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Abstract.   A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams 
strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The analysis 
provides efficient calculations for both shear and normal interfacial stresses in reinforced concrete beams 
strengthened with composite plates, and accounts for various effects of Poisson’s ratio and Young’s modulus of 
adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can 
produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility 
approach developed by Tounsi. In the present theoretical analysis, the adherend shear deformations are taken into 
account by assuming a parabolic shear stress through the thickness of both the reinforced concrete beam and bonded 
plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam. 
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1. Introduction 
 

Advanced composite materials, e.g., fiber – reinforced polymers (FRP), have found their new 
applications in the rehabilitation of reinforced concrete structure (Triantafillou 1998, Quantrill and 
Hollaway 1998). Compared with the traditional materials, composite materials have some unique 
features, i.e., high strength and stiffness to weight ratio, attractive corrosion resistance and ease of 
handling and application (Meier et al. 1993, Meier 1997). Among these materials, carbon fiber 
polymers (CFRP) are extensively used because of their unparalleled characteristics (Meier 1995, 
Mouring 2001). The transferring of stresses from concrete to the FRP reinforcement is central to 
the reinforcement effect of FRP – strengthened concrete structures. This is because the stresses are 
susceptible to cause the undesirable premature and brittle failure, such as debonding of the soffit 
plate from the RC beam. This debonding failure mode is brittle and prevents the full utilization of 
the tensile strength of the bonded plate. It is therefore important to understand the mechanism of 
this debonding failure mode and develop sound design rules. This brittle mode of failure is a result 
of the high shear and vertical normal (peeling) stress concentrations arising at the edges of the 
bonded FRP strip. Hence, this limited area in the close vicinity of the bonded strip edge, subjected 
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to high peeling and interfacial shear stresses, proves to be among the most critical parts of the 
strengthened beam. Consequently, the determination of interfacial stresses has been researched for 
the last decade for beams bonded with either steel or advanced composite materials. In particular, 
several closed – form analytical solutions have been developed (Vilnay 1988, Smith and Teng 
2001). All these solutions are for linear elastic materials and employ the same key assumption that 
the adhesive is subject to normal and shear stresses that are constant across the thickness of the 
adhesive layer. It is this key assumption that enables relatively simple closed – form solutions to 
be obtained. In the existing solutions, two different approaches have been employed. Smith and 
Teng (2001) considered directly deformation compatibility conditions. 

The advantages of the FRP retrofitting method and performances of the hybrid structure 
involve the excellent properties of the FRP composite. The FRP composite is of high stiffness and 
strength, low weight, corrosion resistance, and electromagnetic neutrality. The retrofitting process 
of the existing structures becomes quick and simple due to the lower weight. The performance 
enhancement of such hybrid structures, however, depends on properties of the interface between 
the steel beam and FRP. The present research focuses on the influence of adhesive properties on 
the interfacial stress in externally FRP plated reinforced concrete beams. The behaviour of the 
interface between the reinforced concrete beam and FRP can influence the performance of hybrid 
beam and is influenced by many factors such as the properties and geometries of the steel beam, 
FRP and adhesive layer. The interface transfers the stresses from reinforced concrete to FRP plate. 
Therefore, a comprehensive understanding on the stress state and the stress – transfer mechanism 
of the interface is necessary for the design and application of the hybrid structures. The interfacial 
stress of the hybrid beam has been studied by experimental and theoretical methods. The 
experimental technologies were applied to test the interfacial stresses (Etman and Beeby 2000, 
Jones et al. 1988). However, the experimental test of interfacial stress fields seems to be difficult 
because of the complicated distribution of local stresses. The analytical studies (Tounsi 2006, 
Tounsi et al. 2008) tend to develop a closed – form solutions for the interfacial shear and normal 
stresses. Recently Attari et al. (2012) investigated the flexural strengthening of concrete beams 
using CFRP, GFRP and hybrid FRP sheets. Xiang (Xiang and Wang 2013) presented a calculation 
of Flexural Strengthening of Fire-damaged reinforced concrete beams with CFRP Sheets. Zhang 
and Teng (2013) investigated the interaction forces in RC beams strengthened with near-surface 
mounted rectangular bars and strips. 

