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Modeling of local buckling in tubular steel frames by
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Pether Inglessist, Samuel Medinat, Alexis Lépezt,
Rafael Febrest and Julio Flérez-Lopeztt

Universidad de Los Andes, Mérida, Venezuela

Abstract. A model of the process of local buckling in tubular steel structural elements is presented. It is
assumed that this degrading phenomenon can be lumped at plastic hinges. The model is therefore based on the
concept of plastic hinge combined with the methods of continuum damage mechanics. The state of this new
kind of inelastic hinge is characterized by two internal variables: the plastic rotation and the damage. The
model is valid if only one local buckling appears in the plastic hinge region; for instance, in the case of framed
structures subjected to monotonic loadings. Based on this damage model, a new finite element that can
describe the development of local buckling is proposed. The element is the assemblage of an elastic beam-
column and two inelastic hinges at its ends. The stiffness matrix, that depends on the level of damage, the
yielding function and the damage evolution law of the two hinges define the new finite element. In order to
verify model and finite element, several small-scale frames were tested in laboratory under monotonic
loading. A lateral load at the top of the frame was applied in a stroke-controlled mode until local buckling
appears and develops in several locations of the frame and its ultimate capacity was reached. These tests were
simulated with the new finite element and comparison between model and test is presented and discussed.
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1. Introduction

Local buckling is one of the main modes of collapse of slender metallic structures. This is why this is
an important subject in fields such as earthquake and offshore engineering. Extensive experimenta
analysis on the subject has been carried out. Karamanos & Tassoulas (1996), for instance, report th
following references on the subject: (Reddy 1979), (“Collapse” 1985), (“Effects 1988"), (“Hydrostatic”
1989) and (Kyriakides & Ju 1992). These works describe the behavior of steel or aluminum tubular
members of circular cross section. Additionally, Cleiral (1991) mentioned a report by Key &
Hancock (1985) that studies beam-columns of square hollow sections. More recently, the experimental
research carried out for the preparation of the Eurocode 9 (1998) on aluminum structures and the test
carried out at the Salerno University (Faatzal 2000) can be mentioned.

In order to predict the behavior of tubular elements with local buckling, three different approaches
can be found in the literature: semi-empirical methods based experimental analysis (see for instance
Mazzolani and Piluso 1992, Faediaal 2000), finite elements analysis using nonlinear 3D shell elements
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(For instance Ju & Kyriakides 1992, Chatnal 1991 and Karamanos &Tassoulas 1996) and “strength

of material approaches”, or more generally speaking, 2D analysis (Sohal & Chen 1987 and Karamanos
& Tassoulas 1996). A special mention must be made to this last approach that represents a simple an
effective procedure for the analysis of a complex phenomenon. All these approaches may be considere
as complementary and correspond to different aspects of an engineering application.

However, none of the aforementioned references considered the possibility of lumping local buckling

in plastic hinges. This paper and others by researchers of the $iyivérLos Andes (Inglessist al.
1999, 2000) propose a model of the behavior of steel frame members with local buckling that combines
concepts of continuum damage mechanics and the notion of plastic hinge. This approach has also bee
used for modeling the behavior of reinforced concrete structures where the main damage mechanism i
due to the cracking of the concrete (see for instance Perdbalo1999).

The range of applications of the model proposed in this paper corresponds to the case of large an
complex structures where the appearance of local buckling in one location may have a significant
influence on the behavior of the remaining members of the structure and on the appearance ant
development of local buckling in other locations. It is clear that more detailed analysis, like those based
on shell theories are inadequate for this goal. It is also important to underline that this influence may be
not negligible, since local buckling changes significantly the stiffness and strength ra&thleers
affected, and therefore it may force important stress redistributions in the entire structure.

This paper is organized as follows: in section 2 some experimental results that support the model are
presented. The model itself is described in sections 3, 4 and 5. Section 3 presents the stiffness matrix
a frame member with local buckling lumped in inelastic hinges. Section 4 introduces a local buckling
evolution law as a function of the plastic rotation of the hinge. Section 5 describes how the yield
function of the hinge is modified by the presence of local buckling. Section 6 introduces a finite
element based on this model that can be included in the library of standard structural analysis programs
Finally, section 7 presents the structural analysis of a frame with local buckling, and compares these
data with experimental results.

2. Experimental results obtained in steel tubular members subjected to bending

Some specimens representing steel frame members were subjected to bending. The elements we
supported by an enlarged end block simulating a rigid column and loaded at the tip as cantilever beam:
(see Fig. 1).

