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Abstract. An analytical procedure based on the transfer matrix method to estimate not only the natural
frequencies but also vibration mode shapes of the thin-walled members composed of interconnected
cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the
cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used
to allow the transfer procedures over the cross section of the members. As a result, the interactions between
the shell panels of the cross sections of the members can be considered. Although the transfer matrix method
is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled
members by introducing the trigonometric series into the governing equations of the problem. The natural
frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected
cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on
the natural frequencies and vibration mode shapes are also examined.

Key words: natural frequency; mode shape; thin-walled member; cylindrical shell panel; transfer matrix
method.

1. Introduction

Thin-walled members with shell type cross sections are widely used in a broad range of structural
applications to reduce the material cost as well as the dead weight of a structure. Research works o
vibration analysis of curved panels have been reported in many literatures. Sewall (1967) and Webste
(1971) used a classical approach to solve some examples with simple boundary conditions. Many shel
theories based on numerical approaches such as the Rayleigh-Ritz method, the Galerkin method, th
finite element method and the finite strip method have been used to analyze the vibration of cylindrical
shell structures (Tsui 1968, Petyt 1971, Petyt and Nath 1971, Maddox, Plumblee and King 1970,
Bardell and Mead 1989, Sheinman and Reichman 1992, To and Wang 1991, Mizusawa 1988).
However, to the authors knowledge there has been hardly any research work on thin-walled member:
composed of interconnected shell paneldl@strated in Fig. 1. Thin-wallechembers show both local
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Fig. 1 Analytical models

and overall dynamic behaviors so that the investigation of the natural frequencies and vibration mode
shapes of the members are very important to clarify the dynamic behaviors of these members.

In this paper, an analytical procedure to estimate not only the natural frequencies but also vibration
mode shapes of the thin-walled members composed of interconnected cylindrical shell panels as giver
in Fig. 1 is presented. The natural frequencies and vibration mode shapes of many analytical models
composed of different number of interconnected shell panels are examined. In addition, the effects of
the number of shell panels on the natural frequencies and vibration mode shapes are also examined

For this purpose transfer matrix method is used. The transfer matrix is derived from the differential
equations for the cylindrical shell panels of the dynamic problem. The point matrix relating the state
vectors between consecutive shell panels is used to allow the transfer procedures over the cross sectic
of the members. As a result, the exact interactions between the shell panels can be considered. Although tt
transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method
is applied to thin-walled members by introducing the trigonometric series into the governing equations
of the problem (Ohga 1995a, b, ¢, Tesar and Fillo 1988, Uhrig 1973).

2. Analytical procedure
2.1. Equilibrium equations for shell panels of dynamic problem

The equilibrium equations for the shell panel given in Fig. 2 are as follows (Uhrig 1973):

' N : -, Q 2 N , . Q
NX+N¢X+w2th=0, NX¢+N¢ +—R‘2+wptv:0, __RQ+QX+Q¢ +—RQ+w2ptW=0
M, = ' " Q, = Mo _
MX+ M¢X_QX_0’ M¢X+ M¢ —Q¢—0, MX¢_M¢X_ R = (1)

where,N,, Ng Ny, Ngy: in-plane forcesM,, My, Myg, Mgy : bending and twisting moment®,, Q,:
shear forceseu natural frequencyp : mass densityt; shell thicknessy, v, w displacements ix, ¢,

z directions,R: radius of shell panel,= 2 , -_9_
x ° “Rap

2.2. Relation between strains and displacements

The relations between the strains and displacements according to the geometry and the sigr
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(a)forces

(b)displacements
Fig. 2 Cylindrical shell panel

convention for shell panel given in Fig. 2(b) are as follows (Uhrig 1973):

] —_ M w — ! ° — ] — —
& = U, €¢— \Y +E: yx¢—V+ u, yxz_W+¢x_ Ox: y¢z

w +¢¢J
! ° V’ r _ . 1_ . W,
K= @ Keg=0x + 10 Kpe= 04, Ko=0y + 2= E]]V +§%

(2)

where, &, & : normal strainsy, Vs W : shear strainssy, Ky, Kyg, Kgx. curvatures of displacements.