Ameur et al. (2011) presented the finite element analysis of interfacial stresses in steel beams 
strengthened with a bonded hygrothermal aged CFRP plate. Boucif et al. (2014) presented the 
effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading. 
Krour et al. (2013) studied the Fibers orientation optimization for concrete beam strengthened with 
a CFRP bonded plate: A coupled analytical–numerical investigation. 

In this paper, the influence of the characteristics of structural adhesives on the interfacial 
stresses in FRP plated reinforced concrete beams is investigated theoretically. These investigations 
are carried out by means of a new analytical method which takes into account the adherend shear 
deformations. The importance of including shear – lag effect of the adherends was shown firstly by 
Tsai et al. (1998) in adhesive lap joints. Tounsi (2006) has extended this theory to study concrete 
beam strengthened by FRP plate. The basic assumption in these two studies is a linear distribution 
of shear stress across the thickness of the adherends. However, it is well known that in beam 
theory, this distribution is parabolic through the depth of beam. In the present developed method 
this later assumption is taken into consideration. The methods predicts stress distributions along 
the adhesive joint and can be used to analyze failure of the adhesive, or the substrates in the 
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immediate vicinity of the joint, failure modes typically observed in adhesive joints involving 
metallic or FRP substrates. 
 
 
2. Methods of analysing adhesive joints 
 

Bonded joints have been used since the 1930s, but it is only relatively recently that this 
technology has been transferred to the construction industry. Adhesive joints in construction are 
often on a larger scale than those in the automotive or aerospace industries (for example), and 
behave in different ways. Furthermore, construction projects are one – offs and it is not economic 
to base design on test results, unlike other industries with long production runs. Consequently, it is 
important to have realistic models for the adhesive joint strength. Two approaches can be used to 
predict the failure of adhesive joints: a stress analysis, or a fracture mechanics approach. Fracture 
mechanics examines the energy required for unstable crack propagation along the joint; however, 
this approach has yet to be successfully applied to infrastructure strengthening applications 
(Buyukozturk et al. 2003). 

After the adhesive has cured, the strengthening plate and beam act compositely, with load 
transferred between them by a combination of shear stresses (parallel to the joint) and peel stresses 
(normal to the joint). A stress analysis can be used to predict the distributions of shear and peel 
stress along the strengthened beam, for comparison to the limiting strength of the adhesive joint. 
Several closed – form stress analyses are available that predict the distribution of bond stresses 
along a plate bonded to a beam, for example, see (Tounsi 2006, Etman and Beeby 2000). These all 
assume that the adhesive is linear – elastic, but involve a variety of simplifying assumptions. 

The motivation behind the approach presented in this paper was the lack of guidance for 
designing FRP strengthening bonded to metallic structures. The reliability of structural adhesive 
joint depends on several factors. Among these factors, the adhesive characteristics play an 
important role in the integrity and reliability of hybrid structure. 
 
 
3. Methods of analysing adhesive joints 
 

A differential section dx, can be cut out from the FRP reinforced concrete beam (Fig. 1), as 
shown in Fig. 2. The composite beam is made from three materials: reinforced concrete beam, 
adhesive layer and FRP reinforcement. In the present analysis, linear elastic behaviour is regarded 
to be for all the materials; the adhesive is assumed to play a role only in transferring the stresses 
from the concrete to the FRP reinforcement and the stresses in the adhesive layer do not change 
through the direction of the thickness. 

