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Abstract. The objective of this work is to present a zeroth-order shear deformation theory for free vibration
analysis of functionally graded (FG) nanoscale plates resting on elastic foundation. The model takes into
consideration the influences of small scale and the parabolic variation of the transverse shear strains across the
thickness of the nanoscale plate and thus, it avoids the employ use of shear correction factors. Also, in this present
theory, the effect of transverse shear deformation is included in the axial displacements by using the shear forces
instead of rotational displacements as in available high order plate theories. The material properties are supposed to
be graded only in the thickness direction and the effective properties for the FG nanoscale plate are calculated by
considering Mori-Tanaka homogenization scheme. The equations of motion are obtained using the nonlocal
differential constitutive expressions of Eringen in conjunction with the zeroth-order shear deformation theory via
Hamilton’s principle. Numerical results for vibration of FG nanoscale plates resting on elastic foundations are
presented and compared with the existing solutions. The influences of small scale, shear deformation, gradient index,
‘Winkler modulus parameter and Pasternak shear modulus parameter on the vibration responses of the FG nanoscale
plates are investigated.

Keywords: nonlocal elasticity theory; nanoscale-plates; free vibration; plate theory; functionally graded
materials

1. Introduction

The local structural theories (classical theories) are utilized by employing the constitutive
suppositions that the stress at a point is related only on the strain at that point. Whereas the
nonlocal (non-classical) continuum mechanics proposed by Eringen (1972, 1983) assume that the
stress at a point depends on strains at all points in the continuum. In non-classical elasticity theory,
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forces between atoms and internal length scale are included in the expressions of constitutive
equations (Reddy and Pang 2008, Lu et al. 2008, Heireche et al. 2008a, b, Benzair et al. 2008,
Amara et al. 2010, Hashemi and Samaei 2011, Berrabah et al. 2013, Benguediab et al. 2014,
Zidour et al. 2014, Samaei et al. 2015, Adda Bedia et al. 2015, Besseghier et al. 2015, Aissani et
al. 2015).

In recent years, nanostructures, such as nanoplates and nanobeams, are being employed in the
nano-electro-mechanical (NEMS) and microelectro-mechanical (MEMS) devices and are
nowadays engineering structure. Thus, a lot of researches have been carried out for both
experimental and theoretical studies. Katsnelson and Novoselov (2007) investigated the electronic
characteristics of graphene sheets. Bunch et al. (2007) discussed some experimental results by
utilizing electromechanical resonators manufactured from single- and multi-layered graphene
sheets. Aghbabaei and Reddy (2009) used a third order shear deformation plate theory to
investigate analytically the bending ad free vibration of a simply supported rectangular nanoplate.
Pradhan and Phadikar (2009) employed the nonlocal classical plate theory to investigate the
vibration of embedded multi-layered graphene sheets considering the small scale effects. Based on
an efficient higher-order nonlocal beam theory, Pradhan (2009) used the higher order shear
deformation theory (HSDT) in conjunction with the nonlocal differential constitutive relations of
Eringen to study buckling response of isotropic nanoplates. Pradhan and Kumar (2010) discussed
the small scale influence on the vibration behavior of orthotropic single-layered graphene sheets
embedded in an elastic medium. Samaei et al. (2011) examined the stability response of a single-
layered graphene sheets embedded in a Pasternak's elastic medium by employing a nonlocal
Mindlin plate theory. Tounsi et al. (2013a) studied the thermal stability of nanoscale beams. Tounsi
et al. (2013b) analyzed the nonlocal effects on thermal buckling properties of double-walled
carbon nanotubes. Nami and Janghorban (2013) investigated the static behavior of rectangular
nanoplates using nonlocal trigonometric shear deformation theory. By incorporating Eringen's
nonlocal elasticity equations in two-variable plate theories, Sobhy (2014) studied the free vibration,
mechanical buckling and thermal buckling responses of multi-layered graphene sheets.

Due to their new thermo-mechanical characteristics, the applications of functionally graded
materials (FGMs) have been speared in various engineering applications (El Meiche et al. 2011,
Bourada et al. 2012, Tounsi et al. 2013c, Bouderba et al. 2013, Yaghoobi and Torabi 2013, Ould
Larbi et al. 2013, Chakraverty and Pradhan 2014, Liang et al. 2014, Zidi et al. 2014, Khalfi et al.
2014, Fekrar et al. 2014, Bousahla et al. 2014, Belabed et al. 2014, Ait Amar Meziane et al. 2014,
Hebali et al. 2014, Hamidi et al. 2015, Ait Yahia et al. 2015, Ait Atmane et al. 2015, Ziane et al.
2015, Bennai et al. 2015, Bouchafa et al. 2015). Nowadays, functionally graded micro/nano
structures become considerably useful in many modern engineering applications such as aircraft
fuselages, microelectronic industry, building blocks for ultrasensitive and steam and gas turbine
rotors. It seem that functionally graded nanoscale structures have many advantages over the
isotropic nanoscale structures, such as smaller thermal stresses, stress concentrations, attenuation
of stress waves, etc. Increasing of the material technology has conducted to use of FGMs in micro
and nano-sized system and devices such as sensors, nanowires, atomic force microscopes,
actuators, thin films to improve their performances (Fu et al. 2003, Lee ef al. 2006, Lu et al. 2011,
Lun et al. 2006, Moser and Gijs 2007, Rahaeifard et al. 2009, Stolken and Evans 1998, Witvrouw
and Mehta 2005). Jung and Han (2013) developed a model for vibration behavior of sigmoid
functionally graded material nanoplate using first-order shear deformation theory. Natarajan et al.
(2012) studied the free flexural vibration behavior of FG nanoplates using the iso-geometric based
finite element method. Hosseini-Hashemi et al. (2013) presented an exact analytical solution for
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free vibration of FG circular/annular Mindlin nanoplates using nonlocal elasticity. Recently, Larbi
Chaht et al. (2015) investigated the bending and stability behavior of FG size-dependent
nanobeams incorporating the thickness stretching effect. Belkorissat et al. (2015) studied the
vibration properties of nanoplates using a new nonlocal hyperbolic refined plate model. Ansari et
al. (2015) examined the vibration and buckling characteristics of FG nanoplates subjected to
thermal loading based on surface elasticity theory. Zemri et al. (2015) presented a refined nonlocal
shear deformation theory beam theory for mechanical response of FG nanoscale beam.

