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Abstract. In this paper, the solution of a semi-infinite plane with one circular hole is presented. T
solution is induced by repeatedly superposing the solution of an infinite plane with one circular hole and
of a semi-infinite plane without holes to cancel out the stresses arising on both boundaries. This proced
carried out until the stresses arising on both boundaries converge. This method does not require comp
calculation procedures as does the method using stress functions defined in a bipolar coordinate system
numerical results are shown by graphical representations.

Key words: shallow circular hole; arbitrary load; stress analysis; constraint-release technique.

1. Introduction

The problem of a semi-infinite plane with one circular hole is very important for the streng
materials or driving tunnels. Solutions for this have been induced using stress functions on a 
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coordinate system Jeffery (1920), Mindlin (1939), Verruijt (1997b) or using the Finite Element Me
However, analyses which use stress functions on a bipolar coordinate system have the fo

drawbacks: First, the procedure for obtaining solutions to isotropic problems is inevitably compli
Second, for orthotropic problems, there is no mapping function which simultaneously maps th
boundaries into concentric circles. In addition, these studies treat only the case that is unde
symmetry load on a circular hole. Analyses which use the FEM have the following drawbacks:
the calculations consume a huge amount of computer memory resources. Second, the accura
solution depends on the method by which the problem is meshed.

On the other hand, solutions have been induced for doubly connected elastic proble
superposing the two kinds of elastic solution for simply connected problems until stresses o
boundaries converge to the boundary conditions Howland (1930), Tamate (1957b) (1959), H
(1960), Tsutsumi, et al. (1997a), (2000). This procedure allows us to obtain the final solution for do
connected elastic problems.

In this paper, this method is called the Constraint-Release Technique, and has been used to v
solution to the problem of an semi-infinite plane with one circular hole under arbitrary load 
circular hole.

2. Fundamental equations

Consider a two-dimensional semi-infinite plane with one circular hole, as presented in Fig. 1
stress components σx, σy and τxy and displacement components ux and uy are represented by the
following equations:

(1)

(2)

σx 2Re ϕ′ z( )[ ] Re zϕ″ z( ) ψ″ z( )+[ ]–=

σy 2Re ϕ′ z( )[ ] Re zϕ″ z( ) ψ″ z( )+[ ]+=

τxy                       Im zϕ″ z( ) ψ″ z( )+[ ]= 





ux iuy
1

2G
------- κϕ z( ) zϕ′ z( ) ψ′ z( )+{ }–[ ]=–

Fig. 1 Semi-infinite plane with one circular hole
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where z= x + iy, i is the imaginary unit; ϕ(z) and ψ(z) are the stress functions introduced by Kolosov a
Muskhelishvili; Re and Im denote the real part and the imaginary part of the complex functions,
ν and G represent the Poisson ratio and shear modulus, respectively.

The formulae which map stress and displacement components into curvilinear coordinates (ξ, η) are
given by

(4)

(5)

3. Formulation of the problem

The purpose of this paper is to obtain the solution for a problem in which an arbitrary load is a
to the only circular hole of a semi-infinite plane. We obtain the solution for this problem by
following procedure. First, the tangential stress σc

ξ,0 and shear stress, τ c
ξη,0, on the circular hole are

expanded in finite Fourier expansions,

(6)

The stress functions for an infinite plane with one circular hole, as shown in Fig. 2, are given

(7)

κ
3 ν–
1 ν+
-----------         : plane stress 

3 4ν       : plane stress–





=

σξ ση+ σx σy+=

ση σξ– 2iτξη+ e2iθ σy σx 2iτxy+–( )= 



uξ iuη– eiθ ux iuy–( )=

σξ 0,
c

iτξη 0,
c

– c0 0, c0 m, mθcos d0 m, sinmθ+( )
m 1=

M

∑+=

ϕc 0, z( ) M0  z h–( )log A0 m–,
m 1=

M

∑ z h–( ) m–
+=

ψc 0, z( ) N0 z h–( ) z h–( )log K0  z h–( )log B0 m–,
m 1=

M

∑ z h–( ) m–+ +=











Fig. 2 Infinite plane with one circular hole
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tained
The complex coefficients M0, N0, K0, A0,-m, B0,-m are obtained as in the following form:

(8)

The tangential stress σx, 0* and the shear stress τ*xy,0 on the virtual straight boundary (x = 0) are represented
using the stress functions:

(9)

The terms in the above equations are expanded as in the following equations, where F0, n, 0, n, H0,n,
0,n, H*

0,n, *
0,n, J0,n, 0,n , *

0,n, *
0,n, are complex coefficients which are determined by M0, N0, K0, A0,-m,

and B0,-m.