 

 
Fig. 1 Simply supported beam strengthened with bonded composite plate 
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Fig. 2 Simply Forces in infinitesimal element of a soffit – plated beam 
 
 
3.1 Basic equation of elasticity 
 
The strains in the reinforced concrete beam near the adhesive interface can be expressed as 

 

       xx
dx

xdu
x NM

11
1

1    (1)

 

Where u1(x) is the longitudinal displacement at the base of reinforced concrete beam.  xM
1  is 

the strain induced by the bending moment at the adherend 1 and it is written as follow 
 

   xM
IE

y
xM

1
11

1
1   (2)

 

Where M1(x) is the bending moment applied in the steel beam; E1 is Young’s moduli of the 
reinforced concrete beam; I1 is the second moment area; y1 is the distance from the bottom of 
adherend 1 to its centroid. 

 xN
1  is the unknown longitudinal strain of the reinforced concrete beam, at the adhesive 

interface and it is due to the longitudinal forces. This strain is given as follow 
 

 
dx

xdu
x

N
N )(1

1   (3)
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Where 
Nu1  represents the longitudinal force – induced adhesive displacement at the interface 

between the steel beam and the adhesive. 
To determine the unknown longitudinal strain  xN

1  shear deformations of the reinforced 
concrete beam is incorporated in this analysis. It is reasonable to assume that the shear stresses, 
which develop in the adhesive, are continuous across the adhesive – adherend interface. In 
addition, equilibrium requires the shear stress be zero at the free surface. Using the same 
methodology developed by Tounsi (2006), this effect is taken into account. A cubic variation of 
longitudinal displacement ),(1 yxU N

 through the thickness of adherend 1 is assumed 
 

)()()(),( 11
3

11 xCyxByxAyxU N   (4)
 
Where y is a local coordinate system with the origin at the top surface of the upper adherend 

Fig. 2. 
The shear stresses in adherend 1 is given by 
 

)1(1)1( xyxy G    (5)

With 

x

W

y

U NN

xy 






 11
)1(  (6)

 
G1 is the transverse shear modulus of the adherend 1. Neglecting the variations of transverse 

displacement 
NW1 (induced by the longitudinal forces) with the longitudinal coordinate x. 

 

y

U N

xy 


 1
)1(  (7)

 
And the shear stresses are expressed as 
 

 )()(3 2
1)1( xByxAGxy   (8)

 
The shear stresses must satisfy the following conditions 
 

axy xtx   )(),( 1)1(  (9)
 

0)0,()1( xxy  (10)
 
t1 is the thickness of adherend 1. 
Condition (9) follows from continuity and assumption of the uniform shear stresses (τ(x) = τa) 

through the thickness of adhesive. Condition (10) states there is no shear stresses at the top 
surface of the adherend 1 (i.e., at y = 0). These conditions yield 
 

2
2
1

)1( y
t

a
xy

   (11)
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Then with a linear material constitutive relationship the adherend shear strain γ1 for the 
adherend 1 is written as 

2
2
11

1)1( y
tG
a

xy

   (12)

 
The longitudinal displacement functions 

NU1  for the upper adherend, due to the longitudinal 
forces, is given as 

3
2
11

1

0

111 3
)0()()0()( y

tG
UdyyUyU aN

y
NN     (13)

 
Where )0(1

NU  represents the displacement at the top surface of the upper adherend (due to the 
longitudinal forces). 

Note that due to the perfect bonding of the joints, the displacements are continuous at the 
interfaces between the adhesive and adherends. As a result, the 

Nu1  (the adhesive displacement at 
the interface between the adhesive and upper adherend) should be the same as the upper adherend 
displacement at the interface. Based on Eq. (13) the 

Nu1  can be expressed as 
 

1

1
1111 3

)0()(
G

t
UtyUu aNNN 

  (14)

 
Using Eq. (14), Eq. (13) can be rewritten as 

 

1

13
2
11

11 33
)(

G

t
y

tG
uyU aaNN 

  (15)

 
The longitudinal resultant force, N1 for the upper adherend, is 
 

      
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
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1
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0
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t
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N
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With b0 = b1 width of the concrete beam and t0 = t1 height of the concrete beam. 
Where 

N
1  is longitudinal normal stress for the upper adherend. By changing these stresses 

into functions of displacements and substituting Eq. (15) into the displacement, Eq. (16) can be 
rewritten as 

