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Abstract.   The objective of this work is to present a zeroth-order shear deformation theory for free vibration 
analysis of functionally graded (FG) nanoscale plates resting on elastic foundation. The model takes into 
consideration the influences of small scale and the parabolic variation of the transverse shear strains across the 
thickness of the nanoscale plate and thus, it avoids the employ use of shear correction factors. Also, in this present 
theory, the effect of transverse shear deformation is included in the axial displacements by using the shear forces 
instead of rotational displacements as in available high order plate theories. The material properties are supposed to 
be graded only in the thickness direction and the effective properties for the FG nanoscale plate are calculated by 
considering Mori–Tanaka homogenization scheme. The equations of motion are obtained using the nonlocal 
differential constitutive expressions of Eringen in conjunction with the zeroth-order shear deformation theory via 
Hamilton’s principle. Numerical results for vibration of FG nanoscale plates resting on elastic foundations are 
presented and compared with the existing solutions. The influences of small scale, shear deformation, gradient index, 
Winkler modulus parameter and Pasternak shear modulus parameter on the vibration responses of the FG nanoscale 
plates are investigated. 
 

Keywords:   nonlocal elasticity theory; nanoscale-plates; free vibration; plate theory; functionally graded 
materials 
 
 
1. Introduction 
 

The local structural theories (classical theories) are utilized by employing the constitutive 
suppositions that the stress at a point is related only on the strain at that point. Whereas the 
nonlocal (non-classical) continuum mechanics proposed by Eringen (1972, 1983) assume that the 
stress at a point depends on strains at all points in the continuum. In non-classical elasticity theory, 
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forces between atoms and internal length scale are included in the expressions of constitutive 
equations (Reddy and Pang 2008, Lu et al. 2008, Heireche et al. 2008a, b, Benzair et al. 2008, 
Amara et al. 2010, Hashemi and Samaei 2011, Berrabah et al. 2013, Benguediab et al. 2014, 
Zidour et al. 2014, Samaei et al. 2015, Adda Bedia et al. 2015, Besseghier et al. 2015, Aissani et 
al. 2015). 

In recent years, nanostructures, such as nanoplates and nanobeams, are being employed in the 
nano-electro-mechanical (NEMS) and microelectro-mechanical (MEMS) devices and are 
nowadays engineering structure. Thus, a lot of researches have been carried out for both 
experimental and theoretical studies. Katsnelson and Novoselov (2007) investigated the electronic 
characteristics of graphene sheets. Bunch et al. (2007) discussed some experimental results by 
utilizing electromechanical resonators manufactured from single- and multi-layered graphene 
sheets. Aghbabaei and Reddy (2009) used a third order shear deformation plate theory to 
investigate analytically the bending ad free vibration of a simply supported rectangular nanoplate. 
Pradhan and Phadikar (2009) employed the nonlocal classical plate theory to investigate the 
vibration of embedded multi-layered graphene sheets considering the small scale effects. Based on 
an efficient higher-order nonlocal beam theory, Pradhan (2009) used the higher order shear 
deformation theory (HSDT) in conjunction with the nonlocal differential constitutive relations of 
Eringen to study buckling response of isotropic nanoplates. Pradhan and Kumar (2010) discussed 
the small scale influence on the vibration behavior of orthotropic single-layered graphene sheets 
embedded in an elastic medium. Samaei et al. (2011) examined the stability response of a single-
layered graphene sheets embedded in a Pasternak's elastic medium by employing a nonlocal 
Mindlin plate theory. Tounsi et al. (2013a) studied the thermal stability of nanoscale beams. Tounsi 
et al. (2013b) analyzed the nonlocal effects on thermal buckling properties of double-walled 
carbon nanotubes. Nami and Janghorban (2013) investigated the static behavior of rectangular 
nanoplates using nonlocal trigonometric shear deformation theory. By incorporating Eringen's 
nonlocal elasticity equations in two-variable plate theories, Sobhy (2014) studied the free vibration, 
mechanical buckling and thermal buckling responses of multi-layered graphene sheets. 

