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Elasticity solution of multi-layered shallow cylindrical
panels subjected to dynamic loading
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Abstracts.  Elasticity solutions to the boundary-value problems of dynamic response under transverse
asymmetric load of cross-ply shallow cylindrical panels are presented. The shell panel is simply supported
along all four sides and has finite length. The highly coupled partial differential equations are reduced to
ordinary differential equations with constant coefficients by means of trigonometric function expansion in the
circumferential and axial directions. The resulting ordinary differential equations are solved by Galerkin finite
element method. Numerical examples are presented for two (0/90 deg.) and three (0/90/0 deg.) laminations
under dynamic loading.
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1. Introduction

With the development of new manufacturing techniques, more and more advanced materials have
been introduced lately. Fiber-reinforced composite is one such material which has been widely used in
the aircraft and aerospace industry, since the properties, such as high mechanical strength, higl
stiffness, and low density, are crucial in the design of aircraft and space structures. Because of theil
wide usage, the characteristics of these materials under static and dynamic conditions are of
considerable importance and interest to designers. Modeling of composite cylindrical panels is usually
based on one of the following three types of theories: classic laminated theory (CLT), shear
deformation theories, and three-dimensional elasticity theory. Because of the high ratio of in-plane
Young’s modulus to transverse shear modulus, ignorance of the shell transverse shear deformation i
CLT can lead to serious errors even for thin cylindrical panels. Although the shear deformation theories
have met with success in many cases, three-dimensional elasticity solutions are still needed for the
purpose of assessment of various approximate theories and better understanding of actual distribution
of stresses, and displacements in composite panels, especially for thick ones. There are not man
solutions for laminated cylindrical panels on three-dimensional elasticity, because of the considerable
mathematical difficulties in solving governing differential equations for the general boundary and
loading conditions. Some elasticity solutions used for stress and vibration analysis of shallow shells
under static and dynamic loads are reviewed here.
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Free vibration analysis of doubly curved kha shells on rectangular platform using three-
dimensional elasticity theory was studied by Bhimaraddi (1991). In this paper the governing partial
differential equations are reduced to ordinary differential equatiuons by assuming the solution, in the
axial and circumferential directions, to be composed of trigonometric functions and solving the
resulting equation. An exact three-dimensional thermo elasticity solution is employed to derived the
elastic response of a doubly-curved cross-ply laminated panel under mechanical loading and
temperature variation by Huang and Tauchert (1992) using the power series method.

A three-dimensional elasticity solution for the static response of simply supported orthotropic
cylindrical shells was presented by Biairaddi and Chandrashekhara (1992). In this paper, the solution
is obtained assuming the ratio of the panel thickness to its middle surface radius is negligible as
compared to unity. It is shown that the two-dimensional shell theories are quite inaccurate when the
thickness to length ratio of the panel is more than 1/20. Three-dimensional elasticity solution for static
response of orthotropic doubly curved shallow shells on rectangular platform was studied by
Bhimaraddi (1993). He obtained displacements and stres3e&iandZ directions by assuming the
variables in the form of the trigonometric functions expansion. Bending analysis of thick cross-ply
laminated doubly-curved shells was presented by Jing and Tzeng (1993). In this paper and approximat
approach based on the assumption suggested by Soong (1970) is used instead of using exact thre
dimensional elasticity. Natural vibration of free, laminated composite triangular and trapezoidal
shallow shells was investigated by Qatu (1995). This paper deals with algebraic polynomials in a Ritz
analysis to determine the natural frequencies.

Recently the authors have studied the response of orthotropic cylindrical panel under dynamic patch
load and anisotropic cylindrical panels under dynamic load (Sheikali2000, 921-927, Shakest al
2000 1-11). In these papers three-dimensional theory of elasticity with Galerkin finite element method
have been used. Review of the published literature shows that elasticity solution to the problem of
laminated, cross-ply cylindrical shallow panel of finite length under dynamic load has not yet been
investigated.

Thus, the dynamic response of axisymmetric cross-ply laminated shallow panels subjected to asymmetric
loading based on three-dimensional elasticity equations are studied.

2. Problem description

Consider a laminated circular cylindrical panel, as shown in Fig. 1, compobkdniformly thick
layers. The layers are so arranged that the panel in general is orthotropic, and the material symmetn
axis in radial, circumferential and axial directions are parallel t&{héandX axes, respectively. The
panel is simply supported on four edges. The constitutive equations of each layer are stated as;
[0x] [C11Ci2Ci3 0 0 071 &
Oy C12C;C 0 0 0| &
Ty | 0 0 0Cyu O O yy
Txz 0 0 0 0Cgxi0 Yxz

LTxv] L O 0 0 O OCgllYxv.