 
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Hence, the longitudinal strains induced by the longitudinal forces Eq. (3) can be expressed as 
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Substituting Eqs. (18) and (2) into Eqs. (1), this latter becomes 
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
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

 (19)

 
Where N(x) are the axial forces in each adherend, A1 the cross – sectional area. 
Since the composite laminate is an orthotropic material, its material properties vary from layer 

to layer. In current study, the laminate theory is used to determine the stress and strain behaviours 
of the externally bonded composite plate in order to investigate the whole mechanical performance 
of the composite – strengthened structure. The effective moduli of the composite laminate are 
varied by the orientation of the fibre directions and arrangements of the laminate patterns. The 
laminate theory is used to estimate the strain of the symmetrical composite plate (Herakovich, 
1998), i.e. 

2
11

0 1

b
NA xx     and   

2
11

1

b
MDk xx   (20)

 

][][ 1 AA  is the inverse of the extensional matrix ];[A  ][][ 1 DD  is the inverse of the 
flexural matrix; b2 is a width of FRP plate. 

Using CLT, the strain at the top of the FRP plate 2 is given as 
 

 
2
20

2

t
kx xx    (21)

 
Substituting Eq. (20) in (21) gives the following equation 

 

       
2

2
112

2

2
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2
2 2 b

xN
AxM

b

t
D

dx

xdu
x   (22)

Where 

  xNxN 2   and     xMxM 2  (23)
 
M(x), N(x) and V(x) are the bending moment, axial and shear forces in the adherend. 
By adopting the equilibrium conditions of the reinforced concrete beam, we have 

 

Along x – direction:       xNxN 2  and    xMxM 2  (24)
 
Where τ(x) is shear stress in the adhesive layer. 

 

Along y – direction:       qbx
dx

xdV
n  2

1 )(
)(   (25)

 
Where V1(x) is shear force applied in the reinforced concrete beam; σn(x) is normal stress in the 

adhesive layer and q is the uniformly distributed load. 
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Moment equilibrium:    121
1 )()(

)(
ybxxV

dx

xdM   (26)

 
The equilibrium of the external FRP reinforcement along x –, y – direction and moment 

equilibrium can be also written as 
 

Along x – direction:     2
2 )(

)(
bx

dx

xdN
  (27)

 

Along y – direction:     2
2 )(

)(
bx

dx

xdV
n  (28)

 

Moment equilibrium:     
2

)()(
)( 2

22
2 t

bxxV
dx

xdM   (29)

 
Where V2(x) is shear force applied in the external FRP reinforcement. 
 
3.2 Shear stress distribution along the FRP – beam interface 
 
Here, it is considered that the bending stiffness of the external FRP reinforcement is far less 

than of the beam to be strengthened and the bending moment in the external FRP reinforcement 
can be neglected for simplicity in the derivation of shear stress. 

The shear stress in the adhesive can be expressed as follows 
 

      xuxuKxuKx ss 12)(   (30)
 
Where Ks is shear stiffness of the adhesive per unit length and can be deduced as 
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)( 
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Δu(x) is relative horizontal displacement at the adhesive interface; Ga is the shear modulus in 

the adhesive and ta is the thickness of the adhesive. 
Substituting Eqs. (19) and (22) into Eq. (30) and differentiating the resulting equation once 

yields 
 

         













dx

xd
ttttttbttttttb

AtG

AE

xN
xM

IE

y
xN

b

A
xMD

b

y
K

dx

xd
S

)(
248

12

1

)(
)()()(

)(

4
0

4
0101

3
100

3
1

4
01

4
1

4
01

1
2
11

11

1
1

11

1
2

2

11
'

211
2

2





 (32)

 
Assuming equal curvature in the beam and the FRP plate, the relationship between the 

moments in the two adherends can be expressed as 
 

   xRMxM 21   (33)
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With 

2

1111

b

DIE
R


  (34)

 

Moment equilibrium of the differential segment of the plated beam in Fig. 2 gives 
 

        aT tyyxNxMxMxM  2121  (35)
 