The specimens were subjected to series of loadings, in displacement-controlled mode, and unloadings
in force-controlled mode, as shown in Fig 1. Fig 2 shows the results obtained in a test carried out with a
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Fig. 1 Test on steel members: specimen and loading
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Fig. 2 Displacement at the tip vs. force in tubular steel member

tube of circular cross section (external diameter 60.3 mm, 2.6 mm of thickness, length 489 mm)

It can be noticed that the behavior of the element can be divided in three stages. First a zone o
guasilinear response, followed by a phase of plastic hardening that seems to stabilize and finally a
softening stage. The latter presents a behavior that could be represented by a straight line of negativ
slope. The last assumption corresponds to an idealization of the real behavior that is in fact much more
complex. In this sense, the model that will be proposed in the following sections is the equivalent of the
perfect plasticity model or the linear kinematic hardening model., i.e., a simplification that allows for a
gualitative representation of the real behavior although not always quantitatively accurate. Other
mathematical approximations could be used. For instance, in (Febres 2002) it has been explored th
advantages of the use of an exponential function instead of a linear function. However, it is important to note
that the influence of the specific softening representation is less critical as the frame is more complex.

The softening observed in the graph of Fig. 2 is due to the appearance of local buckling in the
plastic hinge region (see Fig. 3). Local buckling develmzsaising the strength of the tube up to its

Fig. 3 Local buckling in the frame member
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Fig. 4 Stiffness vs. permanent deflection

total collapse.

Another effect associated to the apparition of local buckling is a progressive loss of stiffness, as
shown in Fig. 4, that can be observed during the softening phase. In Fig. 4, thé cldpe elastic
unloading is plotted against the plastic or permanent deflettidrat corresponds to that unloading.

The meaning of the values @fandt® are indicated in the graph of Fig. 2.

The first part of the behavior can be modeled using the theory of elasticity; the second stage may be
represented using the conventional concept of plastic hinge. This is obviously not the case of the third
phase. The main goal of this paper is to propose an extension of the concept of plastic hinge that woul
allow the description of the three stages and the main phenomena observed during the tests, i.e., plast
deformations and the loss of stiffness and strength related to loddihguc

3. Modeling of local buckling in steel frame members with inelastic hinges

A member of the structure is isolated as indicated in Fig. 5. Matdtes (@, @, 9) Man@n,
m, n) define generalized deformations and stresses of the member. The supenseus “transposed” and
the interpretation of the elements of the matrices is indicated in Fig. 5.

Matrix @ is the equivalent of the strain tensor in continuum mechanics in the sense that it represents
changes of shape of the member. The madriis then the equivalent of the Cauchy stress tensor. The
relationship between the history of gealized deformations and the generalized stress matrix is called
in this paper “generalized constitutive model” or constitutive model fiamae member. For instance,
in an elastic element, the coitgtive law is given by (1):

M=S°@® or ®=F°M (1)

whereS? is the elastic stiffness matrix afid the elastic flexibility of thdrame member.

In order to include local buckling and plastic effects, the member is assumed to be the assemblage o
an elastic beam-column and two inelastic hinges as indicated in Fig. 6.

The state law of the frame member is obtained by assuming an additive decomposition of the generalize
deformations in beam-column deformatio®d and hinge deformationg ™
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Fig. 5 Generalized stresses and deformations
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Fig. 6 Lumped inelasticity model ) ) o
Fig. 7 Lumped inelasticity model of the test

b=+ d"=F'M+o" (2)

In these inelastic hinges, plasticity as well as local buckling is lumped. Therefore, it is assumed that
hinge deformations result from plastic rotatiofs = (¢", (g”, 0), as defined in conventional plastic
theories for frames, and an additional term specifically related to local budkfing

®=FM + ®°+ @° 3)

It can be noticed that permanent elongations of the chord are neglected. This is a simplifying
assumption and not a requirement of the model. The local buckling rotations depend on the “degree of
local buckling”. In order to characterize the state of local buckling, a new set of internal variables is
introduced:D' = (d,, d;), where parameter andd; represent the level of damage of hingesd].