In this paper, the zeroth-order shear deformation theory (ZSDT) is extended for the first time
for vibration analysis of FG nanoplates embedded in an elastic medium. This theory (ZSDT) is
used by Ray (2003) for laminated composite plates and incorporates the transverse shear
deformation effect through the employ of shear forces instead of rotational displacements as in
existing shear deformation theories. The ZSDT utilizes the same five unknowns as in the FSDT,
but respects the traction-free boundary conditions on the top and bottom surfaces of the plate
without introducing of any shear correction factor. In addition, the small scale effect is taken into
account by using the nonlocal constitutive relations of Eringen. Some numerical results are also
computed to check the validity of the present theory.

2. Mathematical formulation

2.1 Functionally graded material

Consider FG nano-plates manufactured from a mixture of two material phases, for example, a
metal and a ceramic as indicated in Fig. 1. According to Mori—-Tanaka homogenization scheme,

the effective Bulk Modulus (K) and the effective shear modulus (G) are given by (Belabed et al.
2014, Valizadeh et al. 2013, Cheng and Batra 2000, Qian ef al. 2004)

K-K, V.
K=K,y (op ) 3K =Ko (1a)
3K, +4G,,
G-G, V.
Go=Gy 14 (1-p,)Ce=Ga) (1b)
Gﬂl +fi
where
_G,9K,, +8G,)
h= 6(K, +2G,) )

where, V; (i = ¢, m) is the volume fraction of the phase material. The subscripts ¢ and m represent
the ceramic and metal phases, respectively. The volume fractions of the ceramic and metal phases
are related by V. + V,,= 1, and V. is written as

2z+hj , 0>0 3)

VC(Z)=( 2
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with n in Eq. (3) is the volume fraction exponent. Fig. 2 plots the distribution of the volume
fraction of the ceramic phase within the thickness direction z for the FG plate. The effective
Young’s modulus £ and Poisson’s ratio v can be calculated from the following equations

E = okG (4a)
3K+G

o 3K-2G 1

2(3K +G) (40)

The effective mass density p is computed from the rule of mixtures as (Benachour et al. 2011,
Natarajan et al. 2011, Hebali et al. 2014)

p=pV.+p,V, ®)
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Fig. 1 Schematic representation of a rectangular FG plate resting on elastic foundation
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Fig. 2 Variation of ceramic phase through the thickness of the plate



A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded... 231

2.2 Kinematics

The displacement field of the ZSDT is considered based on the supposition that the transverse
shear stresses change according to a parabolic variation within the plate thickness and vanish on
the plate surfaces, and hence, there is no require to utilize shear correction factor. Based on this
supposition, the following displacement field can be determined (Ray 2003)

ow, 13 }
u(x,y,z,t) =uy(x,y,t) — z% + Z{E(%) - 2(%} }Qx (x,y,1) (6a)
ow, 13 ’
V(X,y,Z,t) = vo(x,y,t) - Z%"‘Z{E(%j - 2(%} :|Qy(x=y’t) (6b)
w(x,y,z,t) = Wo(xayat) (6C)

where uo and v, represent the displacements along the x and y coordinate directions of a point on
the mid-plane of the plate; wy is the transverse displacement; and # is the plate thickness. O, and
O, are the transverse shear forces; and A, and /A, are unknown constants obtained based on the
definition of the transverse shear forces as

hi2

J.Z'l-de ,

—h/2

Q= (i=x.y) (7

The only nonzero strains related to the displacement field in Eqs. (6) are

g | &l k, . .
g, p=4¢60 p+zyk, e+ (27, ¢, {Vyz} = g(z){yyoz}, (8)
]/xy ]/gy k w nxy Xz Xz
where
% _82w0 ian
o Ox k, o’ 7, Ao O
20 vy e Lo _62W0 LaQy 7 .
y o > v (= 8)/2 n, 1. oy , o (= , (9a)
0 k 77 v }/xz
(R T B O I I e )
v Oxdy i v 4 o
and
=2 2)=2 | ana =P 3|42 ’ oh
2\ S " 2n h (9b)
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2.3 Equations of motion