(10)

K in Eq. (10) and M in Eq. (7) do not have to be same because the terms in Eq. (10) are ob
by Fourier integral. Therefore,  and  are represented as:

M0
1 ν–

8
----------- c0 1, id0 1,+( )=

N0
3 ν–

8
----------- c0 1, i– d0 1,( )=

K0 c0 0, a2=

A0 m–,
am 1+

m
-----------

c0 m 1+, id0 m 1+,+
2

-------------------------------------   m 1≥–=

B0 1–,
a3

2
----- 1 ν+

2
-----------

c0 1, id0 1,+
2

------------------------
c0 1, id0 1,+

2
------------------------– 

   =

B0 m–,
a

m 2+

m
-----------

c0 m, id0 m,+
2

--------------------------
c0 m, id0 m,+
2 m 1+( )

--------------------------– 
   = m 2≥





















σx 0,
* 2Re ϕ′c 0, z( )[ ] Re zϕ″c 0, z( ) ψ″c 0, z( )+[ ]–=

τxy 0,
* Im zϕ″c 0, z( ) ψ″c 0, z( )+[ ]= 




F̂
Ĥ Ĥ Ĵ J Ĵ

Re ϕ′c 0, z( )[ ] F0 k,

y2 h2+( )
k

----------------------
k 1=

K

∑ yF̂0 k,

y2 h2+( )
k

----------------------
k 1=

K

∑+=

Re zϕ″c 0, z( )[ ] H0 k,

y2 h2+( )
k

----------------------
k 1=

K

∑ yĤ0 k,

y2 h2+( )
k

----------------------
k 1=

K

∑+=

Im zϕ″c 0, z( )[ ] yH*
0 k,

y2 h2+( )
k

----------------------
k 1=

K

∑ Ĥ0 k,
*

y2 h2+( )
k

----------------------
k 1=

K

∑+=

Re ψ″c 0, z( )[ ] J0 k,

y2 h2
+( )

k
----------------------

k 1=

K

∑ yĴ0 k,

y2 h2
+( )

k
----------------------

k 1=

K

∑+=

Im ψ″c 0, z( )[ ] yJ*
0 k,

y2 h2+( )
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----------------------
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σx 0,
* τxy 0,
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ws:
(11)

where

(12)

Then, in order to cancel out the stresses represented in Eq. (9), the negative values of these
are loaded on the semi-infinite plane. The stress functions for a semi-infinite plane are represe

(13)

where

(14)

In the above equations, Py,1 and Px,1 are the resultant forces in the x-direction and y-direction,
respectively. Furthermore, a1(t) and b1(t) are expanded as the following series:

(15)

By using the above equations and the Laplace transformation, Eqs. (13) may be represented as follo

σx 0,
* σ̃x k,

  • 1

y2 h2
+( )

k
---------------------- σ ′˜x k,

  y

y2 h2+( )
k

----------------------+
 
 
 

   τxy 0,
* τ̃ x k,

  • 1

y2 h2
+( )

k
---------------------- τ ′˜x k,

  y

y2 h2+( )
k

----------------------+
 
 
 

k 1=

K

∑=,
k 1=

K

∑=

σ̃x k,
  •

2F0 k, H0 k,– J0 k,–        σ ′˜y k,
  

2F̂0 k, Ĥ0 k,– Ĵ0 k,–=,=

τ̃ xy k,
  •

H0 k,
* J0 k,

*+                    τ ′x̃y k,
  

Ĥ0 k,
* Ĵ0 k,

*+=,=

ϕ′p 1, z( )
a1 0( )

2
-------------1

z
--- e zt–   

a1 t( ) a1 0( ) ib1 t( )+–
2

------------------------------------------------- td
0

∞∫+=

ψ″p 1, z( )
a1 0( )

2
-------------1

z
--- e zt– a1 t( ) a1 0( ) ib1 t( )+–

2
-------------------------------------------------

a1 t( ) ib1 t( )+
2

------------------------------- zt
a1 t( ) ib1 t( )+

2
-------------------------------+ +

 
 
 

td
0

∞∫+=








a1 0( ) 1
π
--- Py 1, iPx 1,+( )–=

a1 t( ) 2
π
--- σx 0,

* iτxy 0,
*+[ ]

0

∞∫ cos ty( )dy–    b1 t( ) 2
π
--- σx 0,

* iτxy 0,
*+[ ]

0

∞∫ sin ty( )dy–=,= 





a1 t( ) ã1 k,   tk 1– e th–    b1 z( ) b̃1 k,   tk 1– e th–

k 1=

K

∑=,
k 1=

K

∑=

Fig. 3 Semi-infinite plane without holes
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On using these stress functions, the tangential stress, σξ, 1, and the shear stress, τξη, 1, arising on the
virtual circular hole boundary in the semi-infinite plane without holes are represented as:

(17)

For cancelling out these stresses, the negative values of the stresses represented in Eq. (17) 
loaded on the boundary of the circular hole of the infinite. By repeating this procedure, the 
functions for the semi-infinite plane with one circular hole are obtained using the following equa

(18)

where

(19)

In Eq. (19), log(z− h) and logz are many-valued. However, the first differential and seco
differential of ϕc,n(z) and ϕp, n(z), and the second differential of second differential of ψc,n(z) and
ψp,n(z), are used to obtain the stresses as shown in Eq. (1), so that the terms involving log(z − h) or
log z are reduced to be single valued.