2.3. Transfer matrix for shell panel

From Egs. (1) and (2), the partial differential equations for the state vectiy,sMy, Vy, v, u, Ny and

Nyx are obtained as follows (Fig. 2):

. v - _ Ky MQ 21 ﬂg .
W= —¢,+ =By =0 Zy = M =V, —4K0,"
¢¢ ¢¢ K22 K22 RIZZ RIZZ 4 4 8T
. SPLON 2 Kiz 1 . w Ny Iy
- _ 1z 2l nn o _ _M +_N - _— 4 _ Ll
Vi = K K., wptw =~ R VIR, I,
2K . V
u = IiN¢x+ 05 =V NG = =Ny —E‘?—wzptv
33 33
I
— 12 21 12
N “ou, -1 1%1 N¢ - ptu 3
where
|- Et . _  _vEt , _ _Et
1~ 22—1_\/2: 1= 12 = 12 33—2(1+V)
Et’ VEL Et
= K,p,=—m—m—— K. =K,,=—m™@—m—— K,,= ———————
K= Kae 12(1-\A)’ 211 F 241+ v)
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E: modulus of elasticityy: Poisson’s ratio

V,=Q, + My, : equivalent shear force.

For a shell panel simply supportedxatO, a, and taking two lengthwise boundary conditions as
arbitrary, the state variables can be assumed in the form given below (Fig. 2(b)):

W(x §) = W(g)sinax, ¢y(x, ¢) = o()sinax
My(X 8) = My(@)sinax, Vy(x, ¢) = Vy(@)sinax
v(x ¢) = V(g)sinax, u(x ) = u(¢)cosax
Ng(x, ) = Ng(¢)sinax, Ny(x, ¢) = Nx($)cosax (@)
where,a = m?n, a: shell panel lengtm: vibration mode in axial direction.

Substituting Eqg. (4) into Eq. (3), the following ordinary differential equation containing¢oatya
variable is obtained:

1
E} 0 -a o o 5 O 0 0 g
0 aKy, akK, Iy,  a’K, O
~ . O 0 0 0 =& - o U &
oW o g Ka K2z Rl;;  RK; ogow o
O, O [ 40Kz, ogd. O
090 g —~ 0 a o0 o0 0 0 %D%S
~ 0 ~
E]Mqa% % o Ke o o 1 0 A0
I:]\~/ 0O 0 Aur K R do~ O
Ve[ _ 22 3 00vVeO
= D l a|21 a KO D ~ (5)
O-0° Q- 0 o o o -2 o HOgH
ovYo g R I I, ooV o
Oz 0 0O 2a°K a’k, BHa0
o —* o0 0 -a O 0 ¢ 00”0
o o 0
ON,O O Rls l33 00N, O
0’0 O 1 00’0
Ij;lqjxlj % 0 0 0 _R Ass 0 0 a %m¢xm
al
O o 0 0 0 0 Ag I—lz E]]
L 22 0
or
4,7 A (6)
Rdp™ -
where

_ P KeKan ofptD , _ ofpt , _ 1g luly ofptn
Ay = a(ll_ 0 s o A A all_ - 20
K2 a Ko a 2 a
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. o~ K- .
W= KoW, ¢5=="20s My==Mys Vo=V,

3

T,e
o=—0 > standard bending rigidityl,: standard shell thickness
12(1-v)

Integrating Eq. (6), the transfer matkxfor the shell panel is obtained as follows:

Z = exp(A9) (Z,=F [Z, (7)
where

exp Ad) = | + (Ag) + %(A¢)2+ %(A(l))g +. 1 unit matrix
2.4. Point matrix

As the state vectors for each shell panel are referred to the local coordinate system, the relation:
between the state vectors of consecutive two shell panels are required in order to allow the transfe
procedures of the state vectors over the cross section of the member. Considering the relation betwee
the state vectors at the left and right hand sides of the cross sexdigiven in Fig. 3, the point matrix
P is obtained as follows:

Zr = P, ] (8)
where, the superscriptsandR indicate the left and right hand sides of the cross seiction
2.5. Natural frequency and mode shape
Applying the transfer and point matrices described above to the cross section of the thin-walled
members composed of cylindrical shell panels as given in Fig. 4, the relation between the state vector:
at both ends of the cross section of the member can be obtained as follows:

Zy = F4[P,[F, [P, [F, [Z,=UI[Z, ()]

Considering the boundary conditions at both lengthwise edges in Fig. 4, the following expression, for

Fig. 3 Relation between consecutive panels
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Fig. 4 Cross section with shell panels

example, is obtained for the case of simply supported lengthwise edges:

Qg1 gz Qg3 Ayl | Pyo 0
A1 A2 A3 sl Vgl - |O (10)
A3 8gp 83z Qg4 | 0
Q41 82 A4z agf | U | 0
or
uz, =0 11
0

It is required in the case of the natural frequency that the determinant of the matrix of Eq. (11) is zero,
U =0 (12)

Substituting the natural frequency obtained above and setting the first unknown variable of the initial
state vecto@go =1 , Eqg. (10) can be rewritten as follows:

Qyp Ap3 Ay \7¢o a1
g A3z 84| | Vo | = A (13)
4y 843 Ay | Uy ay
or
Uz, = a (14)

Solving Eq. (14) for the remaining unknown initial state variables, the relative values of the initial
state vector correspondingfgo=1  can be obtained. Once the initial state vector is obtained, the stat
vector at any point of the cross section i.e., mode shape can be obtained by further transfer procedure

3. Numerical examples

In Table 1, the first five natural frequency parame@(sRw A/p(l—vz)/E) and mode numbers in
the axial direction of the cylindrical shell panels (Fig. 2(Bf 0.14 rad,b=5.4 cm, b/t=90.2,
a/b=2.5) obtained by the proposed method (TMM) are compared with tHesrelstained by Bardell
and Mead (1989). The results are obtained for both simply supportedv € 0) and fixed
(u=v=w = ¢4 =0) boundary conditions a = 0, 6. As can be seen from that table, good agreements
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exist between the results. This provides the evidence of accuracy of the proposed transfer matrix
method for the shell panels.

Fig. 5 shows the variation of natural frequency parametfs bwA/p(l—vz)/E) of multi-
cylindrical shell panel thin-walled members comprisidg 2~5 shell panels (Fig. = 2000 cm,
b/t=1000,a/b=2.0,6=0.0~1.0). The analytical models made M= 3, 5 shell panels are shown in
Fig. 1(b), (c). Both enddE 0, 2000 cm) are assumed to be simply suppovtedy = 0). The vertical
axis represents the ratio between natural frequency parathefdahe proposed models and that of the
simply supported flat plat€, (Leissa 1969). As can be seen from Fig. 5, every natural frequency
parameter decreases and asymptotically approaches to that of simply supported flat plate as the cent
angle @ of the shell panel decreases. This shows the reliability of the proposed method for the thin-
walled members composed of cylindrical shell panels as shown in Fig. 1.

Fig. 6 shows the variation of first five natural frequency param@e{mbw/p(l—vz)/ E) of the
thin-walled member composed of only one cylindrical shell panel (Fig. A&R000 cm,8=2.0,
b/t=1000,a/b=1.0~10.0). The mode numbers in the axial direction are also shown in the same figure.