Where, MT(x) is the total applied moment and from Eqs. (24) and (27), the axial forces are 

given as 
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The bending moment in each adherend, expressed as a function of the total applied moment and 
the interfacial shear stress, is given as 
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and 
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The first derivative of the bending moment in each adherend gives 
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Differentiating Eq. (32) 
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Substitution of the shear forces (Eqs. (39) and (40)) and axial forces Eq. (36) into Eq. (41) 
gives the following governing differential equation for the interfacial shear stress. 
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and ξ is a geometrical coefficient which is given as 
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For a rectangular section (b1 = b0), ξ = 1, however, for I – beam section (the present case) we 
have ξ < 1. 

For simplicity, the general solutions presented below are limited to loading which is either 
concentrated or uniformly distributed over part or the whole span of the beam, or both. For such 
loading, d2VT(x)/dx2 = 0, and the general solution to Eq. (42) is given by 
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B1 and B2 are constant coefficients determined from the boundary conditions. 
In the present study, a simply supported beam is investigated which is subjected to a uniformly 

distributed load. 
Considering the boundary conditions: 

 

(1) Due to symmetry, the shear stress at mid – span is zero, i.e. 
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Where LP is the length of the FRP plate (see Fig. 1). 
(2) At the end of the FRP plate, the longitudinal force [N1(0) = N2(0)] and the moment M2(0) 

are zero. As a result, the moment in the section at the plate curtailment is resisted by the 
beam alone and can be expressed as 
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Applying the above boundary condition in Eq. (30) 
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From the above three equations 
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For practical cases 10
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simplified to 
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Substitution of B1 and B2 into Eq. (45) gives an expression for the interfacial shear stress at any 
point 
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Where q is the uniformly distributed load and x, a, L and Lp are defined in Fig. 1. 
In the case where the beam is subjected to a two symmetric point loads, the general solution for 

the interfacial shear stress is given by the following expressions Tounsi (2006) 
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Where P is the concentrated load and k = λ(b − a). The expression of m1 and m2 takes into 

considerations the shear deformation of adherends. 
 

4.1 Comparison of analytical solutions 
 
A comparison of the interfacial shear and normal stresses from the different existing closed – 

form solutions and the present new solution is undertaken in this section. An undamaged RC beam 
bonded with a CFRP soffit plate is considered. The beam is simply supported and subjected to a 
uniformly distributed load. A summary of the geometric and material properties is given in Table 1. 
The span of The RC beam is 3000 mm, the distance from the support to the end of the plate is 300 
mm and the uniformly distributed load is 50 KN/m. 
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Table 1 Dimensions and material properties 

Material E11 (GPa) E22 (GPa) G12 (GPa) υ12 Width (mm) Depth (mm) 

CFRP plate 140 10 5 0.28 b2 = 200 t2 = 4 

RC beam 30 30  0.18 b1 = 200 t1= 300 

Adhesive layer 3 3 1.08 0.35 b2 = 200 ta = 4 
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Fig. 3 Comparison of interfacial shear and normal stresses for an RC beam with a bonded CFRP 
plate subjected to a uniformly distributed load 

 
 

 
 

 

Fig. 4 Comparison of interfacial shear stress of the steel plated RC beam with the experimental 
results from Jones et al. (1988) 
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Fig. 3 plots the interfacial shear and normal stresses near the plate end for the example RC 
beam bonded with a CFRP plate for the uniformly distributed load case. Overall, the predictions of 
the different solutions agree closely with each other. The interfacial normal stress is seen to change 
sign at a short distance away from the plate end. 

 
4.2 Comparison with experimental results 
 
To validate the present method, a rectangular section (ξ = 1) is used here. One of the tested 

beams bonded with reinforced concrete plate by Jones et al. (1988), beams F31, is analyzed here 
using the present improved solution. The beam is simply supported and subjected to four – point 
bending, each at the third point. The geometry and materials properties of the specimen are 
summarized in Table 1. 