In this section, equations of motion are determined by utilizing Hamilton’s principle. In
analytical form, this principle can be stated by (Reddy 2007, Draiche et al. 2014, Ait Amar
Meziane et al. 2014, Nedri et al. 2014, Mahi et al. 2015, Bourada et al. 2015, Al-Basyouni et al.
2015)

t
0=[(6U, +6U, -5 K)di (10)
0

where 06U, and 06Uy are the variations of strain energy of the plate and foundation, respectively; and
0K is the variation of kinetic energy.
The variation of strain energy of the plate is expressed by

5Up :I[Gx5gx +O'y5$y+’l'xy5}/xy +Tyz 5}/yz +sz57/zx:|dAdZ
4

[ [N oal e N, SN, S M Sk M, Sk + M Sk, +P oy, (D

+P,5n,+P, 50, +R, 51 +R, 5" |da

where the stress resultants N, M, P and R are expressed by

h/2 h/2

(N,,M,,P)= I(l,z,f)aidz, (i=x,y,xy) and (Rx,Ry)z Ig(rxz,ryz)dz (12)

—h/2 —h/2

The variation of strain energy of the elastic medium is computed by

é‘Uf:I K wow+K, 8_w65w+8_w65w dxdy (13)
T Oox Ox Oy Oy

where K,, and K are the transverse and shear stiffness coefficients of the elastic medium,
respectively.
The variation of kinetic energy of the plate is expressed as

hl/2
5K = j I[u5u+v§v+w5W]p(z)dAdz

-h/2 4
= [{1oliigti, +908%, + iy ]
(14)

+ LS4, + v + 265
ox o Oy oy 0

(_ asw, Ow, .. . 05w, Ow J
— 1| u,
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. . . . . . .,é; '7
”2(@% 88w, oy aéw()}KZ(QX&QX N Q}]

ox Ox oy Oy 2 ﬁ,i
. . . . (14)
. . . 5 .
J, 8w05QX+&65w0+8w0 Qy+Qy85wO A
ox A, A Ox o A, A,

where dot-superscript convention indicates the differentiation with respect to the time variable /;
and (1o, 1,, J1, b, J», K3) are mass inertias defined as

hl2

(Iy,1,,J,,1,,0,,K, ) = j(1,z,f,zz,zf,f2)p(z)dz (15)

—h/2

Substituting the expressions for 6U,, Uyand oK from Egs. (11), (13) and (14) into Eq. (10) and
integrating by parts, and collecting the coefficients of duy, ovy, owy, 60, and 00,, the following
equations of motion of the present theory are obtained

N 3 )
Suy: N, "yzlozzo—ll—&WMJl%
ox oy ox A
ON, ON 7 )
Svy: —2 42 = 0v0—11%+J1&
x oy Ay A
2 o*M,, O*M
Swy: M, 2T Ms LK w, + K, Vw,
o Ox0y oy?
i o 6. 00 (16)
= I,ib, +Il(ﬂ+ﬂj i+, 2
ox Oy A.0x A0y
opP,, i )
50 L T _p g~y %, g &
ox Oy } ox A
oP, OP i )
50, —L+—L-R =Jj —J2%+K2%
ox Oy oy A,

where V2= (8*/éx%) + (8°/8y%) is the Laplacian operatorin2D Cartesian coordinate system.
2.4 Nonlocal theory and Constitutive relations

Contrary to the classical (local) theory, the non-classical (nonlocal) theory considers that the
stress at a point is related not only to the strain at that point but also to strains at all other points of
the body. Based on work presented by Eringen (1983), the nonlocal stress tensor ¢ at point x is
given by

oc—-iN*oc=1 17)

where 7 is local stress tensor at a point x expressed versus the strain by the Hooke’s law; u = (eoa)’
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is the nonlocal parameter which includes the small scale effect, a is the internal characteristic
length and ey is a constant appropriate to each material.

2.5 Stress resultants

For a functionally graded material in the two-dimensional case, the nonlocal constitutive
relation in Eq. (17) takes the following forms

o, o, ¢, C, 0 0 0 |le,
o, R o, Ch, Cy 0 0 0 |lg
Txy - ,U(ax—z-‘ryJ Txy = 0 0 C66 0 0 yxy (18)
7, 7, 0 0 0 G55 0 |7,
sz sz L 0 0 O O C44 a 7xz

where (o, 0y, Ty, Tpz, T) a0d (&x, €, Yxy V= V)n) are the stress and strain components, respectively.