Elasticity solution of multi-layered shallow cylindrical panels 197

T T

Fig. 1 Geometry and the coordinate system of laminated panel

where:
ag(i =Z, Y, X) are the normal stresses
&(i =27 Y, X) are the normal strains
T2y, Txz, Txy, are the shear stresses
Vo Yazo Vv, are the shear strains
and

Ci(i,j =1,2,3,4,5, 6) are the elastic constants

The stratin displacement relations of the 3-D elasticity equations in the cylindrical coordinate system
are written as:

_9Ux _T_R %Yy, Y; _9Y; _ Uy [_R 79Ux
& = X EY_[R+Z}[0Y R} 2=z =% [R+Z} oY
_dUz dUx 1 R oYz Uyy_ dUy
he= Gtz %ot mezl oy R 32 @)

In order to reduce the system of equations with variable coefficients to one with constant coefficient, the
only assumption we need to make is:

[RTZ}zl 3)

which is a basic assumption of shallow shell theory. Utilizing Eq. (3) in Egs. (2), we write the strain
displacement relations as:

J Uy U Y Uy dU

E=0x Ty TR Tz T ax Ty
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Wz = ox T oz Z_[dY_R}rdZ @
Using Eq. (3), 3-D stress equilibrium equations can be written as:

%4_%4_&4_&2: dzUX
ox oy oz TR Py

%Jr doy N 0T2Y+ 2T,y _ pdzlJY
oxX oY oz R ot?

dez+dLZY+d_O-Z+GZ_O-Y=p02UZ (5)
X oY 6z R P

Substituting the stress-strain relations (1), via strain-aigphent relations (4), the above governing
equations can be written in terms of three displacements as:

C(k)dzu C(k)l—ﬁUZ dZUYm C(k) 02Uz +C(k)D02UY 02UXD
120Rgx * axavD " 1 azox T e OXAY  av? [

C(k)wZUx BZUZD C(5 é X dUZD:pd2UX
55[]5022 azax[] R Ugz = oxO™ 7 2

g, U, e, cufPe  TUR, o2t
Oox2  OXaYE 2 axaY o gvino T IZoY
(k)D—dUY+02UY 90U, 0 ZCXZ)H—UY Uy YUz _ A
“wdraz T 572 TozovsT R UR oz T avDT Pye

1959 Uy azug wH Uy 0y, IUL, 00Uy |
55[;920x oxeo  “g Ray azay " Y2 O 18570

) _ ok (0 _c) [&z ®_ c®
[(C )dx *(Cas aYD * (G )az}

C (k)l—ﬁUZ dZUYm 02Uz
337 __5 dZ

% [Raz "+ 9zavD” o2 ©)

+C

The simply supported boundary conditions are taken as:

U, =0, =1yx=0at Y=0,Y,
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U, =0y =T,y =0 at X=0,L (7)

For a laminate consisting dfl laminae, the continuity conditions to be actx at any arbitrary
interior K)th interface can be written as:

02k = 02)k+1 T2k = Tzv)ke1 T2k = Tzxdk+1 (8a)

Uk = Uker Uk = U)o U = Ui (8b)

The boundary conditions on the inner and outerase of the panel are:

o, = p(Y, 1), 14;=T1,,=0 atthe outer surface (9a)

O; = Tyz=T,y=0 at the inner surface (9b)

3. Solution of the governing equations
The solution which satisfies the boundary conditionsa(@)

U; = uy(Z t)sinB,Y sinp,X
Uy = uy(Z, t)cosB,Y sinp,X
Uy = ux(Z, t)sinB,Y (Lo, X (20)

where:

After substituting Eq. (10) into Egs. (6), the partial differential equationsrinst of the variables,
Z, Y, Xandt are reduces to ordinary differential equations in terms of the vadadmelt as:

ou
~CiiP2U,+ CERU, - ,P,U, T+ Cigp, 22 + Cly( U, - BPoU,)

dzlJX Z 1 E‘ |:| dZUX
+C5{dz +P”dz RO G, +PoUz| = p(?t2

ou
~CE(PAU, + BuPoU.)~CiafuP, U, + Ci 22U, — 20,04 iy, 22

_10U, 20U au U
k 1 _Y ﬁm ZD__lU ﬁm 7l = pk_y
R dz 9z° dz *ROR D It

LB

k k1« k k k
[ CLP? + B Cha- (Ch—Ch JU,+ 2 x (Cla- Cla+ ChU, + 2(Ch—Cl U, P,
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ou dU, Ch0U FRY) FRY)
(Cas+ Cra) 5~ Br(Caat Cog) 5 + I + Cav—5 = 01—

(11)