These damage parameters can take values between zero and one. Zero represents a congtictional pla
hinge without local buckling. In order to represent the loss of stiffness observed in Fig. 4 due to local
buckling, the following expression of the local buckling deformati®iss introduced:

@' = c(D)M 4)

whereC(D) is a diagonal matrix whose non-nil terms &g:=dF,{ /(1 - d) andC,,=dF,3/(1 - d). These
expressions can be justified on the basis of concepts of continuum damage mechanics (Florez-Lépe:
1998). The flexibility matrix of a frame member with local buckling can be obtained sitatibn of

Egs. (4) in (3):

®- "= F(D)M orM = S(D)(®- @) (5)

where
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F(D) = F°+C(D) andS(D) = F(D)™ (6)

4. Local buckling evolution law

The test discussed in section 2 of the paper is again considered. This test can be modeledtigsing pla
hinges with damage as represented in Fig. 7.
The following boundary conditions applies to the problem represented in Fig. 7:

t t’
m=PL m=0 @=r; qut; d=d; d =0 7

WheretP is again the permanent deflection measured at the end of estit@idoading. The state law
(5) and the precedent boundary conditions determine the relationship between force and deflection during
the test:

P=Z(d)(t-t") wherez(d)=(1-d2z°, Z°=>= ®)

The termZ is again the slope of the elastic unloading during the Z&st the initial slope before
local buckling. The second of Egs. (8) suggest an experimental procedure for the determination of the
local buckling state in the hinge from the graph of Fig. 4 (Ingletsid 1999):

d=1-29) (9)

It is now possible to obtain the plot of damage in the hinge against plastic rotation as shown in Fig. 8.
In order to describe the behavior observed in Fig. 8, the following “local buckling function” is
introduced for each inelastic hinge of the structure:

g = |¢f| -R(d)<0 (10)

The local buckling evolution law can now be written as:

Edi =0 if gi<0 gi<0
0

_ (12)
Odi>0 if gg=0 g =0

In other words, local buckling evolution is only possible if the plastic rotation of the hinge reaches
some critical value or “local buckling resistai R. This notation is suggested by an analogy with
Fracture Mechanics. In the monotonic case, the “local buckling driving variable” is the plastic rotation
of the hinge.

It is assumed that the local buckling resistaRag a function of the damage, i.e., the local buckling
state, of the hinge. Functidtican be identified from the graph of Fig. 8. For instance, a straight line of
slopeb and intersection with the plastic rotation gxecan represent the tendency observed in the
figure. In this case, the corresponding local buckling resistance has the following expression:
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Fig. 8 Damage against plastic rotation in the hinge

R(d) = P+ 12)
The evolution law defined by Egs. (11)-(12) is only valid in the case of monotonic loadings. In a more
general case, more than one local buckling may appear in the plastic hinge region and the use of onl)
one damage parameter and the plastic rotation as local buckling driving variable as proposed in this

paper would not be sufficient.

In the examples presented in the following sections, the parameterdb are obtained from experimental
results. This procedure is not the most convenient for real engineering applications. A systematic anc
rational procedure for the determination of local buckling parameters must beslksthli the model
is to be used in the engineering practice. This is a problem that remains open, that reqtioealadd
experimental and theoretical work, and that will not be addressed in this paper. However some genera
ideas are discussed in the conclusions of the paper.

5. Plastic rotation evolution law
The yield function of a plastic hinge without local buckling can be written in the following way:
fi = |mi _Xi| —me (13)

wherex; is a kinematic hardening term angd is the last elastic moment of the cross section member.

As aforementioned, plastic hardening in the member can be developed to an important degree, close t
saturation, before local buckling appears. Therefore, some kind of non-linear kinematic law is needed
to describe the behavior of the hinge before local buckling appears. For instance, in the numerical
simulations presented in the nest section, the one proposed by Chaboche (1978) was used:

x = B(m,—mydf —px|d|  x = 0forgi= 0 (14)

Wherem, is the ultimate moment of the cross section Ansl a member-dependent parameter. The
meaning of the term®, andm, is illustrated with the help of the conventional concepts of the strength
of materials in Fig. 9.
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Fig. 9 (a) Stress distribution in the cross section when the moment reaches thexvalygielding stress).
(b) Stress distribution for the ultimate moment
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Fig. 10 Exact moment-curvature relationship for different cross sections after (Chen and Sohal 1995)

The velocity of the transition from the last elastic monmastb the ultimate momemh, depends on
the shape of the member cross section as shown in Fig. 10.

With the law (14), the evolution fromm, to m, in the plastic hinge is represented by an exponential
law and the velocity of the transition is given by the paranf&tsrshown in Fig. 11. Thus, the constant
[ must be computed to fit the specific hardening velocity for each particular cross section.

