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Abstract. The problem of the elastic buckling of a cylindrical liquid-storage tank subject to horizon
earthquake loading is considered. An equivalent static loading is used to represent the dynamic eff
theoretical solution based on the nonlinear Flügge shell equations is developed, and numerical resu
found using the new differential quadrature method. A second solution is obtained using the finite ele
package ADINA. A major motivation of the study was to show that the new method can serve to verify f
element solutions for cylindrical shell buckling problems. For this purpose the paper concludes wi
comparison of buckling results for a number of cases covering a wide range in tank geometry. 
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1. Introduction

The problem of the buckling of cylindrical liquid-storage tanks subject to seismic action continu
be an active concern in structural engineering research (Mirfakhraei et al. 1996, Cho et al. 1999, Ishida
et al. 1999, Mirfakhraei and Redekop 1999). Horizontal seismic excitation is the major cau
damage. It serves to accelerate the liquid in the tank, which then exerts a large nonsymmetric p
on the tank wall that can lead to buckling.

While the response of the tank is clearly dynamic, experimental and theoretical studies (Mirfa
et al. 1996) have shown that the characteristic tank behavior can be determined through a
analysis. Such an analysis greatly reduces the size of the computational problem. Crucial to the
of the analysis, however, is the accounting for the boundary conditions that apply, and the developm
of an appropriate but practical system of equations.

In this study the nonlinear Flügge theory (Yamaki 1984, Flügge 1973) is used to develop a
stability equations for cylindrical shells. The solution is in two steps, in each of which the 
differential quadrature method (DQM) is used. A second solution is found using the ADINA f
element method (FEM) package. The paper concludes with a comparison of buckling result
number of shell cases, covering a wide range of tank geometry.

2. Geometry and loading

A vertical cylindrical tank (Fig. 1) has a length L, a radius R, a thickness h, and is assumed made o
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steel. A loading Ps=ρl g (L− x) arises from hydrostatic pressure, and a loading Pd = α(x) ρl R G cos θ
A(t) is assumed to arise from horizontal seismic action. Here ρl is the liquid mass density, g the
acceleration of gravity, and G the acceleration factor. The cosθ variation of Pd provides outward
compression over one half of the circumference and inward tension over the other. A(t) is a function
dependent on the magnitude of acceleration and α(x) gives the longitudinal variation of the dynami
pressure, where x is the longitudinal position variable. This function is given in graphical form 
Malhotra and Veletsos (1994) for some special values of length/radius (L/R) and radius/thickness (R/h)
ratios. By curve fitting relations for α(x) have been derived for three sets of ratios as

L/R= 0.5; α(x) = 0.0532 x3 − 0.7129 x2 + 0.2812 x + 0.3799

L/R = 1.0; α(x) = −0.886 x3 + 0.0421 x2 + 0.2009 x + 0.6516

L/R = 3.0; α(x) = −13.4455 x5 + 26.2304 x4 − 21.0359 x3 + 8.108 x2 − 0.175 x + 0.3239 (1)

A plot of the loading distribution on the shell surface is given in Fig. 2.

3. Nonlinear Flügge shell theory

The nonlinear Flügge equations are used as the basis of the theoretical work. The effe
prebuckling deformations are accounted in the derivation of equation both in the domain and
boundary conditions. The resulting set of stability equations is not restricted to axisymmetric loading as
are those in the standard reference by Yamaki (1984). Based on an engineering consideratio
magnitude of terms, a final linearized set of stability equations is obtained, permitting the use of
standard eigenvalue procedures. Final stability equations are linear in terms of buckling variables bu
have weighting coefficients from prebuckling terms.

A two-step procedure is used in the stability analysis. In the first step, the pre-buckling analysis, the
membrane and bending resultants are found for the hydrostatic and equivalent static lateral lo
using the linear Flügge equations. In the second step, the buckling load analysis, the newly 
stability equations are used to find the lowest eigenvalue λmin.

The governing equations are found by minimizing the total energy through the variational prin
(Yamaki 1984) and are given by

Fig. 1 Geometry Fig. 2 Equivalent static loading
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[Nx (1+U,x)],x + [Nyx (1 + U,x)],y + (Ny U,y),y + (Nxy U,y),x + px − p W,x = 0
[Nxy (1+V,y − W/R)],x + Ny (1+V,y − W/R),y − (My,y + Mxy,x)/R+ (Nx V,x),x + (Nyx V,x),y − Nyx W,x/R + py

− (p + Ny/R) (W,y + V/R) = 0
Mx,xx + (Mxy + Myx),xy + My,yy + Ny (1+V,y − W/R)/R + [Nx W,x + Nxy (W,y + V/R)],x