The interfacial shear stress distributions in the beam bonded with a soffit steel plate under the 
applied load 60 kN, i.e., P = 30 kN in Fig. 4, are compared between the experimental results and 
those obtained by the present method. As it can be seen from Fig. 3, the comparison shows 
encouraging agreement with the experimental results. 
 
 
4. Results and discussion 
 

For each of the five Poisson’s ratios of the adhesives, results for edge stresses, corresponding to 
various Young’s modulus of adhesive Ea, ranging between 0.001 and 30 GPa are presented in 
graphical forms. 

 
4.1 Effect of Young’s modulus: 
 
The two edge stresses (shear and normal stress) corresponding to Poisson’s ratio υa = 0.3 are 

shown in Fig. 5. From Fig. 5, it is seen that both shear and normal interfacial stress increase 
gradually as the Young’s modulus of adhesive increase from 0.001 to 30 GPa. 

 
 

 
Fig. 5 Interfacial maximum stress versus Young’s modulus of adhesive for Poisson’ ratio υa = 0.3 
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Fig. 6 Interfacial maximum stress versus Young’s modulus of adhesive for Poisson’ ratio υa = 0.35 

 
 
 

 
Fig. 7 Interfacial maximum stress versus Young’s modulus of adhesive for Poisson’ ratio υa = 0.40 

 
 
 
Figs. 6 to 9 show that when Poisson’s ratio υa = 0.35, 0.4, 0.45 and 0.5, similar variations of the 

maximum interfacial stress with Young’s modulus as in the case of υa = 0.3 (Fig. 5) are obtained. 
The interfacial stresses shown in Fig. 5 for Poisson’s ratio υa = 0.3 and Young’s modulus, Ea, 
greater than 5 GPa are representative of those that will be obtained when very hard adhesives such 
as ceramic glue are used. Similarly, the interfacial stresses shown in Figs. 6 and 7 for Poisson’s 
ratios υa = 0.35 and 0.4 and for Young’s modulus, Ea, within the range 0.05 – 5 GPa apply to 
adhesives comprising of multiple part epoxies. On the other hand, the interfacial stresses shown in 
figure 8 and 9 for Poisson’s ratios υa = 0.45 and 0.5 and for Young’s modulus, Ea, less than 0.05 
GPa are representative of those manifested by rubber – like or elastomeric adhesives. 
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Fig. 8 Interfacial maximum stress versus Young’s modulus of adhesive for Poisson’ ratio υa = 0.45 

 
 
 
5.2 Effect of Poisson’s ratio 
 
The two maximum adhesive stresses (shear and normal stress) versus Poisson’s ratio of 

adhesive for different value of Young’s modulus of adhesive (Ea = 1, 2, 5, 10 and 30 GPa) are 
shown in Fig. 10. It can be seen from the presented results that the Poisson’s ratio of adhesive has 
almost no effect on the variation of the maximum adhesive stresses. However, these stresses 
increase gradually with the Young’s modulus of adhesive. We note that the adhesives with Young’s 
modulus smaller than 1 GPa are not commonly used in practice. In addition, the adhesives with 
Young’s modulus Ea = 30 GPa is used only for theoretical comparison. 

 
 
 

 
Fig. 9 Interfacial maximum stress versus Young’s modulus of adhesive for Poisson’ ratio υa = 0.50 
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Fig. 10 Interfacial maximum shear stress versus Poisson’s ratio of adhesive 

 
 
5. Conclusions 
 

The influence of adhesive properties on the adhesive stresses in beams strengthened with FRP 
plates has been investigated using an improved analytical model. The adherend shear deformations 
are taken into account by assuming a parabolic shear stress through the thickness of both the 
reinforced concrete beam and bonded plate. By comparing with experimental results, the present 
closed – solution provides satisfactory predictions to the interfacial shear stress in the plated beams. 
The maximum interfacial stresses have been analysed using adhesives of various Young’s modulus 
and Poisson’s ratio properties. In general, the maximum interfacial stress increase with an increase 
in the Young’s modulus of adhesive, but does not appear to change significantly with an increase 
in the Poisson’s ratio. 
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