Using the material properties defined in Eq. (4), stiffness coefficients, Cj, can be expressed as

E
Ci=Cy= 1—_‘/((22))2 > (19a)
E
2= 1‘:‘/((22))2 > (19b)
P 1 C))
Cpy=Cs5=C¢ = i+v(x)] (19¢)

By substituting Eq. (8) into Eq. (18) and the subsequent results into Eq. (12), the stress
resultants are determined as

N N A B B

29 0’R 0’R
M-yl —+—5 K M=| B D D*Wk¢, R-uy—F+—|=4, (20a)

ox~ Oy ox” 0Oy

P P B DY H? ||n
where
! b b b b s s K s U

N=NLNNL L M=ttt Y e = (e v M (20b)
e={e0 et 0. k=lkokoky ). n=lnann, ) (20¢)

All Al2 0 Bll BIZ 0 Dll D12 0
A= Alz Azz 0 |, B= Blz Bzz 0 |, D= D12 D22 0 |, (20d)

0 0 A 0 0 By 0 0 Dy
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B\ B 0 Dy D 0 Hy\, Hj 0
B*=\Bj) By 0|, D'=|Dj Dy 0|, H'=|Hj Hyp 0 |, (20e)
0 0 Bg 0 0 Dg 0 0 H
| a0
S:{ ;Z’S;Z}t’ 7/:{7xz’7/yz}t’ A4 = “ a |? (Zof)
0 A

where 4;, B;, Dy, etc., are the plate stiffness, defined by

4y By, Dy, B, D\ Hj hi2 1
4, B, Dy, B, D), HY, = I Cll(l,z,zz,f(z),zf(z),fz(z) lV dz, (21a)
a a a — 4
Ags Bgs Des Bes Dgs Hee h2 BN
(A22’BZZ’D227B;2’D§2’H§2)=(AH?BllﬁDllﬁBlalﬁDlalﬂHlal)’ (21b)
/2
4 =45 = [Cyle@F ez, 2lc)
—h/2

2.6 Equations of motion in terms of displacements

The nonlocal equations of motion of the present plate theory can be written in terms of
displacements (uo, vo, wo, Oy, O,) by substituting stress resultants in Eq. (20) into Eq. (16) as

2 2 3 3 a A2 a p?
w2, T g O g e SO0, BT,
Ox Ox0Oy Ox oyox A, Ox A, OxQy

.. (22a)
2 2 3 2 2 ..
d S0 OV ) g OMo | pa| 100 100, =(1- uv? Ljiy — 1,20 1 g ©s
oy*  0Oxoy 0y 0ox A, o’ A, Ox0y Ox A,
2 2 3 3 a 92 a 22
A“avzo+Alza”o_B“aWo_ 126W02+Bn %y+Bl2an+
Oy ox0oy oy’ oyox= A, Oy A, Ox0Oy
.. (22b)
2 2 3 62 2 ..
A%[—a 0 L MOJ—ZB% 0 Yo 4 Bg, ! sz MLICE */% BT Ly =1 By g O
ox~  Oxoy 0y0x A, Ox A, Ox0Oy oy 4,
0’ 0’ 0’ o* 0! 0!
Bll[—u;)+ \/30]+(312+2B66{%+ 2V0 J_Dll(—wz;o"’ M;O]
Ox oy oy~ox Ox-0y Ox oy
04w 1 8°0, 100 (229
2Dy, +2Dgg ) ——5 + Dfy| — -+ ——
)y Ox A, ox? A, oy?
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3 3 82
D 162Q+ 2Q +Be 1aQ 1 070,
A, Oy"ox A, Ox~0y A, oy? /1 Ox0y

2Dg{ L 20, °0, j (1= V2= Ky + K, V2w, (22¢)

A, ayzax ﬂ, 6x6y

= (1= V) Ik, + 1, ity T | _ 1 w2 1, 120, 1%,
0o ox oy o A, oOx 1 oy

X

2 2 3
BﬁauzOJrszavo _Daﬁwo
ox ox0y

3wy +H_1"162Qx +H102 asz n
oy*ox A, ox? A, Oxdy

2 2 3 2 o?
gl Tt O | gy Oy LOG, LOO ) O 20
oy*  Oxoy oy~-ox A, Oy A, Oxdy A

y oW 0
=1-uV?) Jiiiy —J,—>+ K, =~
( M {1“0 25 2;Lj

X

_pa
il 12
ox3

2 2 3 3 a 9?2 a 22
Bla]avzo+Blaza”0_Dlala“;o_ 1a282W0+H“ Q2y+H12an

oy Ox0y oy oxoy A, Oy A, Ox0Oy

2 2 3 pe

By S0 Tt | _ppg OV g 100 106G, )y O (220)

ox Ox0y Ox~0y A, Oxdy 4, ox? /1y

=(1-uv {leo _ 5,k %J
A,

3. Closed-form solution for simply supported FG nanoplates

A simply supported rectangular nanoplate with length @ and width b is considered here. Based
on Navier method, the following expansions of generalized displacements are chosen to
automatically satisfy the simply supported boundary conditions

u U,,e“ cos(a x)sin(f y)
v, o | Vet sin(a x)cos(B y)
Wo = ZZ W,,e" sin(a x)sin(S y) @)
0. m=1 n=1 anei“” cos(a x)sin(f y)
0, Y, e sin(a x)cos(B y)