+ [Nyx W,x + Ny (W,y + V/R)],y + Nyx V,x/R+ p (1 + U,x + V,y − W/R) = 0 (2)

where p is the normal pressure, and px, py are the load components per unit area in the axial 
circumferential directions. The displacement components and resultants appearing in these eq
are shown in their positive sense in Figs. 1, 3. The stress and moment resultants are found fr

Nx = J[U,x +υ (V,y − W/R) + εxo + υ εyo] + D W,xx/R
Ny = J[V,y - W/R+ υ U,x + εyo + υ εxo] − D (W,yy+W/R2)/R

Nxy = υ1[J(U,y + V,x + γxyo + D(V,x/R + W,xy)/R]
Nyx = υ1[J(U,y + V,x+γxyo + D (U,y/R− W,xy)/R]

Mx = −D[W,xx+ υ W,yy + (U,x + υ V,y)/R]
My = −D[W,yy+ υ W,xx + W/R2]
Mxy = −(1−υ) D [W,xy + V,x/R]

Myx = −(1 − υ) D [W,xy + (V,x − U,y)/2R] (3)

where J = Eh / (1−υ2), D = Eh3/[12(1−υ2)], E, υ are the Young’s modulus and Poisson ratio, υ1 = (1− υ)/
2, and the mid-surface nonlinear strain components are given by

εxo = [U 2,x + V 2,x + W2,x]/2
εyo = [U2,y + (V,y − W/R)2 + (W,y + V/R)2]/2 

γxyo = U,x U,y + V,x(V,y − W/R) + W,x (W,y + V/R) (4)

Eqs. (2-3) contain 11 relations involving 11 unknowns, requiring reductions to obtain a pra
system. The solution is subject to boundary conditions at the top and bottom edges of the she

In the determination of the buckling load a deformed state adjacent to the equilibrium state is soug
The displacements and resultants are thus assumed to have the form 

(U, V, W) = (Uo, Vo, Wo) + (U1, V1, W1)

Fig. 3 Stress and moment resultants
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(Nx, Nxy, Nyx, Ny) = (Nxo, Nxyo, Nyxo, Nyo) + (Nx1, Nxy1, Nyx1, Ny1)
(Mx, Mxy, Myx, My) = (Mxo, Mxyo, Myxo, Myo) + (Mx1, Mxy1, Myx1, My1) (5)

where the subscripts o and 1 correspond to prebuckling and infinitesimal incremental states respectively
The expressions (5) are substituted into the governing Eqs. (2) and the expressions for the re

(3-4). Simplification leads to the governing system of equations for the buckling problem. Sinc
incremental stress resultants include some prebuckling terms there are some nonlinear preb
terms in the final equations. The prebuckling terms are considered small so that the no
prebuckling terms are dropped from the final equations. The final equations are lengthy and ar
in full by Mirfakhraei (1999).

4. Boundary conditions

The solution defined in the preceding section is subject to boundary conditions on the shell edges. 
the present problem clamped conditions apply for the bottom edge and free conditions for the to
The clamped conditions enforced at the bottom edge are given simply as u = v = w = w,x = 0. The free
boundary conditions enforced at the top edge are

Nx = 0; Tx ≡ Nxy − Mxy/R = 0
Mx = 0; Sx ≡ Mx,x + (Mxy+Myx),y = 0 (6)

where Sx and Tx are effective shear forces. The first and third conditions are immediately converted
into displacement form using the linear parts of the expressions for the resultants (3). The Tx and Sx

conditions are converted respectively using;

J[U1,y (1 + Uo,x) + V1,x (1 + Vo,y − Wo/R) + U1,x Uo,y + V1,y Vo,x − W1 Vo,x/R + W1,y Wo,x
+ W1,x (Wo,y + Vo/R) + V1 Wo,x/R] + 3D (W1,xy + V1,x/R)/R = 0

W1,xxx + (2 − υ) W1,xyy + U1,xx − υ1 U1,yy + υ 2 V1,xy = 0 (7)

where υ2 = (3 − υ)/2.

5. DQM solution

The basis of the DQM is the representation of the derivatives of a function f(x) by a weighted sum of
trial function values in the domain, i.e.,

(8)

Here the Aij
(r) are the unknown weighting coefficients of the r-th order derivative at the i-th sampling

point in the domain, and M is the number of sampling points in the x direction. For the current study

drf

dx
r

-------
x x1=

Aij
r( )f xj( )

j 1=

M

∑=
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sets of trial functions are required for both of the coordinate directions x and θ.
Polynomial test functions are used here in the longitudinal direction. The functions are taken

(9)

For these functions explicit formulas for the weighting coefficients in (8) are given as

The weighting coefficients for higher order derivatives may be obtained through recurrence relatio
(Bert and Malek 1996).