Plastic rotation evolution law can now be described by an equation similar to (11):

m

mP
m 8 m=m,+(m, —m ) 1-e7)
»r
mC
m=-m, —(m, ~m,)(1-e")
m,

Fig. 11 Moment rotation relationship
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=0 if f<0 fi<O
%?'p ' ' (15)
Og'#0 if =0 fi=0

As aforementioned, when local buckling appears in the plastic hinge region, a sudden loss of strengtt
is observed in the member. Therefore, the maximum moment of the cross section is nadoger
lower value that depends on the local buckling state. In order to model this phenomenon, the concept o
“equivalent moment” is introduced. This concept is similar to that of equivalent stress used in poro-elasticity
and damage mechanics. The equivalent momment  on a plastic hinge with damage is defined as:

m = (16)

M
1-d

Then, the yield function of a plastic hinge with local buckling can be obtained by introducing the
effective moment instead of the conventional moment in expression (13).

m.
fi = I

= lle—xI

—me a7

In continuum damage mechanics, this procedure is called “hypothesis of equivalence in deformations”. The
plastic rotation evolution law is now defined by this yield function with the unmodified expressions (14-15).
In some cases, local buckling appears in the plastic hinge region beforestiehaladeningeaches
saturation. The model can reproduce this situation by an adequate choice of the pgBamEtgr§l4)
andp in expression (12).

6. Formulation of a finite element with local buckling

Fig. 12 shows the degrees of freedgm@and the nodal forceQ in a frame element. The relationship
between generalized deformatiogsand the elements degrees of freedom can be obtained by simple

Qs 95

Q, 44

Q, 9

Q. Y%
Q; q;

Q q

Fig. 12 Degrees of freedom and nodal forces in a Fig. 13 Physical configuration of the member
frame element
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geometrical considerations. In the general case, including geometrically nonlinear effects (see Fig. 13), thic
relationship is:

@ = d3—(a,—0a(q)); ¢ =ds—(ap—0a(q)) o0=L(q)-L, (18)

Where
a = tan ((AYe+ Gs — Gy)/ (AXo + Gs— Gy));

L = J(AYy+ Qs —0p)° + (DX + 0y — 0y)° (19)

In Egs. (18)-(19), the terms with the index O represent quantities in the reference configuration.
The relationship between generalized strebsesid nodal force® can be obtained by considering
the equilibrium of the member in the deformed configuration:

Q

Qs

Egs. (18)-(20) and the constitutive model defined by expressions (5,6, 10-12, 14-17) constitute a se
of equations that define a conventional finite element. This element has been implemented in a
commercial F.E. program that allows nonlinear analysis (Inglessis 2000).

(m; + mj)(sina/L) —-ncosx; Q,=—(m + mj)(cosa/L) —nsina; Q;=m

—(m; + my)(sina/L) + n cosa; Qg = (M + m)(cosa/L) +n sina; Qg =m (20)

7. Verification of the model

In order to verify the model, another series of tests was carried out in laboratory. (Medina 1998) This
time, the specimens consisted of a steel frame of two levels and two spans (see Fig. 14). The elemen
had rectangular hollow cross section and were welded at the joints. Nominal characteristics and
dimensions of the frame and its members are shown in Tables 1 and Fig. 14 respectively. The frame wa

i E
A 30 cm

Fig. 14 Tested frame

Table 1 Nominal characteristics of the tested frame

Frames H (mm) B (mm) e(mm)  sect. (mM  Ix (mnt) ly (mnt)
1 41.0 24.0 2.5 300 63970 26655
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Fig. 16 Identification test and numerical simulation

subjected to the same class of loading that was described in section 2 of the paper and that i
represented in Fig. 1. The experimental results of one of the monotonic tests are shown in Fig. 15.
Single elements of the frame were tested in order to identify the parameters of the model. Fig. 16

shows the results of the identification in one ofrtiember frame tests. The parameters are presented in

Table 2.