Table 1 Comparison of natural frequencies

2 (m)
Bound Methods = o 3 a o
TMM 0.2736(1) 0.5038(2) 0.7576(3) 0.8635(1) 0.9712(2)
S-S Bardell 0.2724(1) 0.5039(2) 0.7569(3) 0.8556(1) 0.9636(2)
Error(%) 0.439 -0.040 -0.040 0.915 0.783
TMM 0.9542(1) 0.9913(2) 1.0738(3) 1.2180(4) 1.3286(1)
C-C Bardell 0.9517(1) 0.9887(2) 1.0712(3) 1.2457(4) 1.3164(1)
Error(%) 0.262 0.262 0.242 0.189 0.918

Q=Rwyp(1-V)/E

10

/0,

Fig. 5 Relation between natural frequencies and center angles of shell panels



230 M. Ohga, T. Shigematsu and T. Hara

b=2000 (cm)
0=2.0(rad)
b/t =1000

0.060

0.045

0.030

0015 -1

a/b

Fig. 7 Vibration mode shapehl € 1)

As can be in Fig. 6, the first five natural frequency parameters intersect each other and decrease as tt
aspect ratiog/b increase. In Fig. 7, the vibration mode shapes corresponding to the first five natural
frequency parameters are shown for the casa#ef 1.0, 5.0 and 10.0. As shown in Fig. 7, although
the mode shapes in the axial direction are relatively simple, those in the circumferential direction are
complicated. In addition, the mode number in the amemential direction increases as the order of
vibration mode and the aspect ratio increase. Thardafon of middle part of the cross section of
shell panels is grater than that of end part as can be seen from_Fig. 7.

Fig. 8 shows the first five naturflequency parametem®@ (=bcw A/ p(l—vz)/ E of the thin-walled
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member composed of three cylindrical shell panels (Fig. 1§2000cm, 8=2.0, b/t=1000,
a/b=1.0~10.0). The mode numbers in the axial direction are also shown in Fig. 8. As in the case of the
member composed of one cylindrical shell panel, the first five natural frequency parameters intersect eacl
other and decrease as the aspect ratibmcrease. In Fig. 9, the vibration mode shapes cametiqy to

the first five natural frequency parameters amshfor the cases efb= 1.0, 5.0 and 10.0. As can be seen

in Fig. 9, every vibration mode shape b= 1.0 shows local deformation of the shell panels that
compose the members. The vibration mode shapes fait# and 4" natural frequencies are similar to
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each other. Theibration mode shapes fatb=5.0 indicate quite distortional combined local and overall
deformations. Mode number in the axial direction fdbnatural frequency i1 = 2. However, those for the
other natural frequencies ame= 1 as shown in Fig. 9. In the casafi= 10.0, the deformation shapes in the
circumferential direction indicate simple patterns compardbtetof/b = 1.0 and 5.0. Anyhow, diérent
mode numbers can be seen in the axial direction (the mode number foatie® natural frequencies is
m=1, those for 2 and 4"ism= 2, and that for 8is m= 3).

Fig. 10 shows the first five natural frequencies param&érsbow / p(1 —v2)/ E of the thin-walled
members composed of five cylindrical shell panels (Fig. 1§:2000 cm, 8= 2.0, b/t= 1000,
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Fig. 12 Natural frequency parameters

a/b=1.0~10.0). The mode numbers in the axial direction are also shown in Fig. 10. As can be seen in
Fig. 10, the first five natural frequency parameters intersect each other and decrease as the aspect rat
a/b increases as in the other cases of one and three cylindrical shell panels. In Fig. 11, the vibratior
mode shapes corresponding to the first five natural frequency parameters are shown. As can be seen
Fig. 11, the vibration mode shapes show deformation similar to flat plates (overall deformations).
However, there are small local deformations in each shell panel.

Fig. 12 shows the variation of natural frequency paramé?efs bw p(l—vz)/E of the thin-
walled members composed &f=1~10 cylindrical shell panels (Fig. 1=2000cm, 8= 2.0,
b/t = 1000,a/b = 1.0~10.0). The analytical models of the members made of 1, 3, 5 and 10 shell panels
are shown in Fig. 1. The boundary conditions at both ebds(Q, 2000 cm) are assumed to be
u=v=w = 0. As shown in Fig. 12, in each case the natural frequency parameter decreases as the aspe
ratio a/b increases. In addition, some of them intersect each other in the range of small aspect ratios.

