domain. It was demonstrated that non-uniform grid points 

gives a better result with the same number of equally spaced grid points (Bert and Malik 1996). It 

is shown (Shu and Wang 1999) that one of the best options for obtaining grid points is Chebyshev–

Gauss–Lobatto quadrature points 
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For i = 1, 2, …, Nξ;  j = 1, 2, …, Nη 

(48) 

 

where Nξ and Nη are the total number of nodes along the ξ- and η-directions, respectively. 

At this stage, the DQ method can be applied to discretize the equations of motion (41-43) and 

the boundary conditions. As a result, at each domain grid point (yi, zk) with j = 2,…, Ny ‒ 1 and k = 

2,…, Nz ‒ 1, the discretized equations take the following forms 

 

Eq. (41) 
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Eq. (42) 
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Eq. (43) 
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ij AA   ,  and z
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y
ij BB   ,  are the first and second order DQ weighting coefficients in the y- 

and z-directions, respectively. In a similar manner the boundary conditions can be discretized. For 
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this purpose, using Eq. (40) and the DQ discretization rules for spatial derivatives, the boundary 

conditions at z = ‒h/2 and h/2 become, 
 

at z = ‒h/2 
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 (52) 

 

at z = h/2 
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where k = 1 at z = ‒h/2 and k = Nz at z = h/2, and j = 1,2,…, Ny. 
 

The boundary conditions at y = ‒b/2 and b/2 become, 

 Simply supported (S) 
 

 

(54) 

 

 Clamped (C) 
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 Free (F) 
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In the above equations k = 2,…, Nz‒1; also j = 1 at y = ‒b/2 and j = Ny at y = b/2. 

In order to carry out the eigenvalue analysis, the domain and boundary nodal displacements 

should be separated. In vector forms, they are denoted as {d} and {b}, respectively. Based on this 

definition, the discretized form of the equations of motion and the related boundary conditions can 
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be represented in the matrix form as: 

Eqs. of motion (49)-(51) 
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Boundary conditions (52)-(53) and (54)-(56) 
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Eliminating the boundary degrees of freedom in Eq. (57) using Eq. (58), this Equation becomes 
 

      0- 2 dMK   (59) 

 

where [K] = [Kdd] ‒ [Kdb][Kbb]
-1[Kbd]. The above eigenvalue system of equations can be solved to 

find the natural frequencies and mode shapes of the plate. 
 

 

5. Numerical results and discussion 
 

5.1 Convergence and comparison studies 
 

Due to lack of appropriate results for free vibration of continuously graded carbon nanotube-

reinforced (CGCNTR) rectangular plates resting on a two-parameter foundation for direct 

comparison, validation of the presented formulation is conducted in two ways. Firstly, the results 

are compared with those of 1-D conventional functionally graded rectangular plates, and then, the 

results of the presented formulations are given in the form of convergence studies with respect to 

Nz and Ny, the number of discrete points distributed along the thickness and width of the plate, 

respectively. The boundary conditions of the plate are specified by the letter symbols, for example, 

S-C-S-F denotes a plate with edges x = ‒a/2 and a/2 simply supported (S), edge y = ‒b/2 clamped 

(C) and edge y = b/2 free (F). 

As a first example, the properties of the plate are assumed to vary through the thickness of the 

plate with a desired variation of the volume fractions of the two materials in between the two 

surfaces. The modulus of elasticity E and mass density ρ are assumed to be in terms of a simple 

power law distribution and Poisson’s ratio υ is assumed to be constant as follows 
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(60) 

 

where ‒h/2 ≤ z ≤ h/2 and p is the power law index which takes values greater than or equal to zero. 

Subscripts M and C refer to the metal and ceramic constituents which denote the material 

properties of the bottom and top surface of the plate, respectively. The mechanical properties are as 

follows: 

 Metal (Aluminum, Al) 
 

.2702,3.0,10*70 329 mkgmNE MM    
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Table 1 Convergence behavior and accuracy of the first seven non-dimensional natural frequencies 

)/( CC Eh   of a simply supported FG plate against the number of DQ grid points (b/h = 2) 