Fig. 15 shows the comparison between model and experimental results in the case of a frame. For th
sake of clarity, only four of the elastic unloadings are represented in the simulation. Fig. 17 indicates the
state of damage at the end of the four unloadings shown in Fig. 15. The numbers beside the hinge
represent the damage values. The first distribution presents six plastic hinges with no damage, i.e
without local buckling. It can be noticed that this state corresponds to the plastic hardening phase of

the test.
The maximum resistance of the frame is reached between the first and second elastic unloading of th
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Table 2 Parameters of the model

Test me (N-mm) b [ m, (N-mm)
beam 1 622722,28 1,30 0,210 760015,38 18,00
beam 2 715885,45 1,60 0,170 941438,45 21,00
column 1 583495,68 1,30 0,200 706078,80 18,50
column 2 764918,70 1,60 0,190 961051,70 20,00
beam 669303,86 1,45 0,190 850726,89 19,50
columns 674207,19 1,45 0,195 833565,25 19,25
9 0.00 @ 0.08
8. 00 o_og _%07 0. OZ)_
=000 - 00 000 007 - 08 —0-07
End 1° unloading End 2° unloading
® 024 ® 014 ® 0.40 $®0.14
0.24 0.24 0.39 ® 0.14 0.3%_
- ®0.15
w2024 025 _“_0.24 -2, 040 -2D-40 040

End 3° unloading End 4° unloading

Fig. 17 Damage distribution in the frame

simulation where a sudden change of the tangent slope can be appreciated. In the simulation, thi
modification of the tangent stiffness is due to the appearance of local buckling in the sam#tisix pla
hinges. Four new plastic hinges appear in the frame without local buckling while damage continues to
evolve in the first six hinges. After the third unloading, local buckling appears also in the four
remaining hinges. In the simulation, a slight additional modification in the tangent stiffness can be
appreciated when that happens. The test was stopped after the fourth unloading and the computed fin;
state of damage is shown in the last of Fig. 17.

8. Conclusions

The model presented in this paper constitutes an alternative approach for the analysis of structure
with local buckling. The authors believe that this alternative may be valuable in many engineering
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problems. It must be underlined that the structure analyzed in the precedent section corresponds to
very complex and expensive problem if, for instance, shell theory is to be used. On the other hand,
only ten finite elements were needed with the use of inelastic hinges that lumps local buckling as
well as plasticity. The ffierence of costs betwedoth kinds of analysis may be huge: expensive
commercial finite element programs vs. cheap direct stiffness programs; tens of thousands of
elements or even more vs. dozens or hundreds of elements at the most; parallel computers vs. PC
and so on.

When shell theory is used, only one joint of the structure or even only one element of the structure is,
usually, analyzed. Of course, this analysis is important and meaningful but one important phenomenor
has to be ignored: the coupling between local buckling in different locations of the structure. This
phenomenon cannot be neglected since the experimental results show important variations on the
stiffness and the strength of the individual member. The stress redistribution that results from the
stiffness modification changes the rate of plastic flow and local buckling in the entire structure.
Probably, in strategic structures such as those of the offshore engineering both analysis, shell anc
lumped damage, are needed.

The use of the lumped inelasticity model for local buckling description implies that the user has some
knowledge of the location where this phenomena can happen in the structure. The discretization of the
frame in elements must be carried out taking into account this fact. This is also the case of the
conventional lumped plasticity model without local buckling that has been extensively used in the
practice. In most cases this discretization does not present difficulties for the user and refinement of the
model is not customary. In this sense, the use of inelastic frame theories is more related with the direc
stiffness method than with the finite element method.

One important subject is that of the parameter determination. In the example presented in this
paper, these parameters welgtained via experimental identification of single elements of the
frame. The authors believe that this is also possible in the case of real engineering applications, sinc
metallic elements comes usually in a limited number of predetermined sizes. However this is
probably not necessary. For instance, the strength of materials approach or even shell theory might b
used for an estimation of the parameter values. In fact, this is the procedure employed for the
determination of the constants in the case of conventional plastic hinges: the values of the last elastic
momentm, and the ultimate moment,mare computed via strength of material analysis of individual
elastic-plastic beams.

The model discussed in this paper do not takes into account the influence of the axial force on the
development of local buckling. This influence can be determinant. A simplifying approach to this
problem could be the determination of the model parameters as a function of the axial force. An even
simpler approach can be the determination of these constants for a given average value of the axie
force. This was the case of the frame analyzed in the last section of the paper where it was assumed
zero value of the axial force average of all the frame members. A more rigorous approach would need
of the inclusion of permanent axial elongations and the use of some kindsiid fitav rule. In any
case, this remains also an open problem.

It might be argued that the strength of material approach could also be used to analyze frames with
local buckling and this is, of course, true. However, this is also the case of the plastic analysis of frames
without local buckling and, nevertheless, practitioners usually prefer the use of plastic hinges. The
reason is that even when compared with strength of material approaches, the use of plastic or inelasti
hinges is considerably simpler and cheaper and provides for very good results. It is the hope of the
authors that this may be also the case for local buckling.
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