where U, Vi, Wons Xw and Y, are arbitrary coefficients to be determined, w is the
eigenfrequency associated with (m, n)th eigenmode, and oo = mz / a and f = nz / b.
Substituting Egs. (23) into Eq. (22), the analytical solutions can be determined from
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S S S Sy Sis _mn 0 my my O U, 0
Sia Sy Sy Sas Sas 0 my my; 0 mys |||V, 0
Si3 Sy S35 Sy S35 - Ao’ My Myy My May Mys | KW, =40 (24)
Sy Spp Si3 Say Sus my 0 my my, 0 X 0
_S51 Ssy Ss3 S5y Sss ] | 0 my, my; 0 mss |7, 0
where
Sy = Anaz +A66ﬁ2, Sp :O‘ﬂ(Au +A66)’ Sis :_a(Bllaz + B, +ZB66182)
Bna? + B 3? af\B12 + B
Sy = p s S5 = 'B( ), Sy, = Agga® + 4, °
A /1y
aff\B“12 + B Bsa® + B p?
S =—,8(B”,[)’2 +B,a’ +2Beﬁa’2)a Sy = ( ), Sys =
A, Zy
_ 4 4 292 292 2 2
Sy, =Dy (a* + B*)+2Dpa? B2 + 4D B2 + AK,, + K (a2 + ),
s _a(—ZDa66ﬂ2—Da110!2—Dalzﬁz) s _ﬂ(—D“llﬁz—Dalzaz)
34 A 5 35 2, ) (252)
S, =Bna’ +B%pB*, S, zaﬂ(B“n +B“66), Si za(—2D“66,32 -Da? —D“12,32),
S CHna® +H >+ A% g _aﬂ(Halz +Ha66)
4 = > 45 = )
A, 4,
S5, =aﬂ(Ba12 +B”66), Ss, = Bsa’ + Bup*, S =ﬂ(—Da11ﬂ2 —D”lza’z),
S _aﬂ(Hau-i-Haﬁé) S _H066a2+Hal1ﬁ2+Aa55
54 — ’ 55 7
A, 4,
and
J
my =my =1,, my=-al, m14=/1—1,
Jy 2 2
my, =—p 1, mzsz/l_a myy; =1, +1,(a” + f7)
y
7, J, X, (25b)
m34=—a/1—, m35=—ﬂ7, my =Jy, my=-aJ,, m44=7,
x y x

K
ms, =Jy, mg=—pJ,, msssza /1=1+ﬂ(052+ﬁ2)

y
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The frequency ratio serves as an index to evaluate quantitatively the nonlocal parameter effect
on vibration response of FG nano-plate. The frequency ratio is defined as

Oy
ar

Frequencyratio = (26)

where wy; and w; are the frequencies computed using the nonlocal model and the local model,
respectively.

4. Results and discussion

In this section, the size-dependent free vibration behavior of a simply supported FG nano-plate
resting on elastic foundation is discussed. The free vibration analysis is carried out by supposing
the top surface of the plate is ceramic rich (Si3Ny) and the bottom surface is metal rich (SUS304).
The mass density p and the Young’s modulus E are: p. = 2370 kg/m’, E. = 348.43¢° N/m* for
SisN, and p,, = 8166 kg/m’, E,, = 201.04¢’ N/m* for SUS304. Poisson’s ratio v is considered to be
constant and taken as 0.3 for the current study. For convenience, the following dimensionless
quantities are employed in presenting the numerical results in graphical and tabular forms

B R K 4 K 2 E 3
o = a)h & s w = a)h p_m R kW — Sa , kY — Sa , Dm — mh (27)
G. E p " b 1211=2)

As the first step, to confirm the accuracy of present model, plates without the presence of
elastic foundations are considered and the computed results are compared with the results of
Belkorissat et al. (2015) and Aghababaei and Reddy (2009) in Tables 1 and 2. In the first example,
simply supported homogeneous nanoplates with different values of nonlocal parameter, the plate
thickness and the plate aspect ratio are considered. The results tabulated in Table 1 are compared
with those given by both Belkorissat ef al. (2015) and Aghababaei and Reddy (2009). It can be
seen that the present numerical results are in very good agreement with the results available in the
literature. In the second example, FG nanoplates (n = 5) with different values of nonlocal
parameter, the plate thickness and the plate aspect ratio are examined. The natural frequencies
predicted via the present formulation, are compared with those of Belkorissat et al. (2015) in Table
2. Again, very good agreement is found between the results.

Table 1 Comparison of fundamental frequency (@ = wh+/p/G) of nano-plate
(a=10, E=30x10%p=1,v=0.3)