P Nz Ny ϖ1 ϖ2 ϖ3 ϖ4 ϖ5 ϖ6 ϖ7 

0 

7 

7 0.5569 0.9395 0.9735 1.3764 1.5072 1.6064 1.7384 

9 0.5570 0.9396 0.9741 1.3771 1.5083 1.6071 1.7401 

13 0.5570 0.9396 0.9740 1.3774 1.5088 1.6076 1.7407 

9 

7 0.5573 0.9398 0.9735 1.3771 1.5087 1.6074 1.7403 

9 0.5572 0.9400 0.9742 1.3777 1.5090 1.6079 1.7406 

13 0.5572 0.9400 0.9741 1.3778 1.5096 1.6086 1.7405 

13 

7 0.5571 0.9401 0.9735 1.3779 1.5094 1.6083 1.7411 

9 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7405 

13 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7406 

(Matsunaga 2008) 0.5572 0.9400 0.9742 1.3777 1.5090 1.6078 1.7406 

0.5 

7 

7 0.4829 0.8222 0.8700 1.2250 1.3332 1.4364 1.5401 

9 0.4828 0.8229 0.8707 1.2258 1.3337 1.4367 1.5429 

13 0.4830 0.8224 0.8706 1.2254 1.3338 1.4370 1.5424 

9 

7 0.4833 0.8225 0.8701 1.2251 1.3335 1.4365 1.5402 

9 0.4835 0.8240 0.8708 1.2257 1.3340 1.4370 1.5431 

13 0.4836 0.8233 0.8707 1.2258 1.3340 1.4369 1.5426 

13 

7 0.4836 0.8227 0.8701 1.2251 1.3334 1.4366 1.5402 

9 0.4835 0.8231 0.8708 1.2259 1.3338 1.4370 1.5431 

13 0.4835 0.8233 0.8709 1.2259 1.3339 1.4370 1.5425 

(Matsunaga 2008) 0.4835 0.8233 0.8709 1.2259 1.3339 1.4370 1.5425 

1 

7 

7 0.4367 0.7476 0.7997 1.1158 1.2154 1.3085 1.4059 

9 0.4374 0.7477 0.8001 1.1165 1.2159 1.3090 1.4075 

13 0.4373 0.7478 0.8005 1.1163 1.2162 1.3088 1.4077 

9 

7 0.4368 0.7477 0.7998 1.1159 1.2157 1.3088 1.4068 

9 0.4374 0.7477 0.8003 1.1165 1.2161 1.3090 1.4076 

13 0.4374 0.7478 0.8006 1.1165 1.2162 1.3090 1.4078 

13 

7 0.4368 0.7477 0.7999 1.1159 1.2158 1.3088 1.4070 

9 0.4375 0.7478 0.8003 1.1165 1.2162 1.3091 1.4076 

13 0.4375 0.7478 0.8005 1.1165 1.2163 1.3091 1.4077 

(Matsunaga 2008) 0.4375 0.7477 0.8005 1.1166 1.2163 1.3091 1.4078 

4 

7 

7 0.3565 0.5988 0.6249 0.8724 0.9589 1.0000 1.1029 

9 0.3577 0.5995 0.6355 0.8729 0.9589 1.0007 1.1038 

13 0.3577 0.5996 0.6349 0.8728 0.9589 1.0003 1.1030 

9 

7 0.3569 0.5989 0.6250 0.8726 0.9589 1.0001 1.1032 

9 0.3579 0.5997 0.6357 0.8731 0.9589 1.0008 1.1040 

13 0.3578 0.5997 0.6351 0.8730 0.9589 1.0005 1.1032 
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Table 1 Continued 

P Nz Ny ϖ1 ϖ2 ϖ3 ϖ4 ϖ5 ϖ6 ϖ7 

4 13 

7 0.3571 0.5991 0.6252 0.8727 0.9589 1.0001 1.1033 

9 0.3579 0.5997 0.6357 0.8731 0.9589 1.0008 1.1040 

13 0.3579 0.5997 0.6352 0.8731 0.9589 1.0008 1.1040 

(Matsunaga 2008) 0.3579 0.5997 0.6352 0.8731 0.9591 1.0008 1.1040 

10 

7 

7 0.3306 0.5454 0.5657 0.7866 0.8588 0.9043 0.9838 

9 0.3311 0.5460 0.5662 0.7890 0.8588 0.9047 0.9841 

13 0.3310 0.5459 0.5661 0.7881 0.8588 0.9050 0.9846 

9 

7 0.3308 0.5455 0.5659 0.7870 0.8588 0.9044 0.9840 

9 0.3313 0.5461 0.5664 0.7892 0.8588 0.9048 0.9842 

13 0.3312 0.5460 0.5663 0.7883 0.8588 0.9051 0.9846 

13 

7 0.3309 0.5455 0.5660 0.7871 0.8588 0.9045 0.9840 

9 0.3313 0.5461 0.5664 0.7892 0.8588 0.9049 0.9844 

13 0.3313 0.5461 0.5664 0.7884 0.8588 0.9051 0.9847 

(Matsunaga 2008) 0.3313 0.5460 0.5664 0.7885 0.8588 0.9050 0.9847 

 

