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Elasticity solution of multi-layered shallow cylindrical
panels subjected to dynamic loading
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Abstracts. Elasticity solutions to the boundary-value problems of dynamic response under transv
asymmetric load of cross-ply shallow cylindrical panels are presented. The shell panel is simply supp
along all four sides and has finite length. The highly coupled partial differential equations are reduce
ordinary differential equations with constant coefficients by means of trigonometric function expansion in
circumferential and axial directions. The resulting ordinary differential equations are solved by Galerkin f
element method. Numerical examples are presented for two (0/90 deg.) and three (0/90/0 deg.) lamin
under dynamic loading.
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1. Introduction

With the development of new manufacturing techniques, more and more advanced materia
been introduced lately. Fiber-reinforced composite is one such material which has been widely 
the aircraft and aerospace industry, since the properties, such as high mechanical streng
stiffness, and low density, are crucial in the design of aircraft and space structures. Because 
wide usage, the characteristics of these materials under static and dynamic conditions 
considerable importance and interest to designers. Modeling of composite cylindrical panels is 
based on one of the following three types of theories: classic laminated theory (CLT), 
deformation theories, and three-dimensional elasticity theory. Because of the high ratio of in
Young’s modulus to transverse shear modulus, ignorance of the shell transverse shear deform
CLT can lead to serious errors even for thin cylindrical panels. Although the shear deformation th
have met with success in many cases, three-dimensional elasticity solutions are still needed
purpose of assessment of various approximate theories and better understanding of actual dist
of stresses, and displacements in composite panels, especially for thick ones. There are no
solutions for laminated cylindrical panels on three-dimensional elasticity, because of the consid
mathematical difficulties in solving governing differential equations for the general boundary
loading conditions. Some elasticity solutions used for stress and vibration analysis of shallow
under static and dynamic loads are reviewed here.

†Professor
‡Ph.D. Student
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Free vibration analysis of doubly curved shallow shells on rectangular platform using three
dimensional elasticity theory was studied by Bhimaraddi (1991). In this paper the governing p
differential equations are reduced to ordinary differential equatiuons by assuming the solution,
axial and circumferential directions, to be composed of trigonometric functions and solvin
resulting equation. An exact three-dimensional thermo elasticity solution is employed to derive
elastic response of a doubly-curved cross-ply laminated panel under mechanical loadin
temperature variation by Huang and Tauchert (1992) using the power series method.

A three-dimensional elasticity solution for the static response of simply supported ortho
cylindrical shells was presented by Bhimaraddi and Chandrashekhara (1992). In this paper, the solu
is obtained assuming the ratio of the panel thickness to its middle surface radius is neglig
compared to unity. It is shown that the two-dimensional shell theories are quite inaccurate wh
thickness to length ratio of the panel is more than 1/20. Three-dimensional elasticity solution  fo
response of orthotropic doubly curved shallow shells on rectangular platform was studie
Bhimaraddi (1993). He obtained displacements and stresses in X, Y and Z directions by assuming the
variables in the form of the trigonometric functions expansion. Bending analysis of thick cros
laminated doubly-curved shells was presented by Jing and Tzeng (1993). In this paper and appr
approach based on the assumption suggested by Soong (1970) is used instead of using exa
dimensional elasticity. Natural vibration of free, laminated composite triangular and trapez
shallow shells was investigated by Qatu (1995). This paper deals with algebraic polynomials in
analysis to determine the natural frequencies.

Recently the authors have studied the response of orthotropic cylindrical panel under dynami
load and anisotropic cylindrical panels under dynamic load (Shakeri et al. 2000, 921-927, Shakeri et al.
2000 1-11). In these papers three-dimensional theory of elasticity with Galerkin finite element m
have been used. Review of the published literature shows that elasticity solution to the prob
laminated, cross-ply cylindrical shallow panel of finite length under dynamic load has not yet
investigated.

Thus, the dynamic response of axisymmetric cross-ply laminated shallow panels subjected to asy
loading based on three-dimensional elasticity equations are studied.