alb alh u present REF® TSDT® FSDT® CcpT®
0 0.0930 0.0930 0.0935 0.0930 0.0963

1 0.0850 0.0850 0.0854 0.0850 0.0880

| 10 2 0.0787 0.0787 0.0791 0.0788 0.0816
3 0.0737 0.0737 0.0741 0.0737 0.0763

4 0.0695 0.0695 0.0699 0.0696 0.0720

5 0.0659 0.0659 0.0663 0.0660 0.0683




Table 1 Comparison of fundamental frequency (@ = wh+/p/G) of nano-plate
(a=10, E=30x10% p=1,v=0.3)
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alb alh u present REF® TSDT® FSDT® CPT®
0 0.0238 0.0238 0.0239 0.0239 0.0241
1 0.0218 0.0218 0.0218 0.0218 0.0220
20 2 0.0202 0.0202 0.0202 0.0202 0.0204
3 0.0189 0.0189 0.0189 0.0189 0.0191
4 0.0178 0.0178 0.0179 0.0178 0.0180
5 0.0169 0.0169 0.0170 0.0169 0.0171
0 0.0588 0.0588 0.0591 0.0589 0.0602
1 0.0555 0.0555 0.0557 0.0556 0.0568
10 2 0.0527 0.0527 0.0529 0.0527 0.0539
3 0.0503 0.0503 0.0505 0.0503 0.0514
4 0.0481 0.0481 0.0483 0.0482 0.0493
5 5 0.0463 0.0463 0.0464 0.0463 0.0473
0 0.0149 0.0149 0.0150 0.0150 0.0150
1 0.0141 0.0141 0.0141 0.0141 0.0142
20 2 0.0134 0.0134 0.0134 0.0134 0.0135
3 0.0127 0.0127 0.0128 0.0128 0.0129
4 0.0122 0.0122 0.0123 0.0123 0.0123
5 0.0117 0.0117 0.0118 0.0118 0.0118
(a) Belkorissat et al. (2015)
(b) Aghababaei and Reddy (2009)
Table 2 Comparison of natural frequency (@) of FG nano-plate (a = 10, n = 5)
Mode 1 Mode 2 Mode 3
alb alh # REF® Present REF® Present REF® Present
0 0.0432 0.0432 0.1029 0.1029 0.1915 0.1918
10 1 0.0395 0.0395 0.0842 0.0842 0.1358 0.1360
2 0.0366 0.0366 0.0730 0.0730 0.1110 0.1112
) 4 0.0323 0.0323 0.0596 0.0596 0.0861 0.0862
0 0.0111 0.0111 0.0274 0.0274 0.0536 0.0536
20 1 0.0101 0.0101 0.0224 0.0224 0.0380 0.0380
2 0.0094 0.0094 0.0194 0.0194 0.0310 0.0310
4 0.0083 0.0083 0.0158 0.0158 0.0241 0.0241
0 0.1029 0.1029 0.1574 0.1576 0.2397 0.2402
5 10 1 0.0842 0.0842 0.1177 0.1178 0.1587 0.1590
2 0.0730 0.0730 0.0980 0.0981 0.1269 0.1272
4 0.0596 0.0596 0.0772 0.0773 0.0968 0.0970
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Table 2 Comparison of natural frequency (@) of FG nano-plate (a = 10, n = 5)

Mode 1 Mode 2 Mode 3
alb alh K @ @ @
REF*? Present REF*® Present REF*? Present
0 0.0274 0.0274 0.0432 0.0432 0.0688 0.0688
20 1 0.0224 0.0224 0.0323 0.0323 0.0455 0.0455
2 0.0194 0.0194 0.0269 0.0269 0.0364 0.0364
4 0.0158 0.0158 0.0212 0.0212 0.0277 0.0277

(a) Belkorissat et al. (2015)

The non-dimensionalized fundamental frequency of square FG nanoplates are given in Table 3
for different values of nonlocal parameter, the plate thickness, the material distribution parameter
(n) and foundation parameters (k,, k). From the results illustrated in Table 3, it can be concluded
that the non-dimensionalized fundamental frequency increases when foundation parameters (k,,, &;)
increase. Compared to the Winkler parameter k,, the Pasternak foundation parameter k; has
dominant impact on increasing the non-dimensionalized frequency. It is also observed that with the
presence of elastic foundations, the plate becomes stiffer, while, the nonlocal parameter makes the
plate softer. In addition, it can be seen that the increase of the material distribution parameter (n)
leads to a reduction of frequency. This is due to the fact that the material distribution parameter
yields a decrease in the stiffness of the FG nano-plate.

Table 3 Dimensionless frequency (@) of FG square nano-plate

ki, ky alh

Material distribution parameter (7)

a 0 0.5 1 2 3 4 5
0 01409 00902 00793 00717 0068 00667 00655
1 01288 00825 00725 00655 00626 0.0610 0.0599
10 2 01193 00764 00672 0.0607 00580 0.0565 0.0555
3 01117 00715 00629 00568 00543 0.0529  0.0519
. . 4 01053 00674 00593 00536 00512 0.0499  0.0490
0 00361 00231 00203 0018 00176 00171 0.0168
1 00330 00211 0018 00168 00161 00156 0.0153
20 2 00306 00196 00172 00156 00149 00145 0.0142
300286 00183 00161 00146 00139 00136 0.0133
4 00270 00173 00152 00137 00131 00128  0.0125
0 01793 0.1198 0.1070 00980 0.0943 0.0922  0.0908
1 01699 01141 0.1020 00936 00901 0.0881  0.0868
0 20 10 2 01628 01098 00983 0.0903 00869 0.0851  0.0839
301573  0.1064 00954 00877 0.0845 00827 0.0815
4 01529 01037 0.0931 00856 00826 0.0808 0.0797
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Table 3 Dimensionless frequency (@) of FG square nano-plate

Material distribution parameter ()

k, k ah  u
0 0.5 1 2 3 4 5

0  0.0456 00304 0.0272 0.0249 0.0239 00234 0.0231

1 00432 0.0290 00259 0.0237 0.0228 0.0223  0.0220

20 2 0.0413 00278 0.0249 0.0229 0.0220 0.0216 0.0212
300399 00270 0.0242 0.0222 0.0214 0.0209  0.0206