 

 Ceramic (Alumina, Al2O3) 
 

.3800,3.0,10*380 329 mkgmNE CC    
 

In Table 1, the first seven non-dimensional natural frequency parameters of simply supported 

thick FG plate are compared with those of Matsunaga (2008) 

As the second example, in order to validate the results for plates on an elastic foundation, the 

results for the first three natural frequency parameters of isotropic thick plate with two different 

values of thickness-to-length ratios and different values of Winkler elastic coefficient are presented 

in Table 2. They are compared with those of Zhou et al. (2004), Matsunaga (2000). In this example 

the non-dimensional natural frequency, Winkler and shearing layer elastic coefficients are as 

follows 

, ( ),

,

   


  

 

2
3 2

2

2 4

12 1C C C C C

g g C w w C

b
h D D E h

k K b D k K b D

 
(61) 

 

According to the data presented in the above-mentioned tables, excellent solution agreements 

can be observed between the present method and those of the other methods. Based on the above 

studies, a numerical value of Nz = Ny = 13 is used for the next studies. 

In this study, the non-dimensional natural frequency, Winkler and shearing layer elastic 

coefficients are as follows 
 

2
3 2

2

2 4

12 1  


   

 

m m m m m

g g m w w m

b
h D ,D E h ( ) ,

k K b D ,k K b D

 
(62) 
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Table 2 Comparison of the first three non-dimensional natural frequency parameters of a simply supported 

square isotropic plate on the elastic foundation (kg = 10) 

Kw Nz Ny 
b/h = 2 b/h = 5 

λ11 λ12 λ13 λ11 λ12 λ13 

0 

7 

7 1.6453 2.6906 3.8259 2.2325 4.4045 7.2429 

9 1.6461 2.6855 3.8264 2.2332 4.4058 7.2434 

13 1.6460 2.6848 3.8264 2.2330 4.4052 7.2433 

9 

7 1.6455 2.6905 3.8261 2.2329 4.4046 7.2431 

9 1.6462 2.6857 3.8267 2.2334 4.4060 7.2436 

13 1.6461 2.6850 3.8266 2.2333 4.4055 7.2435 

13 

7 1.6455 2.6907 3.8262 2.2330 4.4049 7.2432 

9 1.6462 2.6857 3.8267 2.2334 4.4060 7.2436 

13 1.6462 2.6851 3.8267 2.2334 4.4057 7.2436 

(Zhou et al. 2004) 1.6462 2.6851 3.8268 2.2334 4.4056 7.2436 

(Matsunaga 2000) 1.6462 2.6851 3.8268 2.2334 4.4056 7.2436 

10 

7 

7 1.6569 2.6870 3.8261 2.2532 4.415 7.2474 

9 1.6575 2.6875 3.8280 2.2537 4.415 7.2484 

13 1.6574 2.6875 3.8271 2.2536 4.415 7.2483 

9 

7 1.6572 2.6872 3.8262 2.2534 4.415 7.2481 

9 1.6577 2.6878 3.8282 2.2539 4.415 7.2487 

13 1.6576 2.6876 3.8273 2.2538 4.415 7.2485 

13 

7 1.6573 2.6873 3.8264 2.2535 4.415 7.2482 

9 1.6577 2.6878 3.8282 2.2539 4.415 7.2487 

13 1.6577 2.6878 3.8275 2.2539 4.415 7.2487 

(Zhou et al. 2004) 1.6577 2.6879 3.8274 2.2539 4.415 7.2487 

(Matsunaga 2000) 1.6577 2.6879 3.8274 2.2539 4.415 7.2488 

 

 

where ρm, Em and υm are mechanical properties of matrix. In this work, Poly (methyl methacrylate), 

referred to as PMMA, is selected for the matrix, and the material properties of which are assumed 

to be, υm = 0.34 and Em = 2.5 GPa (Shen 2011, Wang and Shen 2011). The (10,10) SWCNTs are 

selected as reinforcements. The material properties of the (10, 10) SWCNTs used here from Refs. 

(Shen and Zhang, Shen 2011, Wang and Shen 2011), Ef

11
 = 5.6466 Tpa, Ef

22 = 7.08 Tpa, Gf

12 = 

1.9445 Tpa and υ f

12 = 0.175 at room temperature (300 K). 