Egs. (11) are solved by means of the finite element method. Each layer is devided into an arbitrary
number of radial elements. Linear shape functions may be considered for each dtgment (

il
ud(z 1) = miN,-Egjs'm $=7y X (12)
sj
Substituting Egs. (12) into the first of Egs (11). and applying the formal Galerkin method yields
1 oJy,
J[ (- CLiP ~ Cha) U+ 2(Cl + Ce)PrU, ~(Cly + Cho)Pufnl, + (Cla+ Cho)Py 2
90U, Ccoau, U, _ L
+C55?+EE—[)? Ndr =0 s=i] (13)

Similarly, substituting Egs. (12) into the second and third of Egs. (11) yield four other equations
which combined with Egs. (13) provide six equations for six unkndwnbl,;, Uy, Uy;, U andUy. Eq.
(13) fors =i reduces to

. . k du
AUy + Byug; + Cyuy; + DUy + Eguy + Fyuyg +Guy; +H Uy = Cssd—zz (14)
i
where the constant,, By, ..... andH, are given in the Appendix. The system of six equations for
the six unknowns obtained for the base elemidningy be written as:

[IMI{ X} i+ [KT{ X} = {F(D)}i (15)
where:

[M] and [K] are the 6x6 mass arstiffness matrices
{F()} is the 6x1 force matrix

Expressing Eqg. (8a) in term of displacements, by using the Egs. (1) and (4) and replacing the
derivatives by proper finite difference approximationulssinto the expressions for diggement
components on the inter laminar boundaries in term of the displacement values of neighbouring nodes
(Fig. 2) as follows:

k k+1 _ k k+1 k k+1 k k+1
Uzii = Uziivr = AUz +B.Uz 52+ ClUyy1 + DUy + E.Uxg -1 + F.Uxs

k _ k+1 _ ' k ' k+1 ' k ' k+1 ' k ' k+1
Ui = Uxiiar = AUz +B .Uz +C Uy # D" Uy + E Uy +F .Uy

k k+1 k k+1 k k+1 k k+1
Uvii = Uyier = A" Uz1 + B Uz5 2+ C" Uy + D" .Uyysp +E". Uy 1 +F".Uxyz
(16)
where:



Elasticity solution of multi-layered shallow cylindrical panels 201

Fig. 2 Configuration f& andK+1 elements

ng,, Uﬁkl, Uhfg the displacements at ( kl)th node of K)th element
A, B, ...,F" are constant coefficients (see Appendix).

Substituting Eqg. (16) into (15), the dynamic finite element equilibrium equations for two neighbouring
elements at interiokjth and k+1)th interfaces are obtained as:

[MId X} + [KL{ X}« = {0} (17a)

[MIis i{ Xps 2+ [Klie 1 { X} i1 = {0} (17b)

By applying Eq. (16) for the first and last nodes, displacement values for these nodes can be
obtained, and then from Eq. (15), the dynamic equations for the first and last element becomes:

[M], {X} s + [KIL X}, = {0} (18a)

[MIw XX} + [KIw XX = {F(D)}m (18b)

By assembling Egs. (15), (17a,b), (18a,b), the general dynamic finite element equilibrium equations are
obtained as:

[M] X} +[KI XX} = {F(1)} (19)
where in Egs. (18b) and (19):
[M] and K] are matrices of (811-6—-3N)x(3MI-6-3N) sizes.
Ml andN are the number of elements and layers respectively.

Once the finite @ment equilibrium is established, the Newmark direct integration method with
suitable time step is used and the equations are solved.
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4. Numerical results and discussion

Two- and three-layered cross-ply shallow cylindrical panels composed of graphite-epoxy are

considered. The forcing function is chosen as:

p(Y, X § = Py(1—e Y sing,,Ysinp,X (20)

The material properties are

E, = 85 Mpa,Er = 2.125 Mpa,G.r= 1.0625 Mpa
Gr=0.425 Mpa,v._T =Vrr= 025,p= 1408(kg/n'?l)

Figs. 3 and 4 show the radial stregg @cross the thickness in two and three layered panels at 2.5
msec. At this time the dynamic loading in figure forward (Eq. 20) has the maximum value and is
contant from this point. It is seen that the boundary and inter laminar conditions are satisfied.
Circumferential normal stresgrf) and it’s time history for two and three layers are shown in Figs. 5
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and 6; and 7 and 8, respectively. As the Figures show, this stress is not continuous at inter laminae. I
the case of three-layered panel this stress is symmetric about neutral axis and in mid lamina is greate
than the other two laminae.