2. Problem description

Consider a laminated  circular cylindrical panel, as shown in Fig. 1, composed of N uniformly thick
layers. The layers are so arranged that the panel in general is orthotropic, and the material sy
axis in radial, circumferential and axial directions are parallel to the Z, Y and X axes, respectively. The
panel is simply supported on four edges. The constitutive equations of each layer are stated a

(1)

σX

σY

σZ

τZY

τXZ

τXY

 C11 C12 C13  0    0    0

C12 C22 C23  0    0    0

C13 C23 C33  0     0    0

  0    0    0    C44  0   0

  0    0    0    0    C55   0

  0    0    0    0    0    C66

εX

εY

εZ

γZY

γXZ

γXY

=
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ystem
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strain
where:
σi (i = Z, Y, X ) are the normal stresses
εi (i = Z, Y, X ) are the normal strains
τZY, τXZ, τXY, are the shear stresses
γZY, γXZ, γXY, are the shear strains

and
Cij(i, j = 1, 2, 3, 4, 5, 6) are the elastic constants

The stratin displacement relations of the 3-D elasticity equations in the cylindrical coordinate s
are written as:

(2)

In order to reduce the system of equations with variable coefficients to one with constant coefficie
only assumption we need to make is:

(3)

which is a basic assumption of shallow shell theory. Utilizing Eq. (3) in Eqs. (2), we write the 
displacement relations as:

εX

∂UX

∂X
----------   εY

R
R Z+
-------------

∂UY

∂Y
----------

UZ

R
------+   εZ

∂UZ

∂Z
----------   γXY

∂UY

∂X
---------- R

R Z+
-------------+

∂UX

∂Y
----------=,=,=,=

γXZ

∂UZ

∂X
----------

∂UX

∂Z
----------   γYZ, R

R Z+
-------------

∂UZ

∂Y
----------

UY

R
------–

∂UY

∂Z
----------+=+=

R
R Z+
------------- 1≈

εX

∂UX

∂X
----------   εY

∂UY

∂Y
----------

UZ

R
------+   εZ

∂UZ

∂Z
----------   γXY

∂UY

∂X
----------

∂UX

∂Y
----------+=,=,=,=

Fig. 1 Geometry and the coordinate system of laminated panel
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g

(4)

Using Eq. (3), 3-D stress equilibrium equations can be written as:

(5)

Substituting the stress-strain relations (1), via strain-displacement relations (4), the above governin
equations can be written in terms of three displacements as:

(6)

The simply supported boundary conditions are taken as:

γXZ

∂UZ

∂X
----------

∂UX
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----------   γYZ,

∂UZ
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(7)

For a laminate consisting of N laminae, the continuity conditions to be enforced at any arbitrary
interior (k)th interface can be written as:

(8a)

(8b)

The boundary conditions on the inner and outer surfaces of the panel are:

at the outer surface (9a)

at the inner surface (9b)

3. Solution of the governing equations

The solution which satisfies the boundary conditions (7) are:

(10)

where:

After substituting Eq. (10) into Eqs. (6), the partial differential equations in terms of the variables,
Z, Y, X and t are reduces to ordinary differential equations in terms of the variable Z and t as:

UZ σX τXY 0  at   X 0= L,= = =

σZ)k σZ)k 1+   τZY)k τZY)k 1+   = τZX)k τZX)k 1+   ==

UZ)k UZ)k 1+   UY)k UY)k 1+   = UX)k UX)k 1+   ==
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σZ τXZ τZY 0= ==
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UY uY Z t,( ) βmcos Y pnsin⋅ X=

UX uX Z t,( )sinβmY cospn⋅ X=
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Eqs. (11) are solved by means of the finite element method. Each layer is devided into an a
number of radial elements. Linear shape functions may be considered for each element (k) as

(12)

Substituting Eqs. (12) into the first of Eqs (11). and applying the formal Galerkin method yie

(13)

Similarly, substituting Eqs. (12) into the second and third of Eqs. (11) yield four other equa
which combined with Eqs. (13) provide six equations for six unknowns Uzi, Uzj, Uyi, Uyj, Uxi and Uxj. Eq.
(13) for s = i reduces to