 

5.2 Parametric studies 
 

After demonstrating the convergence and accuracy of the method, parametric studies for 3-D 

vibration analysis of elastically supported thick CGCNTR rectangular plates reinforced by 

oriented CNTs for different CNTs distributions and various length to width ratio (a/b) and different 

combinations of free, simply supported and clamped boundary conditions at the edges, are 

computed. Fig. 4 shows the effect of the CNTs volume fraction V*
f on CGCNTR-V to CNTR-UD 
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fundamental frequency ratio, ,/ 1111
UDCG   of the nanocomposite rectangular plates for different 

values of b/h ratios. Three different values of the CNTs volume fraction V*
f = 0.12, 0.17 and 0.28 

are taken into account. Correspondingly, the CNTs mass fractions are mf  = 0.142, 0.2 and 0.321, 

respectively, by taking the density of CNT ρf = 1.4 g/cm3 and the density of matrix ρm = 1.15 g/cm3 

in Eq. (28). It can be seen that the discrepancies between the frequencies for the plates with 

continuously graded and uniform distribution of CNTs increases with the increase of the CNTs 

volume fraction V*
f. This figure is also shown that the discrepancies between the frequencies 

decrease with the increase of the b/h ratio. It should be noted that this behavior is also observed at 

other boundary conditions, but, for the sale of brevity, we consider only two types of the boundary 

conditions. 

The variation of UDCG
1111 /  ratio of the S-C-S-C nanocomposite rectangular plates with b/h 

and a/b ratios is shown in Fig. 5. As it is observed, the UDCG
1111 /  ratio decreases rapidly with the 

 

 

 

Fig. 4 Variation of the 
UDCG

1111
/  ratios of the nanocomposite plate for different values of b/h 

ratios and different values of the CNTs volume fraction (a /b  = 5 , Kg = 10, Kw = 100) 
 

 

 

Fig. 5 Variations of the 
UDCG

1111
/  ratios of the S-C-S-C nanocomposite rectangular plate for 

different values of a/b and b/h ratios (V *
f = 0.12, Kg = 10, Kw = 100) 
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increase of a/b ratio and then remains almost unaltered for a/b > 7. It is observed that when the b/h 

ratios become smaller, the discrepancies between the frequencies for CGCNTR-V and CNTR-UD 

rectangular plates become larger. 

In Fig. 6, the effect of various boundary conditions on the UDCG
1111 /  ratios of the 

nanocomposite rectangular plates with V*
f = 0.12 for different values of a/b ratios is depicted. It 

can also be inferred from Fig. 6 that the S-C-S-C CGCNTR rectangular plate has the highest, 

whereas the S-F-S-F one has the lowest UDCG
1111 /  ratio values, implying that the discrepancies 

between the frequencies of CGCNTR and CNTR-UD rectangular plate with greater supporting 

rigidity will be lower. In addition, Fig. 6 reveals that effects of the boundary conditions on the 
UDCG
1111 /  ratio diminish as a/b ratio increases. 

In Figs. 7 and 8 the effects of variation of wave number (m) on the frequency parameters of S- 

C-S-C CGCNTR-V rectangular plate with V*
f = 0.12 for different values of a/b and b/h ratios are 

 

 

 

Fig. 6 Effect of various boundary conditions on the 
UDCG

1111
/  ratios of the nanocomposite 

rectangular plate for different values of a/b ratios (V*
f = 0.12, Kg = 10, Kw = 100, b/h = 10) 

 

 

 

Fig. 7 Variation of wave number (m) with the frequency parameters of S-C-S-C CGCNTR-V nanocomposite 

rectangular plate for different values of a/b ratios (V*
f = 0.12, Kg = 10, Kw = 100, b/h = 10) 
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demonstrated. According to Fig. 7, the general behavior of the frequency parameters of CGCNTR 

rectangular plate for all a/b ratios is that the frequency parameters converge only in the range 

beyond that of the fundamental frequency parameters. This means that the effects of a/b ratios are 

more prominent at low wave numbers, particularly those in the range before that of the 

fundamental frequency parameters, that at high wave numbers. As in Fig. 8 is shown, when the 

wave number increases the discrepancies between the frequency parameters for the different 

values of b/h ratios become larger. It should be noted at this point that this natural frequency 

behavior contrasts with the natural frequency behavior of the CGCNTR rectangular plate for 

different values of a/b ratios. This behavior is also observed at other boundary conditions that 

again are not shown here for brevity. In the following discussion, the effect of different types of 

CNTs distributions through the plate thickness on the free vibration characteristics of CGCNTR 

rectangular plate is investigated. 
 