The in-plane shear stress in the circumferential directigh &nd it's variation with respect to time
are shown in Figs. 9 through 12. This shear stress distribution is parabolic and satisfies the boundar
and inter laminae conditions. It is alsavsyetric about the neutral axis in circumferential direction.
The other in-plane shear stresg;) for two and three layer are shown in Figs. 13 and 14 respectively.
This distribution also has an approximate parabolic form. The time history of the radial displacement
distribution (z) are shown in Figs. 15 and 16.

Influence of depth to mid radius ratibl/R) of panel in transverse shear stresg){ normal radial
stress @) and normal circumferential stress, are shown in Figs. 17, 18 and 19, respectively. in Fig.
18 with increasing thel/R, shallow panel changes from thin shell to the thick one and this cause that
the radial stressaf), changes from tension in the outer surface to the compression toward the inner
layer. According to the Fig. 19 &¥§R increases, the distribution of, across the thickness becomes
more linear and close to the bending behavior of plate. Also discontinuity of this stress decreases with

—Elasticity
CST
1 i e e e
0.8

06 .

04 |

Radial displacement

0.2

§ 10 15 20 25 30 35 40 S0 60
S=R/H

Fig. 21 Variation of radial displacemeniZ with R/H (0/90)
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increasing théH/R. This is because that with increasing the thickness of shallow panel with constant
radius, depth of panel decreases and consequently it's behavior is close to the behavior of the plate
Variations of in plane shear streggy) with layers is shown in Fig. 20. Fig. 21 shown distribution of
radial displacementJ?) in three-dimensional elasticity and classic shell theory (CST). As expected the
CST gives very poor results at relatively high ratidddR, and the elasticity solution asymptotically
approaches to the CST solution.

5. Conclusions

The main aspect of an elasticity solution for any mechanical structure is to be able to solve the
problem which can be used as a basic to access the degree of accuracy of other approximate methoc
The elasticity solution of multi-layered shells and panels under dynamic loading is quite complicated,
but as is shown in the paper, is possible with some restrictions for boundary conditions.

In this paper the response of multi-layered shallow cylindrical panels under dynamics loading is
presented. The results achieved could be used for above mentioned purpose, and that, the followin
conclusions can be made;

1. The through-thickness distribution of transverse shear stregsgsand (xz) are very close to
parabola. Theseistributions in two layered panare not symmetric and their maximum are not
located at mid radius of panels.

2. The sign ofoz changes with increasing the thickness to mid radius IFHERD

3. It is shown that CST underestimates the radial displacetdgnaiid gives a poor estimate for
relatively high value oH/R. With increasing the thickness to mid radiusorghe CST results approach
the elasticity results.

4. Amplitude of vibration in radius directiotJf) is increased in three layered panel (0/90/0) in
comparison with two layered one (0/90).

5. Through thickness shear streisg) (decreased with increasing the number of layers.
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Appendix

1 1
Av = Po| 5E(Ci+ Ci)(2-2) = 5(Cis+ €5 |

P.r1
B, = 5 3r(Cla+ Cio) (3 -2) + Cly + Cly|

nﬁm nﬂm

C, = (C12+ Ces)(z -z) D, = (C12+ CGG)(Z] z)

nl 1
E, [ (CLiP7 + BrCio) (Z — Z)+C55E2R Z—ZE}
1
Fy = —2(CLiPL + BnCee) (2 - 2) +C§5Elt—R+; ZE

G4=—§(Zj—zi),H4=%
A=D;xK, B=E xK;, C=-D,xK,
D=-F,xK, E=-E;xK; F=-G;xKj,
A = -D,xK, B'=-E; xK,C' =D,xKs
D'=F,xK; E'=E;xKg F'=GyxKg

A"=-D,xK,; B"=-E; xK; C"=D,xKg

D" =F,xKg E" = E;xKg F" = Gy x K,

where:Ah is the thickness increment and:

K1=BZXC3 K2=leC3 K3=BZXC1 K4_A2st

detA detA detA’ ' detA

Ko = (A% CymAgx Cy) x —— K= 222G g - AuXBs

detA; detA ' detA

K8=A3X81 Ko = (A x B, —A; X By) X

1
detA’ detA

k k+1 k k+1
C23 _ C23 + C33 + C33

A== Ah

, B1= B X (C§3+1—C§3)
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K+1 K Chs Ca' K K+1
Ci = Bnx(Ciz —Cpa), Dlzmv E, = A A, =B x(Cpu—Cyy )
k0l 1o, ~k+10l | 10 Ca. Cl’
_ 1 + 1 _Cu _Cu
B, = C44|:ﬂh_R|:|+ (O Eﬂh+RD D, = ah’ F,= 2h
. 1 . Cs,
As = Bnx(Css=Css' "), Ca= 7% (Css+ Css' ), Ea= 7
Cos ' 1
G; = AN detA = A; xB,xCy3— A, xB; xCy3—A;xB,xC;

CcC
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