Due to their new thermo-mechanical characteristics, the applications of functionally graded 
materials (FGMs) have been speared in various engineering applications (El Meiche et al. 2011, 
Bourada et al. 2012, Tounsi et al. 2013c, Bouderba et al. 2013, Yaghoobi and Torabi 2013, Ould 
Larbi et al. 2013, Chakraverty and Pradhan 2014, Liang et al. 2014, Zidi et al. 2014, Khalfi et al. 
2014, Fekrar et al. 2014, Bousahla et al. 2014, Belabed et al. 2014, Ait Amar Meziane et al. 2014, 
Hebali et al. 2014, Hamidi et al. 2015, Ait Yahia et al. 2015, Ait Atmane et al. 2015, Ziane et al. 
2015, Bennai et al. 2015, Bouchafa et al. 2015). Nowadays, functionally graded micro/nano 
structures become considerably useful in many modern engineering applications such as aircraft 
fuselages, microelectronic industry, building blocks for ultrasensitive and steam and gas turbine 
rotors. It seem that functionally graded nanoscale structures have many advantages over the 
isotropic nanoscale structures, such as smaller thermal stresses, stress concentrations, attenuation 
of stress waves, etc. Increasing of the material technology has conducted to use of FGMs in micro 
and nano-sized system and devices such as sensors, nanowires, atomic force microscopes, 
actuators, thin films to improve their performances (Fu et al. 2003, Lee et al. 2006, Lu et al. 2011, 
Lun et al. 2006, Moser and Gijs 2007, Rahaeifard et al. 2009, Stölken and Evans 1998, Witvrouw 
and Mehta 2005). Jung and Han (2013) developed a model for vibration behavior of sigmoid 
functionally graded material nanoplate using first-order shear deformation theory. Natarajan et al. 
(2012) studied the free flexural vibration behavior of FG nanoplates using the iso-geometric based 
finite element method. Hosseini-Hashemi et al. (2013) presented an exact analytical solution for 
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free vibration of FG circular/annular Mindlin nanoplates using nonlocal elasticity. Recently, Larbi 
Chaht et al. (2015) investigated the bending and stability behavior of FG size-dependent 
nanobeams incorporating the thickness stretching effect. Belkorissat et al. (2015) studied the 
vibration properties of nanoplates using a new nonlocal hyperbolic refined plate model. Ansari et 
al. (2015) examined the vibration and buckling characteristics of FG nanoplates subjected to 
thermal loading based on surface elasticity theory. Zemri et al. (2015) presented a refined nonlocal 
shear deformation theory beam theory for mechanical response of FG nanoscale beam. 

In this paper, the zeroth-order shear deformation theory (ZSDT) is extended for the first time 
for vibration analysis of FG nanoplates embedded in an elastic medium. This theory (ZSDT) is 
used by Ray (2003) for laminated composite plates and incorporates the transverse shear 
deformation effect through the employ of shear forces instead of rotational displacements as in 
existing shear deformation theories. The ZSDT utilizes the same five unknowns as in the FSDT, 
but respects the traction-free boundary conditions on the top and bottom surfaces of the plate 
without introducing of any shear correction factor. In addition, the small scale effect is taken into 
account by using the nonlocal constitutive relations of Eringen. Some numerical results are also 
computed to check the validity of the present theory. 
 
 
2. Mathematical formulation 
 

2.1 Functionally graded material 
 
Consider FG nano-plates manufactured from a mixture of two material phases, for example, a 

metal and a ceramic as indicated in Fig. 1. According to Mori–Tanaka homogenization scheme, 
the effective Bulk Modulus (K) and the effective shear modulus (G) are given by (Belabed et al. 
2014, Valizadeh et al. 2013, Cheng and Batra 2000, Qian et al. 2004) 
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where, Vi (i = c, m) is the volume fraction of the phase material. The subscripts c and m represent 
the ceramic and metal phases, respectively. The volume fractions of the ceramic and metal phases 
are related by Vc + Vm = 1, and Vc is written as 
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with n in Eq. (3) is the volume fraction exponent. Fig. 2 plots the distribution of the volume 
fraction of the ceramic phase within the thickness direction z for the FG plate. The effective 
Young’s modulus E and Poisson’s ratio v can be calculated from the following equations 
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The effective mass density ρ is computed from the rule of mixtures as (Benachour et al. 2011, 
Natarajan et al. 2011, Hebali et al. 2014) 
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Fig. 1 Schematic representation of a rectangular FG plate resting on elastic foundation 
 