 

 

Fig. 8 Variation of wave number (m) with the frequency parameters of S-C-S-C CGCNTR-V nanocomposite 

rectangular plate for different values of b/h ratio (V*
f = 0.12, Kg = 10, Kw = 100, b/h = 10) 

 

 

 

Fig. 9 Variation of the frequency parameters versus a/b ratios with different types of CNTs distribution for 

S-C-S-C nanocomposite rectangular plate (V*
f = 0.12, Kg = 10, Kw = 100, b/h = 10) 
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Fig. 10 Variations of fundamental frequency parameters of a S-C-S-C nanocomposite rectangular plate 

resting on a two-parameter elastic foundation with Winkler and different shearing layer elastic 

coefficient (V*
f = 0.12, a/b = 10, b/h = 10) 

 

 

 

Fig. 11 Variations of fundamental frequency parameters of a S-C-S-C nanocomposite rectangular plate 

versus the shearing layer elastic coefficient for different Winkler elastic coefficient (V*
f = 0.12, 

a/b = 10, b/h = 10) 
 

 

In Fig. 9, the influence of a/b ratios on the fundamental frequency parameters of the S-C-S-C 

nanocomposite rectangular plate with V*
f = 0.12 for different types of CNTs distributions is 

depicted. As can be seen from this figure, the lowest frequency parameters is obtained by using 

CGCNTR-◊ volume fractions profile. On the contrary, oriented, straight CNTs with CGCNTR-X 

profile has the maximum value of the frequency parameter. 

Fig. 10 shows the effects of variation of the Winkler elastic coefficient on the fundamental 

frequency parameters of the S-C-S-C nanocomposite rectangular plate and for different values of 

shearing layer elastic coefficient. It is clear that with increasing the elastic coefficients of the 

foundation, the frequency parameters increase to some limit values. It is observed for the large 

values of Winkler elastic coefficient, the shearing layer elastic coefficient has less effect and the 
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results become independent of it. 

The influence of shearing layer elastic coefficient on the fundamental frequency parameters is 

shown in Fig. 11. One can see that the Winkler elastic coefficient has little effect on the 

fundamental frequency parameters at different values of shearing layer elastic coefficient. This 

behavior is also observed at other boundary conditions, but, for the sale of brevity, we consider 

only this type of the boundary condition. 
 

 

6. Conclusions 
 

In this research work, differential quadrature method was employed to obtain a highly accurate 

semi-analytical solution for free vibration of nanocomposite rectangular plates resting on a two-

parameter elastic foundation under various boundary conditions. The study was carried out based 

on the three-dimensional, linear and small strain elasticity theory. The volume fractions of oriented, 

straight single-walled carbon nanotubes (SWCNTs) were assumed to be graded in the thickness 

direction. The Eshelby-Mori-Tanaka approach was used to estimate the effective constitutive law 

of the elastic isotropic medium (matrix) with oriented, straight CNTs. The impacts of the volume 

fractions of oriented CNTs, different CNTs distributions, geometrical parameters and elastic 

coefficients of foundation on the vibrational characteristics of elastically supported thick 

rectangular plates were investigated. From this study, some conclusions can be made: 
 

 Based on the achieved results, the continuously graded CNTs volume fractions can be 

utilized for the management of vibrational behavior of structures so that the frequency 

parameters of structures made of such material can be considerably improved than the 

nanocomposites reinforced with uniformly distributed CNTs. 

 The discrepancies between the frequencies for the plates with continuously graded and 

uniformly distributed CNTs decrease with the increase of the b/h ratio, but increase with 

increase in the CNTs volume fraction V*
f. 

 The discrepancies between the natural frequencies of the continuously graded and uniformly 

distributed CNTs rectangular plate with greater supporting rigidity will be lower. 

 It is shown that the uniform distribution of CNTs volume fractions has the higher 

frequencies than that of asymmetric distributions, CGCNTR-Λ and CGCNTR-V. 

 The interesting results show that the graded CNTs volume fractions with symmetric 

distributions through the plate thickness have high capabilities to reduce/increase the natural 

frequency than uniformly and asymmetric distributions. 

 It is shown that with increasing the elastic coefficients of the foundation, the fundamental 

frequency parameters to some limit values. It is observed for the large values of Winkler 

elastic coefficient, the shearing layer elastic coefficient has less effect and the results 

become independent of it. 

 It is shown that the variation of Winkler elastic coefficient has little effect on the 

fundamental frequency parameters at different values of shearing layer elastic coefficient. It 

is clear that in all cases, with increasing the shearing layer elastic coefficient of the 

foundation, the frequency parameters increase to some limit values. It is observed for the 

large values of shearing layer elastic coefficient; the results become independent of it. 
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