4 00388 0.0263 00236 0.0217 0.0209 0.0204 0.0202

0  0.1516 0098 0.0872 0.0792 0.0759 0.0740 0.0728

1 01403 0.0915 00810 0.0736 0.0706 0.0689  0.0677

10 2 0.317 00861 00763 0.0694 0.0666 0.0649  0.0639

3 0.1248 00818 0.0725 0.0660 0.0633  0.0618  0.0608

00 o 4 01192 0.0782 00694 0.0633 0.0607 0.0593  0.0583
0  0.0387 00252 00223 0.0202 0.0194 00189 0.0186

1 00358 0.0234 00207 0.0188 0.0180 0.0176 0.0173

20 200336 0.0220 00194 00177 0.0170 0.0166 0.0163
300319 00208 00185 0.0168 0.0161 00158 0.0155

4 00304 00199 00177 00161 00155 0.0151 0.0148

0  0.877 0.1262 0.1130 0.1036 0.0998 0.0976  0.0962

1 01788 0.1208 0.1083  0.0994 0.0958 0.0938  0.0924

10 2 01721 0.1167 0.1048  0.0963 0.0928 0.0909  0.0896
301669 0.1135 01021 0.0939 0.0906 0.0887  0.0875

00 20 4 01627 01110  0.0999 0.0920 0.0887 0.0869  0.0858
0  0.0477 00320 0.0287 0.0263 0.0253 0.0247  0.0244

1 00454 0.0306 00274 0.0252 0.0243 0.0237  0.0234

20 2 00436  0.0296 00265 0.0244 0.0235 0.0230 0.0227

3 0.0423 00287 0.0258 0.0238 0.0229 0.0224 0.0221

4 00412 0.0281 00253 0.0233 0.0224 0.0220 0.0217

Table 4 present the non-dimensionalized fundamental frequency for a square FG plate, and for
different values of the plate thickness, the plate aspect ratio, the nonlocal parameter and the
material distribution parameter based on the present theory. The foundation parameters (%, k) are
taken to be 100. It can be seen that increasing the aspect ratio (a/b) will increase the fundamental
frequencies, while, increasing the material distribution parameter will cause the fundamental
frequency to decrease. These results are independent of the values of nonlocal parameter. Again,
one can easily find from Tables 1 to 4 that the nonlocal parameter plays an important role in
studying the vibration response of FG nano-plates and its effects can’t be ignored.

To examine the influences of the elastic foundation parameters on the vibration behavior of FG
nano-plates, variations of frequency ratio with both Winkler modulus and the shear modulus
parameters are plotted. The elastic foundation is modeled as both (i) Winkler-type foundation; and
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Table 4 Dimensionless frequency (@ = @(a’/h)+/p,, / E,, ) of FG square nano-plate (k, = k, = 100, a = 10)

Material distribution parameter (72)

alb alh U
0 0.5 1 2 3 4 5
0 222810 15.6101 14.1631 13.1234 12.6974 12.4624 12.3122
1 22.0839 154947 14.0647 13.0366 12.6154 123832 12.2350
10 2 21.9245 154014 13.9853 12.9665 12.5492 123193 12.1726
3 21.7929 153245 139198 12.9088 12.4947 122666 12.1212
4 21.6824 152599 13.8648 12.8603 12.4489 12.2225 12.0782
0> 0 224066 15.6998 14.2421 13.1933 12.7633 12.5259 12.3741
1 22.2040 155812 14.1411 13.1041 12.6788 12.4443 12.2945
20 2 22.0401 154855 14.0595 13.0321 12.6107 123785 12.2303
3 21.9049 154065 13.9923 12.9727 12.5546 123243 12.1775
4 21.7913 153403 13.9359 12.9230 12.5076 12.2788 12.1331
0 29.0449  20.1923 18.2786 16.9095 16.3490 16.0386 15.8392
1 28.4751 19.8562 17.9918 16.6563 16.1096 15.8074 15.6136
10 2 28.0595 19.6116 17.7831 16.4722 159357 15.6394 15.4497
3 27.7428 19.4255 17.6245 16.3323 15.8036 15.5118 15.3253
| 4 274934 19.2791 17.4997 16.2224 15.6997 154116 152276
0 29.3436  20.3983 18.4597 17.0706 16.5011 16.1855 15.9825
1 28.7497 20.0483 18.1608 16.8063 16.2509 159436 15.7465
20 2 28.3163 19.7936  17.9435 16.6141 16.0691 15.7680 15.5751
3 27.9859 19.5999 17.7782 16.4682 159311 15.6345 15.4449
4 27.7257 19.4475 17.6484 16.3535 15.8226 15.5298 15.3427
0 51.6791 35.2203 31.6837 29.1759 28.1501 27.5777 27.2060
1 47.9241 329674 29.7530 27.4691 26.5361 26.0177 25.6828
10 2 459176 31.7707 28.7297 26.5665 25.6837 25.1945 24.8796
3 44.6653 31.0259 28.0933 26.0059 25.1549 24.6843 24.3821
5 4 43.8082 30.5161 27.6578 25.6228 24.7938 24.3362 24.0428
0 533636  36.3229 32.6507 30.0438 289753 283768 27.9868
1 49.2611 33.8619 30.5376 28.1685 27.1977 26.6567 26.3063
20 2 47.0613 325530 29.4166 27.1757 262575 2577475 25.4186
3 45.6857 31.7387 28.7205 26.5599 25.6747 25.1842 24.8687
4 44.7430 31.1828 28.2458 26.1404 252779 24.8006 24.4944

(i) Pasternak-type foundation. The Winkler type and Pasternak foundations are described by
foundation stiffness, k,, and £, respectively.