A spacing of sampling points that proved successful in the solution of earlier shell problems (Be
Malek 1996, Mirfakhraei and Redekop 1998) is used in the axial direction. At each sampling
either the DQM analogue of a governing equation for the domain is represented, or a bo
equation. For shells there are four conditions at each boundary, while there are only three governing
equations. It is necessary to enforce one of the boundary equations at an interior point. This point, a ‘δ
point’, is taken a short distance (δ ≅ 10−4 on a unit domain ) from the boundary point. For the pres
problem the first three of the conditions (6) replace respectively the first, second and third d
equations at the sampling point m, while the final condition replaces the third domain equation at 
sampling point m-1. As the DQM approach is displacement-based these conditions must be con
into displacement form.

Harmonic test functions (Bert and Malek 1996, Mirfakhraei and Redekop 1998) are used 
meridional direction in this problem of cyclic periodicity. Continuity conditions across θ = 360o are
then satisfied identically. The test functions are taken as

f(θ ) = cos [2(k − 1)πθ]; k = 1, 2, 3, ..., N/2 + 1
f(θ ) = sin [2k − N/2−1)πθ]; k = N/2+2, N/2+3, ..., N (11)

f x( ) 1 x x2 … xM 1–, , , ,=

Aij
1( ) π xi( )

xi xj–( )π xj( )
------------------------------- i j,; 1 2 … M; i j≠, , ,= =

π xi( ) xi xj–( )
j 1=

M

∏ ; i j≠=

Fig. 4 DQM mesh
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where N is an even number. For equally spaced sampling points the weighting coefficients may r
be found from the inverse of a Vandermonde matrix. A sample DQM mesh is given in Fig. 4.

5. Pre-buckled state

Prebuckling displacements and stress resultants are present in both the buckling equations
boundary conditions. They are found as a preliminary step of the buckling analysis. The wei
coefficients of the DQM are found at this stage, and these same weighting coefficients are used 
the buckling load determination. As it can be assumed that prebuckling displacements are sm
linear equilibrium equations of Flügge are adopted. These are given by

U,xx + υ1 U,yy + υ3V,xy − υW,x/R + κ(υ1 U,yy + RW,xxx− υ1 RW,xyy) = 0
υ3 U,xy + υ1 V,xx+ V,yy− W,y/R+ κ(3υ1 U,xx + υ2 RW,xxy) = 0

υU,x + V,y − W/R+ κR2(υ1 U,xyy − U,xxx − υ2 V,xxy

− RW,xxx − 2RW,xxyy − RW,yyyy − 2W/,yy/R− W/R3) = −P (12)

where υ3 = (1 + υ)/2, κ = h2/(12R2), and P is the normal pressure. Eqs. (12) are used to determ
the prebuckling displacements first for the hydrostatic pressure loading, and then for the equ
static loading.

6. Buckling load analysis

The governing equations are enforced at each of the domain mesh points with relations (8) 
replace the derivativers. A set of algebraic equations is set up in terms of the displac
commponents at the mesh points. Considering ‘M’ mesh points in the logitudinal direction, and ‘N’
points in the circumferential direction, there will be 3MN algebraic equations, including the bounda
equations. There will also be 3MN unknown displacement components, and the buckling lo
parameter λ. The assembly of the domain and boundary equations yields a matrix equation of the

(13)

The matrix Kb consists of the terms for the DQM analogue of the buckling equations and
boundary conditions. Matrix Kbg includes the displacement terms which have a coefficient of 
buckling load. Matrix Kp1 includes the prebuckling terms due to hydrostatic pressure, and Kp2 the
prebuckling terms due to the equivalent static load arising from unit acceleration. The resultant m
on the two sides are full, and thus static condensation, often used in the DQM, is not possible her
matrix is of size 3MN. The vector ∆b contains the displacements corresponding to the boundary po
while ∆d the displacements corresponding to the domain points. The smallest eigenvalue λmin may be
found directly using standard eigenvalue extraction routines.

Based on the procedure outlined in the preceding a MatlabTM computer program named tankeq.m was
developed. The DQM results given in the following are based on this program.

Kb Kp1+[ ]
∆b( )

∆d( ) 
 
 

λ Kbg Kp2+[ ]
∆b( )

∆d( ) 
 
 

=
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7. ADINA FEM analysis

The ADINA (Bathe 1996, ADINA 1998) program version 7.3 was used to find FEM res
Isoparametric eight-noded shell elements were used. A linearized buckling analysis was carri
using starting vectors generated using the Lanczos method. The non-uniform load was input 
tabular form of the spatial functions for the distribution given in Fig. 2.

8. Validation

The validation analysis is for a tank which has L = 7.5 m, R = 15 m, h = 15 mm. These data are
representative of short tanks. For this tank and others considered in this study a Poisson ratio ofυ = 0.3
and a Young’s modulus of E = 200 GPa was used. The loading considered for the validation was th
the equivalent static loading. A convergence study was conducted for each of the two m
considered.