 

Fig. 2 Variation of ceramic phase through the thickness of the plate 
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2.2 Kinematics 
 
The displacement field of the ZSDT is considered based on the supposition that the transverse 

shear stresses change according to a parabolic variation within the plate thickness and vanish on 
the plate surfaces, and hence, there is no require to utilize shear correction factor. Based on this 
supposition, the following displacement field can be determined (Ray 2003) 
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where u0 and v0 represent the displacements along the x and y coordinate directions of a point on 
the mid-plane of the plate; w0 is the transverse displacement; and h is the plate thickness. Qx and 
Qy are the transverse shear forces; and λx and λy are unknown constants obtained based on the 
definition of the transverse shear forces as 
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The only nonzero strains related to the displacement field in Eqs. (6) are 
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2.3 Equations of motion 
 
In this section, equations of motion are determined by utilizing Hamilton’s principle. In 

analytical form, this principle can be stated by (Reddy 2007, Draiche et al. 2014, Ait Amar 
Meziane et al. 2014, Nedri et al. 2014, Mahi et al. 2015, Bourada et al. 2015, Al-Basyouni et al. 
2015) 
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0
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where δUp and δUf are the variations of strain energy of the plate and foundation, respectively; and 
δK is the variation of kinetic energy. 

The variation of strain energy of the plate is expressed by 
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where the stress resultants N, M, P and R are expressed by 
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The variation of strain energy of the elastic medium is computed by 
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where Kw and Ks are the transverse and shear stiffness coefficients of the elastic medium, 
respectively. 

The variation of kinetic energy of the plate is expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t ; 
and (I0, I1, J1, I2, J2, K2) are mass inertias defined as 
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Substituting the expressions for δUp, δUf and δK from Eqs. (11), (13) and (14) into Eq. (10) and 
integrating by parts, and collecting the coefficients of δu0, δv0, δw0, δQx and δQy, the following 
equations of motion of the present theory are obtained 
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where 2 = (∂2 / ∂x2) + (∂2 / ∂y2) is the Laplacian operatorin2D Cartesian coordinate system. 

 
2.4 Nonlocal theory and Constitutive relations 
 
Contrary to the classical (local) theory, the non-classical (nonlocal) theory considers that the 

stress at a point is related not only to the strain at that point but also to strains at all other points of 
the body. Based on work presented by Eringen (1983), the nonlocal stress tensor σ at point x is 
given by 

  2  (17)
 

where τ is local stress tensor at a point x expressed versus the strain by the Hooke’s law; μ = (e0a)2 

233



 
 
 
 
 
 

Fatima Bounouara, Kouider Halim Benrahou, Ismahene Belkorissat and Abdelouahed Tounsi 

is the nonlocal parameter which includes the small scale effect, a is the internal characteristic 
length and e0 is a constant appropriate to each material. 

 
2.5 Stress resultants 
 
For a functionally graded material in the two-dimensional case, the nonlocal constitutive 

relation in Eq. (17) takes the following forms 
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where (σx, σy, τxy, τyz, τyx) and (εx, εy, γxy, γyz, γyx) are the stress and strain components, respectively. 
Using the material properties defined in Eq. (4), stiffness coefficients, Cij, can be expressed as 
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By substituting Eq. (8) into Eq. (18) and the subsequent results into Eq. (12), the stress 
resultants are determined as 
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where Aij, Bij, Dij, etc., are the plate stiffness, defined by 
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2.6 Equations of motion in terms of displacements 
 
The nonlocal equations of motion of the present plate theory can be written in terms of 

displacements (u0, v0, w0, Qx, Qy) by substituting stress resultants in Eq. (20) into Eq. (16) as 
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3. Closed-form solution for simply supported FG nanoplates 
 

A simply supported rectangular nanoplate with length a and width b is considered here. Based 
on Navier method, the following expansions of generalized displacements are chosen to 
automatically satisfy the simply supported boundary conditions 
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where Umn, Vmn, Wmn, Xmn and Ymn are arbitrary coefficients to be determined, ω is the 
eigenfrequency associated with (m, n)th eigenmode, and α = mπ / a and β = nπ / b. 