4. Results and discussion

To investigate the convergence of the stresses arising on the circular hole, Fig. 5 shows the 
arising on the boundary of the hole under uniform normal stress on the hole boundary as shown
4. In this graph, the transverse axis shows the angle from the bottom of the circular hole, a
ordinate axis shows normal stress arising on the hole. The graph shows the results when the ratio o
distance between the straight boundary and the center of the hole, h, to the radius of the circular hole a
is 1.5 and 5.0, and the number of calculation repetitions N that is shown in Eqs. (18) is 3, 6 and 9 whe
h/a = 1.5, and 1, 2 and 3 when h/a= 5.0. In general, the stress on the hole boundary decreases a
number of calculation repetitions increases. Convergence of the stress arising on the boundary

ϕ′p 1, z( )
k 1–( )! ã1 k, b̃1 k,–( )

2 z h+( )k
---------------------------------------------    ψ ″p 1, z( ) k 1–( )! b̃1 k,

z h+( )k
--------------------------

k! ã1 k, b̃1 k,–( )z
2 z h+( )k 1+

----------------------------------




+
k 1=

K

∑–=,
k 1=

K

∑=

σξ 1, iτξη 1,– c1 0, c1 m, cosmθ d1 m, sinmθ+( )
m 1=

M

∑+=

ϕ z( ) ϕc n,
n 0=

N

∑ z( ) ϕp n,
n 1=

N

∑ z( )+   ψ z( ) ψc n,
n 0=

N

∑ z( ) ψp n,
n 1=

N

∑ z( )+=,=

ϕc n, z( ) Mn z h–( )log An m–, z h–( ) m–

m 1=

m

∑+=

ψc n, z( ) Nn z h–( ) z h–( )log Kn z h–( )log Bn m–, z h–( ) m–
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an 0( )
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-------------– zlog e zt– an t( ) an 0( )– ibn t( )+

2t
-------------------------------------------------– z
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more rapidly as the ratio h/a increases. When the hole is deep (i.e., h/a = 5.0), the error on the boundary
is about 3.5% for N = 1 and N = 3 is enough to calculate the stresses. On the other hand, when the
is shallow (i.e., h/a= 2.0), the convergence is in comparison with the case when the hole is 
Nevertheless, 6 repetitions of the calculation are enough to retrieve the stresses when h/a= 1.5. Fig. 6
shows the stresses arising on the straight boundary when N = 9. In this graph, the transverse axis show
the ratio of the distance from the point above the center of the hole y to the radius of hole a, and the
ordinate axis shows the ratio of the normal stress σx arising on the straight boundary to the magnitude
uniform normal stress p acting on the hole boundary. The normal stress remains above the cen
hole, and becomes greater as h/a increases. However, it appears that this method provides adeq
accuracy when h/a is greater than 1.8 because σx / p is then less than 5%.

Fig. 7 shows the tangential stress around the circular hole at h/a= 2.0 and 5.0 when a uniform norma
stress p is loaded on the circular hole as shown in Fig. 4. When the hole is deep, uniform compr
appears around the hole. However, it should be noted that the tangential stress around the
influenced by the straight boundary when the hole is shallow (i.e., h/a= 2.0).

Fig. 9 shows the tangential stress around the circular hole at h/a= 2.0 and 5.0 when symmetric stres
that depends on the polar angle, namely on θ, σξ = p cos 2θ, is loaded on the circular hole as shown 

Fig. 4 Uniform normal stress on the hole

Fig. 5 Error on the hole boundary
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Fig. 8. Tension appears on the top and bottom of the hole, for which the normal stress corresp
tension, and compression appears on the side of hole, for which the normal stress corresp
compression. The value of the tension appearing on the top of the hole is the same as that appe
the bottom of the hole when the hole is deep. However, when the hole is shallow, the tension ap
on the top of the hole is about 1.5 times greater than that appearing on the bottom of the hole. A
compression when the hole is shallow is larger than that when the hole is deep.

Fig. 11 shows the tangential stress around the circular hole at h/a=2.0 and 5.0 when asymmetric stres
depending on the polar angle, namely on θ, σξ = p cos (2θ +π/4), is loaded on the circular hole as shown 
Fig. 10. In this case, the normal stress exhibits both compression and tension. Both the tension
compression arise on the nearest side to the straight boundary are larger than those arising on the opp

Fig. 6 Error on the straight boundary

Fig. 7 Tangential stress around the hole subjected to uniform normal stress
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Fig. 8 Symmetric normal stress on the circular hole

Fig. 9 Tangential stress arising on the hole subjected to symmetric normal stress

Fig. 10 Asymmetric normal stress on the circular hole
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5. Conclusions

In this paper, solutions are proposed for an isotropic elastic semi-infinite plane with a circula
under arbitrary load on the circular hole by superposing the solutions for an isotropic elastic i
plane with one circular hole and the solutions for an isotropic elastic semi-infinite plane unt
required boundary conditions are met. Some numerical results are presented and it is shown 
semi-infinite plane containing a circular hole can be regarded as an infinite plane with a circula
when the hole is deep. However, in these results the hole is influenced by a straight boundary w
hole is shallow.
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Fig. 11 Tangential stress arising around the hole subjected to asymmetric normal stress
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