Fig. 13 illustrates the corresponding vibration mode shapes of the natural frequency parameters
shown in Fig. 12N = 1, 2, 3, 4, 5, 10) for some selected aspect raibs; 1.0, 2.0, 3.0, 4.0, 5.0 and
10.0. In the case dfl = 1, the mode number in the circumferential direction decreases as the aspect
ratio increases. Moreover, the deformation of middle part of the cross section is grater than that of enc
part. In the case dfl = 2, the vibration mode shapes #b = 1.0, 2.0, 3.0 and 4.0 show only local
deformation of the shell panels. However, those dfy= 5.0 and 10.0 show the distortional
deformations or in other words combined local and overall deformations. In the ddse 3fthe
vibration mode shape fa/b = 1.0 shows only local deformation. Although, thosesdilir= 2.0, 3.0,
4.0, 5.0 and 10.0 show distortional deformations. In the casefin addition to the locak(b = 1.0)
and distortional deformations/b = 2.0, 3.0), the members afb = 4.0, 5.0 and 10.0 show overall
deformations similar to flat plates. In the caseblef 5 and 10 only overall deformations can be seen
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Fig. 13 Vibration mode shapes

in every vibration mode shape.

From the given vibration mode shapes in Fig. 13, although vibration mode shapes induced local
deformations can be seen in the cases of small aspect ratios and few number of shell panels, the over:
deformations seems to govern the vibration mode shapes of the members as the aspect ratio and numk
of shell panels increase.

Fig. 14 shows variation of the natural frequencies for different aspect a#tiosth the number of
shell panels composing the thin-walled members (Fig=12000 cm,0= 2.0,b/t = 1000). In the cases
of a/b=1.0 and 2.0, the natural frequencies become peak at five and three shell panels respectively
Moreover, the vibration mode shapes corresponding to the peak values appear as distortiona
deformations as can be seen in Fig. 13. In the casegbef3.0, 4.0, 5.0 and 10.0, the natural
frequencies decrease as the number of shell panels increase.

4. Conclusions

The analytical procedure demonstrated in this paper to estimate not only the natural frequencies bu
also the vibration mode shapes of the thin-walled members composed of cylindrical shell panels is
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Fig. 14 Relation between natural frequencies and numbers of shells panels

proved to be quite reliable. In addition, it is a good tool to examine the effects of the number of the shell
panels on the natural frequencies and vibration mode shapes. From the numerical examples presente
in this paper, the following conclusions can be made.

1. The exact natural frequencies and vibration mode shapes of the members are obtained with ven
small computational efforts.

2. In the cases of small aspect ratios and few number of shell panels, the vibration mode shapes sho
local deformations. On the other hand, in the cases of large aspect ratios and many shell panels th
overall deformations govern the vibration mode shapes of the members.

3. The vibration mode shape corresponding to the peak natural frequency shows distortional
deformation i.e. a combination of local and overall deformations.

4. The vibration mode shapes obtained by the transfer matrix method are very effective in clarifying
the complicated dynamic phenomenon of the members composed of cylindrical shell panels.
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Notation

The flowing symbols are used in this paper

a . length of member, and shell panel length
b : width of member

E : modulus of elasticity

F : transfer matrix

Ko : standard bending rigidity

My, Mg, My, My 2 bending and twisting moments
m : vibration mode in axial direction
N : number of shell panels

Ny Ng, Nyg, Nk . in-plane forces

P : point matrix

Qu Qs : shear forces

R : radius of shell panel

T, : standard shell thickness

t : shell thickness

u, v, w : displacements in directions

Vy : equivalent shear force

& & : normal strains

Yo Yoz Y : shear strains

Ky, K¢y Kxgr Kpx . curvatures of displacements

v : Poissonis ratio

e : center angle of shell panel

o : mass density

Q . frequency parameter; and

w : natural frequency
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