Substituting Eqs. (23) into Eq. (22), the analytical solutions can be determined from 
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The frequency ratio serves as an index to evaluate quantitatively the nonlocal parameter effect 
on vibration response of FG nano-plate. The frequency ratio is defined as 

 

L

NL




ratioFrequency  (26)

 

where ωNl and ωL are the frequencies computed using the nonlocal model and the local model, 
respectively. 
 
 
4. Results and discussion 
 

In this section, the size-dependent free vibration behavior of a simply supported FG nano-plate 
resting on elastic foundation is discussed. The free vibration analysis is carried out by supposing 
the top surface of the plate is ceramic rich (Si3N4) and the bottom surface is metal rich (SUS304). 
The mass density ρ and the Young’s modulus E are: ρc = 2370 kg/m3, Ec = 348.43e9 N/m2 for 
Si3N4 and ρm = 8166 kg/m3, Em = 201.04e9 N/m2 for SUS304. Poisson’s ratio v is considered to be 
constant and taken as 0.3 for the current study. For convenience, the following dimensionless 
quantities are employed in presenting the numerical results in graphical and tabular forms 
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As the first step, to confirm the accuracy of present model, plates without the presence of 
elastic foundations are considered and the computed results are compared with the results of 
Belkorissat et al. (2015) and Aghababaei and Reddy (2009) in Tables 1 and 2. In the first example, 
simply supported homogeneous nanoplates with different values of nonlocal parameter, the plate 
thickness and the plate aspect ratio are considered. The results tabulated in Table 1 are compared 
with those given by both Belkorissat et al. (2015) and Aghababaei and Reddy (2009). It can be 
seen that the present numerical results are in very good agreement with the results available in the 
literature. In the second example, FG nanoplates (n = 5) with different values of nonlocal 
parameter, the plate thickness and the plate aspect ratio are examined. The natural frequencies 
predicted via the present formulation, are compared with those of Belkorissat et al. (2015) in Table 
2. Again, very good agreement is found between the results. 

 
 

Table 1 Comparison of fundamental frequency )/( Gh    of nano-plate 
(a = 10, E = 30×106, ρ = 1, v = 0.3) 

a/b a/h μ present REF(a) TSDT(b) FSDT(b) CPT(b) 

1 10 

0 0.0930 0.0930 0.0935 0.0930 0.0963 

1 0.0850 0.0850 0.0854 0.0850 0.0880 

2 0.0787 0.0787 0.0791 0.0788 0.0816 

3 0.0737 0.0737 0.0741 0.0737 0.0763 

4 0.0695 0.0695 0.0699 0.0696 0.0720 

5 0.0659 0.0659 0.0663 0.0660 0.0683 
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Table 1 Comparison of fundamental frequency )/( Gh    of nano-plate 
(a = 10, E = 30×106, ρ = 1, v = 0.3) 

a/b a/h μ present REF(a) TSDT(b) FSDT(b) CPT(b) 

 20 

0 0.0238 0.0238 0.0239 0.0239 0.0241 

1 0.0218 0.0218 0.0218 0.0218 0.0220 

2 0.0202 0.0202 0.0202 0.0202 0.0204 

3 0.0189 0.0189 0.0189 0.0189 0.0191 

4 0.0178 0.0178 0.0179 0.0178 0.0180 

5 0.0169 0.0169 0.0170 0.0169 0.0171 

2 

10 

0 0.0588 0.0588 0.0591 0.0589 0.0602 

1 0.0555 0.0555 0.0557 0.0556 0.0568 

2 0.0527 0.0527 0.0529 0.0527 0.0539 

3 0.0503 0.0503 0.0505 0.0503 0.0514 

4 0.0481 0.0481 0.0483 0.0482 0.0493 

5 0.0463 0.0463 0.0464 0.0463 0.0473 

20 

0 0.0149 0.0149 0.0150 0.0150 0.0150 

1 0.0141 0.0141 0.0141 0.0141 0.0142 

2 0.0134 0.0134 0.0134 0.0134 0.0135 

3 0.0127 0.0127 0.0128 0.0128 0.0129 

4 0.0122 0.0122 0.0123 0.0123 0.0123 

5 0.0117 0.0117 0.0118 0.0118 0.0118 

(a) Belkorissat et al. (2015) 
(b) Aghababaei and Reddy (2009) 
 