(14)

where the constants A4, B4, ..... and H4 are given in the Appendix. The system of six equations 
the six unknowns obtained for the base element (k) may be written as:

(15)

where:

[M ] and [K ] are the 6×6 mass and stiffness matrices
{ F(t)} is the 6×1 force matrix

Expressing Eq. (8a) in term of displacements, by using the Eqs. (1) and (4) and replaci
derivatives by proper finite difference approximation, results into the expressions for displacement
components on the inter laminar boundaries in term of the displacement values of neighbouring
(Fig. 2) as follows:

(16)
where:
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 
 

   s z y x, ,==

C11
k Pn

2– C66
k βm

2–( )Ux
1
R
--- C12

k C55
k

+( )PnUz C12
k C66

k
+( )PnβmUy– C13

k C55
k

+( )Pn

∂Uz

∂z
---------+ +∫

+C55
k ∂ 2Ux
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R
--------

∂Ux

∂z
--------- ρk∂ 2
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-----------–+ Nsdr 0     s i j,==

A4uzi B4uzj C4uyi D4uyj E4uxi F4uxj G4u··xi H4u··xj C55
k ∂uz

∂z
--------

i

=+ + + + + + +

M[ ]k X··{ }k K[ ]k X{ }k+ F t( ){ }k=

UZkI
k UZkI 1+
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k F ′.UXkI 2+

k 1++ + + + += =

UYkI
k

UYkI 1+
k 1+ A″.UZkI 1–
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with
, ,  are the displacements at ( kI)th node of (k)th element

A, B, ..., F"  are constant coefficients (see Appendix).

Substituting Eq. (16) into (15), the dynamic finite element equilibrium equations for two neighbo
elements at interior (k)th and (k+1)th interfaces are obtained as:

(17a)

(17b)

By applying Eq. (16) for the first and last nodes, displacement values for these nodes c
obtained, and then from Eq. (15), the dynamic equations for the first and last element become

(18a)

(18b)

By assembling Eqs. (15), (17a,b), (18a,b), the general dynamic finite element equilibrium equatio
obtained as:

(19)

where in Eqs. (18b) and (19):

[M ] and [K] are matrices of (3MI−6−3N)×(3MI−6−3N) sizes.
MI and N are the number of elements and layers respectively.

Once the finite element equilibrium is established, the Newmark direct integration method 
suitable time step is used and the equations are solved.

UZkI
k UYkI

k UXkI
k

M[ ]k X··{ }k K[ ]k X{ }k+ 0{ }=

M[ ]k 1+ X··{ }k 1+ K[ ]k 1+ X{ }k 1++ 0{ }=

M[ ]1 X··{ }⋅ 1 K[ ]1 X{ }⋅ 1+ 0{ }=

M[ ]MI X··{ }⋅ MI K[ ]MI X{ }⋅ MI+ F t( ){ }MI=

M[ ] X··{ }⋅ K[ ] X{ }⋅+ F t( ){ }=

Fig. 2 Configuration fo K and K+1 elements
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4. Numerical results and discussion

Two- and three-layered cross-ply shallow cylindrical panels composed of graphite-epox
considered. The forcing function is chosen as:

(20)

The material properties are

EL = 85 Mpa, ET = 2.125 Mpa, GLT = 1.0625 Mpa

GTT = 0.425 Mpa, νLT = νTT = 0.25, ρ = 1408(kg/m3)

Figs. 3 and 4 show the radial stress (σz) across the thickness in two and three layered panels a
msec. At this time the dynamic loading in figure forward (Eq. 20) has the maximum value a
contant from this point. It is seen that the boundary and inter laminar conditions are sat
Circumferential normal stress (σY) and it’s time history for two and three layers are shown in Figs

p Y X t, ,( ) P0 1 e 13100t––( )sinβmY pnXsin=

Fig. 3 Distribution of σZ across thickness at Y= φ /2,
z= 1/2 (0/90 deg.)

Fig. 4 Distribution of σZ across thickness at Y= φ /2,
z= 1/2 (0/90/0 deg.)