The validation results are presented in Tables 1-2. Table 1 gives the results in the DQM an
while Table 2 the results for the FEM analysis. There is a steady convergence for both metho

Table 2 Convergence of ADINA results

Solution Mesh λmin

1
2
3

60×20
80×30
100×40

2.920
2.841
2.817

Table 1 Convergence of DQM results

Solution N : M 12 14 16

1
2
3
4
5
6

30
34
38
40
42
46

5.4724
3.7383
3.1311
2.9942
2.9130
2.8389

5.4835
3.7905
3.1765
3.0360
2.9514
2.8721

5.4919
3.7997
3.1849
3.0439
2.9587
2.8784

Fig. 5 DQM buckling mode Fig. 6 FEM buckling mode
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although for the DQM analysis the convergence is not as fast as was reported for the one-dime
DQM (Mirfakhraei 1999). The converged results of the two methods show close agreement.

Figs. 5 and 6 show the buckling modes for the tank as determined by the DQM and FEM metho
expected buckling occurs on the side where the load produces an inward pressure. The deform
the tank in the axial direction resembles a quarter sine wave in the buckled part. Buckling is see
due to excessive circumferential stress.

9. Parametric study

Results were computed for a number of tanks covering a wide range of the geometric para
Two loading cases were considered for each tank. The first loading case (Set 1) consists
equivalent static load. The second loading case (Set 2) consists of the hydrostatic pressure of th
(water) together with the equivalent static load. The hydrostatic pressure causes a prestress in 
and the equivalent static load causes buckling.

Table 3 gives results for the Set 1 loading case, while Table 4 gives results for the Set 2 loadin
For each load case results are given for three L/R ratios, three R/h ratios, and three values of the she
radius. Both DQM and FEM results are given for each tank, but only DQM solutions are given f
Set 2 loading case. A blank entry in Table 4 indicates that acceptable convergence was not obta
that geometric case.

In Table 3 there are three parameters that determine the buckling load; L/R, R/h and R. In each
instance when the L/R and R/h parameters are kept constant the buckling load decreses with an inc
of R. There is a nearly linear trend in the reduction of the buckling load. When the L/R and R parameters
are kept constant the buckling load decreases nonlinearly with an increase of R/h. Finally when the R/h
and R parameters are kept constant the buckling load decreases nonlinearly with an increase of L/R. For
the most part the DQM and FEM results of Table 3 agree within 5% although a maximum differe
16% is observed. Except for one instance the FEM results are more conservative than the DQM

The stabilizing effect of internal hydrostatic pressure on buckling is evident on comparing the r
of Tables 3 and 4. The effect is small for short tanks of small redius, but significant for long tan

Table 3 Comparison of results for set 1 loading case

L/R R/h
R= 1 m R= 5 m R= 10 m

DQM FEM DQM FEM DQM FEM

0.5
750 85.58 83.08 17.65 16.92 8.77 8.26

1000 42.78 40.88 8.52 8.15 4.23 4.08
1500 15.67 14.94 3.13 2.97 1.76 1.48

1.0
750 23.46 21.84 4.59 4.40 2.30 2.18

1000 11.35 10.68 2.21 2.13 1.10 1.07
1500 3.89 3.86 0.78 0.69 0.39 0.39

3.0
750 4.24 4.06 0.85 0.83 0.43 0.41

1000 1.98 1.98 0.40 0.40 0.20 0.20
1500 0.66 0.71 0.14 0.14 0.07 0.07



Comparison of elastic buckling loads for liquid storage tanks 169

7 times.
essed
mputer,
icated

current
ce. The
tudy.

been
 These
hose of
ng the

of the
ling

ature

liquid-

mena
large radius. The increase in buckling load due to internal pressure is seen to vary from 1.11 to 6
The issue of the relative efficiency of the DQM and FEM approaches was not addr

comprehensively in this study. Analyses using the two methods were carried out on the same co
with the FEM generally requring somewhat shorter calculation times. Howere there was no ded
effort to optimize the DQM calculation process, and the MatlabTM built-in computational routine
intended for relatively small matrices was used to extract the eigenvalues. It is believed that the 
study demonstrates sufficiently the usefulness of the DQM as a supportive computational resour
definitive determination of its relative efficiency with respect to the FEM is reserved for a future s

10. Conclusions

A solution for the elastic buckling problem of a seismically excited liquid-storage tank has 
presented. Stability equations stemming from the nonlinear Flügge shell theory were derived.
equations include prebucking terms in the boundary conditions, and are more general than t
Yamaki in that they can account for nonsymmetric cases. The equations were solved usi
differential quadrature approach. Numerical results obtained using the solution compare well with
results found using the finite element method. The study demonstrates the usefulness 
differential quadrature method as a supportive compuational resource in cylindrical shell buck
analysis
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