 
Table 2 Comparison of natural frequency )(  of FG nano-plate (a = 10, n = 5) 

a/b a/h μ 
Mode 1 Mode 2 Mode 3 

REF(a) Present REF(a) Present REF(a) Present 

1 

10 

0 0.0432 0.0432 0.1029 0.1029 0.1915 0.1918 

1 0.0395 0.0395 0.0842 0.0842 0.1358 0.1360 

2 0.0366 0.0366 0.0730 0.0730 0.1110 0.1112 

4 0.0323 0.0323 0.0596 0.0596 0.0861 0.0862 

20 

0 0.0111 0.0111 0.0274 0.0274 0.0536 0.0536 

1 0.0101 0.0101 0.0224 0.0224 0.0380 0.0380 

2 0.0094 0.0094 0.0194 0.0194 0.0310 0.0310 

4 0.0083 0.0083 0.0158 0.0158 0.0241 0.0241 

2 10 

0 0.1029 0.1029 0.1574 0.1576 0.2397 0.2402 

1 0.0842 0.0842 0.1177 0.1178 0.1587 0.1590 

2 0.0730 0.0730 0.0980 0.0981 0.1269 0.1272 

4 0.0596 0.0596 0.0772 0.0773 0.0968 0.0970 
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Table 2 Comparison of natural frequency )(  of FG nano-plate (a = 10, n = 5) 

a/b a/h μ 
Mode 1 Mode 2 Mode 3 

REF(a) Present REF(a) Present REF(a) Present 

 20 

0 0.0274 0.0274 0.0432 0.0432 0.0688 0.0688 

1 0.0224 0.0224 0.0323 0.0323 0.0455 0.0455 

2 0.0194 0.0194 0.0269 0.0269 0.0364 0.0364 

4 0.0158 0.0158 0.0212 0.0212 0.0277 0.0277 

(a) Belkorissat et al. (2015) 
 

 
 
The non-dimensionalized fundamental frequency of square FG nanoplates are given in Table 3 

for different values of nonlocal parameter, the plate thickness, the material distribution parameter 
(n) and foundation parameters (kw, ks). From the results illustrated in Table 3, it can be concluded 
that the non-dimensionalized fundamental frequency increases when foundation parameters (kw, ks) 
increase. Compared to the Winkler parameter kw, the Pasternak foundation parameter ks has 
dominant impact on increasing the non-dimensionalized frequency. It is also observed that with the 
presence of elastic foundations, the plate becomes stiffer, while, the nonlocal parameter makes the 
plate softer. In addition, it can be seen that the increase of the material distribution parameter (n) 
leads to a reduction of frequency. This is due to the fact that the material distribution parameter 
yields a decrease in the stiffness of the FG nano-plate. 

 
 
 

Table 3 Dimensionless frequency )ˆ(  of FG square nano-plate 

kw ks a/h μ 
Material distribution parameter (n) 