Fig. 5 Distribution of σY across thickness (0/90 deg.) Fig. 6 Distribution of σY across thickness (0/90/0 deg.)
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Fig. 7 Variation of σY with time (0/90 deg.) Fig. 8 Variation of σY with time (0/90/0 deg.)

Fig. 9 Distribution of τZY across thickness (0/90 deg.) Fig. 10 Distribution of τZY across thickness (0/90/0 deg.)

Fig. 11 Variation of τZY with time (0/90 deg.) Fig. 12 Variation of τZY with time (0/90/0 deg.)
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Fig. 13 Distribution of τXZ across thickness (0/90 deg.) Fig. 14 Distribution of τXZ across thickness (0/90/0 deg.)

Fig. 15 Variation of UZ with time (0/90 deg.) Fig. 16 Variation of UZ with time (0/90/0 deg.)

Fig. 17 Variation of τXZ with H/R (0/90 deg.) Fig. 18 Variation of σz with H/R (0/90 deg.)
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and 6; and 7 and 8, respectively. As the Figures show, this stress is not continuous at inter lam
the case of three-layered panel this stress is symmetric about neutral axis and in mid lamina is
than the other two laminae.

The in-plane shear stress in the circumferential direction (τZY) and it’s variation with respect to time
are shown in Figs. 9 through 12. This shear stress distribution is parabolic and satisfies the bo
and inter laminae conditions. It is also symmetric about the neutral axis in circumferential directio
The other in-plane shear stress (τXZ) for two and three layer are shown in Figs. 13 and 14 respectiv
This distribution also has an approximate parabolic form. The time history of the radial displac
distribution (UZ) are shown in Figs. 15 and 16.

Influence of depth to mid radius ratio (H/R) of panel in transverse shear stress (τXZ), normal radial
stress (σZ) and normal circumferential stress (σY) are shown in Figs. 17, 18 and 19, respectively. in F
18 with increasing the H/R, shallow panel changes from thin shell to the thick one and this cause
the radial stress (σZ), changes from tension in the outer surface to the compression toward the
layer. According to the Fig. 19 as H/R increases, the distribution of σY across the thickness become
more linear and close to the bending behavior of plate. Also discontinuity of this stress decreas

Fig. 19 Variation of σy with H/R (0/90 deg.) Fig. 20 Variation of τyz with layer

Fig. 21 Variation of radial displacement (UZ) with R/H (0/90)
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increasing the H/R. This is because that with increasing the thickness of shallow panel with con
radius, depth of panel decreases and consequently it’s behavior is close to the behavior of th
Variations of in plane shear stress (τZY) with layers is shown in Fig. 20. Fig. 21 shown distribution 
radial displacement (UZ) in three-dimensional elasticity and classic shell theory (CST). As expecte
CST gives very poor results at relatively high ratio of H/R, and the elasticity solution asymptoticall
approaches to the CST solution.

5. Conclusions

The main aspect of an elasticity solution for any mechanical structure is to be able to sol
problem which can be used as a basic to access the degree of accuracy of other approximate 
The elasticity solution of multi-layered shells and panels under dynamic loading is quite compli
but as is shown in the paper, is possible with some restrictions for boundary conditions.

In this paper the response of multi-layered shallow cylindrical panels under dynamics load
presented. The results achieved could be used for above mentioned purpose, and that, the f
conclusions can be made;

1. The through-thickness distribution of transverse shear stresses, (τZY) and (τXZ) are very close to
parabola. These distributions in two layered panel are not symmetric and their maximum are n
located at mid radius of panels.

2. The sign of σZ changes with increasing the thickness to mid radius ratio H/R.
3. It is shown that CST underestimates the radial displacement (UZ) and gives a poor estimate fo

relatively high value of H/R. With increasing the thickness to mid radius ratio, the CST results approach
the elasticity results.

4. Amplitude of vibration in radius direction (UZ) is increased in three layered panel (0/90/0) 
comparison with two layered one (0/90).

5. Through thickness shear stress (tZY) decreased with increasing the number of layers.
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Appendix

where: ∆h is the thickness increment and:
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