Fig. 3 shows the effect of the nonlocal parameter on the vibration response of FG nano-plates
supported by elastic medium modeled as Winkler-type foundation. From the figure it is seen that
there is significant effect of the nonlocal parameter on the vibration behavior of FG nano-plates
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Fig. 3 Effect of Winkler modulus parameter on the frequency ratio of FG square nano-plate for
various nonlocal parameters (k; =0, a/h =10, n =15)

supported by elastic foundation. The fundamental frequency ratios including nonlocal model are
always smaller than the local model (¢ = 0). This implies that the use of the local zeroth-order
shear deformation theory for FG nano-plates investigation would lead to an over-prediction of the
frequency. Further, with increase in nonlocal parameter (1) values, the frequencies predicted by
non-classical become smaller compared to classical model. Furthermore, it is observed that the
increase of the Winkler modulus parameter leads to an increase in the frequency ratio. This
increasing trend is related to the stiffness of the elastic foundation. With higher values of Winkler
modulus the rate of increase of frequency ratio diminishes. This implies that nonlocal effect in
vibration behavior of FG nano-plates looses its importance as the Winkler modulus values increase.
Thus, although the nonlocal effect makes the nano-plates softer, the external elastic foundation
“grips” the nano-plates and forces it to be stiffer. Hence, it can be concluded that the nonlocal
effect becomes more significant in the case of plates without elastic foundation.

Fig. 4 presents the effect of the nonlocal parameter on the vibration behavior of FG nano-plate
resting on elastic medium modeled as Pasternak-type foundation. The Winkler modulus parameter
is supposed as k, = 100. The evolution of frequency ratio for first mode with shear modulus
parameter is plotted in Fig. 4. The frequency ratio increases with increasing the shear modulus
parameter. However, the frequency ratios including the nonlocal model are always smaller than the
local model. With higher nonlocal parameter (x) values the frequencies becomes comparatively
less. Contrary to the variation of frequency ratio with Winkler parameter, which is nonlinear, the
variation of frequency ratio with Pasternak shear modulus parameter is linear in nature.

The variation of the nonlocal frequency versus the Winkler modulus parameter is presented in
Fig. 5 for various aspect ratios a/h. It is observed that as the nonlocal frequency increases linearly
with the increase of the Winkler modulus parameter and this for all the considered aspect ratios a/A.
Moreover, it is seen that the change in nonlocal frequency of nano-plate is significantly influenced
by the side-to-thickness ratio a/h. For a thin plate (a/h = 100) the effect of nonlocal scale
parameter on frequency is less compared to thick plate (a/h = 10). Hence side-to-thickness ratio of
nano-plate plays an important role in predicting true vibration behavior of nanoscale plates resting
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Fig. 4 Effect of Pasternak shear modulus parameter on the frequency ratio of FG square nano-plate
for various nonlocal parameters (k, = 100, a/h = 10, n =5)
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Fig. 5 Effect of Pasternak shear modulus parameter on the nonlocal frequency of FG square nano-
plate for various aspect (k;, =0, u=2,n=15)

on elastic foundation.

Fig. 6 reveals the variation of nonlocal frequency versus shear modulus parameter for various
side-to-thickness ratios (a/h).The inclusion of the Pasternak foundation produces results higher
than those with the introduction of Winkler foundation. The nonlocal frequency increases with
increasing the shear modulus parameter. The change is found to be nonlinear in nature. However, it
is seen demonstrated, that change in nonlocal frequency is more influenced by low side-to-
thickness ratios values (a/h = 10) as demonstrated in the figure.
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Fig. 6 Effect of Winkler modulus parameter on the nonlocal frequency of FG square nano-plate for
various aspect (k,, = 100, u =2, n=15)

5. Conclusions

In this work, vibration analysis of FG nanoscale plates resting on elastic foundation based on
nonlocal zeroth-order shear deformation theory is presented. The present model considers the
transverse shear deformation effect via the use of shear forces instead of rotational displacements
as in existing shear deformation theories and it is capable of including the nonlocal scale parameter
via the nonlocal Eringen’s elasticity model. Accuracy of the results is investigated by utilizing
available date in the literature. It is concluded that various factors such as nonlocal scale parameter,
the volume fraction exponent, Winkler modulus parameter, Pasternak shear modulus parameter,
and side-to-thickness ratios play considerable roles in dynamic response of FG nanoscale plates.
The formulation lends itself particularly well to use novel structural element formulations (Phan-
Dao et al. 2013, Zhuang et al. 2013, Thai et al. 2012) which will be considered in the near future.
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