0 0.5 1 2 3 4 5 

0 0 

10 

0 0.1409 0.0902 0.0793 0.0717 0.0686 0.0667 0.0655

1 0.1288 0.0825 0.0725 0.0655 0.0626 0.0610 0.0599

2 0.1193 0.0764 0.0672 0.0607 0.0580 0.0565 0.0555

3 0.1117 0.0715 0.0629 0.0568 0.0543 0.0529 0.0519

4 0.1053 0.0674 0.0593 0.0536 0.0512 0.0499 0.0490

20 

0 0.0361 0.0231 0.0203 0.0184 0.0176 0.0171 0.0168

1 0.0330 0.0211 0.0186 0.0168 0.0161 0.0156 0.0153

2 0.0306 0.0196 0.0172 0.0156 0.0149 0.0145 0.0142

3 0.0286 0.0183 0.0161 0.0146 0.0139 0.0136 0.0133

4 0.0270 0.0173 0.0152 0.0137 0.0131 0.0128 0.0125

0 20 10 

0 0.1793 0.1198 0.1070 0.0980 0.0943 0.0922 0.0908

1 0.1699 0.1141 0.1020 0.0936 0.0901 0.0881 0.0868

2 0.1628 0.1098 0.0983 0.0903 0.0869 0.0851 0.0839

3 0.1573 0.1064 0.0954 0.0877 0.0845 0.0827 0.0815

4 0.1529 0.1037 0.0931 0.0856 0.0826 0.0808 0.0797
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Table 3 Dimensionless frequency )ˆ(  of FG square nano-plate 

kw ks a/h μ 
Material distribution parameter (n) 

0 0.5 1 2 3 4 5 

  20 

0 0.0456 0.0304 0.0272 0.0249 0.0239 0.0234 0.0231

1 0.0432 0.0290 0.0259 0.0237 0.0228 0.0223 0.0220

2 0.0413 0.0278 0.0249 0.0229 0.0220 0.0216 0.0212

3 0.0399 0.0270 0.0242 0.0222 0.0214 0.0209 0.0206

4 0.0388 0.0263 0.0236 0.0217 0.0209 0.0204 0.0202

100 0 

10 

0 0.1516 0.0986 0.0872 0.0792 0.0759 0.0740 0.0728

1 0.1403 0.0915 0.0810 0.0736 0.0706 0.0689 0.0677

2 0.1317 0.0861 0.0763 0.0694 0.0666 0.0649 0.0639

3 0.1248 0.0818 0.0725 0.0660 0.0633 0.0618 0.0608

4 0.1192 0.0782 0.0694 0.0633 0.0607 0.0593 0.0583

20 

0 0.0387 0.0252 0.0223 0.0202 0.0194 0.0189 0.0186

1 0.0358 0.0234 0.0207 0.0188 0.0180 0.0176 0.0173

2 0.0336 0.0220 0.0194 0.0177 0.0170 0.0166 0.0163

3 0.0319 0.0208 0.0185 0.0168 0.0161 0.0158 0.0155

4 0.0304 0.0199 0.0177 0.0161 0.0155 0.0151 0.0148

100 20 

10 

0 0.1877 0.1262 0.1130 0.1036 0.0998 0.0976 0.0962

1 0.1788 0.1208 0.1083 0.0994 0.0958 0.0938 0.0924

2 0.1721 0.1167 0.1048 0.0963 0.0928 0.0909 0.0896

3 0.1669 0.1135 0.1021 0.0939 0.0906 0.0887 0.0875

4 0.1627 0.1110 0.0999 0.0920 0.0887 0.0869 0.0858

20 

0 0.0477 0.0320 0.0287 0.0263 0.0253 0.0247 0.0244

1 0.0454 0.0306 0.0274 0.0252 0.0243 0.0237 0.0234

2 0.0436 0.0296 0.0265 0.0244 0.0235 0.0230 0.0227

3 0.0423 0.0287 0.0258 0.0238 0.0229 0.0224 0.0221

4 0.0412 0.0281 0.0253 0.0233 0.0224 0.0220 0.0217

 
 
Table 4 present the non-dimensionalized fundamental frequency for a square FG plate, and for 

different values of the plate thickness, the plate aspect ratio, the nonlocal parameter and the 
material distribution parameter based on the present theory. The foundation parameters (kw, ks) are 
taken to be 100. It can be seen that increasing the aspect ratio (a/b) will increase the fundamental 
frequencies, while, increasing the material distribution parameter will cause the fundamental 
frequency to decrease. These results are independent of the values of nonlocal parameter. Again, 
one can easily find from Tables 1 to 4 that the nonlocal parameter plays an important role in 
studying the vibration response of FG nano-plates and its effects can’t be ignored. 

To examine the influences of the elastic foundation parameters on the vibration behavior of FG 
nano-plates, variations of frequency ratio with both Winkler modulus and the shear modulus 
parameters are plotted. The elastic foundation is modeled as both (i) Winkler-type foundation; and 
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Table 4 Dimensionless frequency )/)/(( 2
mm Eha   of FG square nano-plate (kw = ks = 100, a = 10) 

 

a/b a/h μ Material distribution parameter ( n ) 

0 0.5 1 2 3 4 5 

0.5 

10 

0 22.2810 15.6101 14.1631 13.1234 12.6974 12.4624 12.3122

1 22.0839 15.4947 14.0647 13.0366 12.6154 12.3832 12.2350

2 21.9245 15.4014 13.9853 12.9665 12.5492 12.3193 12.1726

3 21.7929 15.3245 13.9198 12.9088 12.4947 12.2666 12.1212

4 21.6824 15.2599 13.8648 12.8603 12.4489 12.2225 12.0782

20 

0 22.4066 15.6998 14.2421 13.1933 12.7633 12.5259 12.3741

1 22.2040 15.5812 14.1411 13.1041 12.6788 12.4443 12.2945

2 22.0401 15.4855 14.0595 13.0321 12.6107 12.3785 12.2303

3 21.9049 15.4065 13.9923 12.9727 12.5546 12.3243 12.1775

4 21.7913 15.3403 13.9359 12.9230 12.5076 12.2788 12.1331

1 

10 

0 29.0449 20.1923 18.2786 16.9095 16.3490 16.0386 15.8392

1 28.4751 19.8562 17.9918 16.6563 16.1096 15.8074 15.6136

2 28.0595 19.6116 17.7831 16.4722 15.9357 15.6394 15.4497

3 27.7428 19.4255 17.6245 16.3323 15.8036 15.5118 15.3253

4 27.4934 19.2791 17.4997 16.2224 15.6997 15.4116 15.2276

20 

0 29.3436 20.3983 18.4597 17.0706 16.5011 16.1855 15.9825

1 28.7497 20.0483 18.1608 16.8063 16.2509 15.9436 15.7465

2 28.3163 19.7936 17.9435 16.6141 16.0691 15.7680 15.5751

3 27.9859 19.5999 17.7782 16.4682 15.9311 15.6345 15.4449

4 27.7257 19.4475 17.6484 16.3535 15.8226 15.5298 15.3427

2 

10 

0 51.6791 35.2203 31.6837 29.1759 28.1501 27.5777 27.2060

1 47.9241 32.9674 29.7530 27.4691 26.5361 26.0177 25.6828

2 45.9176 31.7707 28.7297 26.5665 25.6837 25.1945 24.8796

3 44.6653 31.0259 28.0933 26.0059 25.1549 24.6843 24.3821

4 43.8082 30.5161 27.6578 25.6228 24.7938 24.3362 24.0428

20 

0 53.3636 36.3229 32.6507 30.0438 28.9753 28.3768 27.9868

1 49.2611 33.8619 30.5376 28.1685 27.1977 26.6567 26.3063

2 47.0613 32.5530 29.4166 27.1757 26.2575 25.7475 25.4186

3 45.6857 31.7387 28.7205 26.5599 25.6747 25.1842 24.8687

4 44.7430 31.1828 28.2458 26.1404 25.2779 24.8006 24.4944
 
 

(ii) Pasternak-type foundation. The Winkler type and Pasternak foundations are described by 
foundation stiffness, kw and ks, respectively. 

Fig. 3 shows the effect of the nonlocal parameter on the vibration response of FG nano-plates 
supported by elastic medium modeled as Winkler-type foundation. From the figure it is seen that 
there is significant effect of the nonlocal parameter on the vibration behavior of FG nano-plates 
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Fig. 3 Effect of Winkler modulus parameter on the frequency ratio of FG square nano-plate for 
various nonlocal parameters (ks = 0, a/h = 10, n = 5) 

 
 

supported by elastic foundation. The fundamental frequency ratios including nonlocal model are 
always smaller than the local model (μ = 0). This implies that the use of the local zeroth-order 
shear deformation theory for FG nano-plates investigation would lead to an over-prediction of the 
frequency. Further, with increase in nonlocal parameter (μ) values, the frequencies predicted by 
non-classical become smaller compared to classical model. Furthermore, it is observed that the 
increase of the Winkler modulus parameter leads to an increase in the frequency ratio. This 
increasing trend is related to the stiffness of the elastic foundation. With higher values of Winkler 
modulus the rate of increase of frequency ratio diminishes. This implies that nonlocal effect in 
vibration behavior of FG nano-plates looses its importance as the Winkler modulus values increase. 
Thus, although the nonlocal effect makes the nano-plates softer, the external elastic foundation 
“grips” the nano-plates and forces it to be stiffer. Hence, it can be concluded that the nonlocal 
effect becomes more significant in the case of plates without elastic foundation. 

Fig. 4 presents the effect of the nonlocal parameter on the vibration behavior of FG nano-plate 
resting on elastic medium modeled as Pasternak-type foundation. The Winkler modulus parameter 
is supposed as kw = 100. The evolution of frequency ratio for first mode with shear modulus 
parameter is plotted in Fig. 4. The frequency ratio increases with increasing the shear modulus 
parameter. However, the frequency ratios including the nonlocal model are always smaller than the 
local model. With higher nonlocal parameter (μ) values the frequencies becomes comparatively 
less. Contrary to the variation of frequency ratio with Winkler parameter, which is nonlinear, the 
variation of frequency ratio with Pasternak shear modulus parameter is linear in nature. 

The variation of the nonlocal frequency versus the Winkler modulus parameter is presented in 
Fig. 5 for various aspect ratios a/h. It is observed that as the nonlocal frequency increases linearly 
with the increase of the Winkler modulus parameter and this for all the considered aspect ratios a/h. 
Moreover, it is seen that the change in nonlocal frequency of nano-plate is significantly influenced 
by the side-to-thickness ratio a/h. For a thin plate (a/h = 100) the effect of nonlocal scale 
parameter on frequency is less compared to thick plate (a/h = 10). Hence side-to-thickness ratio of 
nano-plate plays an important role in predicting true vibration behavior of nanoscale plates resting 
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Fig. 4 Effect of Pasternak shear modulus parameter on the frequency ratio of FG square nano-plate 
for various nonlocal parameters (ks = 100, a/h = 10, n = 5) 

 
 

 

Fig. 5 Effect of Pasternak shear modulus parameter on the nonlocal frequency of FG square nano-
plate for various aspect (ks = 0, μ = 2, n = 5) 

 
 
 

on elastic foundation. 
Fig. 6 reveals the variation of nonlocal frequency versus shear modulus parameter for various 

side-to-thickness ratios (a/h).The inclusion of the Pasternak foundation produces results higher 
than those with the introduction of Winkler foundation. The nonlocal frequency increases with 
increasing the shear modulus parameter. The change is found to be nonlinear in nature. However, it 
is seen demonstrated, that change in nonlocal frequency is more influenced by low side-to-
thickness ratios values (a/h = 10) as demonstrated in the figure. 
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Fig. 6 Effect of Winkler modulus parameter on the nonlocal frequency of FG square nano-plate for 
various aspect (kw = 100, μ = 2, n = 5) 

 
 
5. Conclusions 
 

In this work, vibration analysis of FG nanoscale plates resting on elastic foundation based on 
nonlocal zeroth-order shear deformation theory is presented. The present model considers the 
transverse shear deformation effect via the use of shear forces instead of rotational displacements 
as in existing shear deformation theories and it is capable of including the nonlocal scale parameter 
via the nonlocal Eringen’s elasticity model. Accuracy of the results is investigated by utilizing 
available date in the literature. It is concluded that various factors such as nonlocal scale parameter, 
the volume fraction exponent, Winkler modulus parameter, Pasternak shear modulus parameter, 
and side-to-thickness ratios play considerable roles in dynamic response of FG nanoscale plates. 
The formulation lends itself particularly well to use novel structural element formulations (Phan-
Dao et al. 2013, Zhuang et al. 2013, Thai et al. 2012) which will be considered in the near future. 
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