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Abstract.  ‘Distortional buckling’ is one of the predominant buckling types that may occur in a 
steel-concrete composite box beam (SCCBB) under a negative moment. The key factors, which affect the 
buckling modes, are the torsional and lateral restraints of the bottom plate of a SCCBB. Therefore, this 
article investigates the equivalent lateral and torsional restraint rigidity of the bottom plate of a SCCBB 
under a negative moment; the results of which show a linear coupling relationship between the applied 
forces and the lateral and/or torsional restraint stiffness, which are not depended on the cross-sectional 
properties of a SCCBB completely. The mathematical formulas for calculating the lateral and torsional 
restraint rigidity of the bottom plate can be used to estimate: (1) the critical distortional buckling stress of 
SCCBBs under a negative moment; and (2) the critical distortional moment of SCCBBs. This article 
develops an improved calculation method for SCCBBs on an elastic foundation, which takes into account 
the coupling effect between the applied forces and the lateral and/or torsional restraint rigidity of the bottom 
plate. This article analyzes the accuracy of the following calculation methods by using 24 examples of 
SCCBBs: (1) the conventional energy method; (2) the improved calculation method, as it has been derived 
in this article; and (3) the ANSYS finite element method. The results verify that the improved calculation 
method, as it has been proved in this article, is more accurate and reliable than that of the current energy 
method, which has been noted in the references. 
 
Keywords:    steel-concrete composite box beam; elastic foundation beam method; distortional 
buckling; rotational restraint stiffness; lateral restraint stiffness 
 
 
1. Introduction 

 
The steel-concrete composite box beam (SCCBB) is an important type of lateral-load-carrying 

composite element, in which shear connections attach the concrete slab to a steel-box beam, and, 
thereby allow the steel-box beam and concrete slab to carry loads jointly (Ipe et al. 2013, Li et al. 
2014). The salient characteristics of a SCCBB are as following: they are light-weight, they have 
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Fig. 1 Distortional buckling of a SCCBB under a negative moment 
 
 

strong torsional resistance, and they are very good in durability. These types of components 
possess a high compressive resistance owing to concrete and an excellent tensile resistance owing 
to steel-box beam. Besides, SCCBB is an environment-friendly structure (Zhou et al. 2015). Being 
an economical and reasonable structure, SCCBBs are widely being used throughout the world for 
composite girders and slab systems (Gara et al. 2011, Champenoy et al. 2014). Distortional 
buckling is an important type of buckling specific to SCCBBs, which differs from the 
conventional lateral-torsional buckling and usually occurs in the hogging regions of SCCBBs. Fig. 
1 shows that the distortional buckling of a SCCBB may cause simultaneous web deformation and 
lateral-torsional deflection of the bottom plate owing to the restraint of the concrete slab (Chen 
2005, Jia and Chen 2009, Chen and Jia 2010).The findings relating to the ultimate bearing capacity 
of a continuous I-steel concrete composite beam disclosed that the distortional buckling, the local 
buckling, or alternatively an interactive mode of both previously mentioned buckling govern the 
ultimate bearing capacity (Chen 1992, 2005, Jia and Chen 2009, Chen and Jia 2010). In fact, the 
above findings were earlier reported by the Swedish code for light-gauge metal structures in 1982, 
when they deemed the distortional buckling analysis of an I-steel-concrete composite beam in a 
negative moment area to be an elastic foundation beam under constant axial force, i.e., the method 
of elastic foundation beam under constant axial force (Swedish Institute of Steel Construction 
1982). British Bridge Standard [BS5400] (British Standards Institution 1982) also employs the 
aforementioned method for the design of steel-concrete continuous composite beams. Svensson 
(1985), Williams and Jemah (1987), and Goltermann and Svensson (1988) have suggested to 
increase the area involved in the steel-beam web, thereby improved the elastic foundation beam 
method; they use the restraint stiffness as a constant cross-sectional property and do not consider 
the coupling effect between the applied forces and the lateral and/or torsional restraint stiffness of 
the steel-beam bottom plate. The British Steel Structure Institute (Lawson and Rackham 1989) 
used another energy method often employed to compute the distortional buckling of 
I-steel-concrete composite beams, which gives a way to determine the critical buckling stress of an 
I-steel-concrete composite beam under a negative moment. Owing to the limited capacity of 
computation at that era, the aforementioned studies had not carried out the detailed analyses for the 
application of elastic foundation beam method in distortional buckling analysis of the 
steel-concrete composite beams. Chen and Ye (2010) and Ye and Chen (2013) suggested revising 
the involved part of the web of the I-steel-concrete composite beam, which is based on Svensson’s 
elastic foundation beam model, in which they discovered that the elastic foundation beam method 
was more reasonable than that of the energy method for distortional buckling of the 
I-steel-concrete composite beam. On the basis of their research, Zhou et al. (2012) proposed a way 
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to indicate the linear coupling relationship between the applied forces and the torsional and/or 
lateral restraint stiffness of the bottom flange. 

The aforementioned studies mostly concentrate on the study of I-steel-concrete composite 
beam, whereas the research on the usefulness of a SCCBB does exist but of limited scope. Jiang et 
al. (2013) presented a calculation model of SCCBB on the basis of stability analysis. By using 
energy method, they determined the formulas to calculate the critical bending moment of 
distortional and local buckling. Next, the researchers had not reported the distortional buckling of 
a SCCBB by using the elastic foundation beam method. 

On the basis of the coupling effect between the applied forces and restraint stiffness of the 
bottom plate, this article determines a way to calculate the lateral and torsional restraint stiffness of 
the bottom plate of a SCCBB under a negative uniform moment, thereby suggesting improvements 
in the elastic foundation beam method. This article further develops a way to calculate the critical 
distortional moment of a SCCBB by taking into account the coupling effect between the applied 
forces and the lateral and/or torsional restraint stiffness. To conclude, this article analyzes the 
accuracy of both the proposed mathematical models and the existing energy calculation methods 
by the way of examination of 24 examples. The proposed method provides a theoretical basis of 
further research for the analysis of distortional buckling considering the moment gradient and the 
ultimate bearing capacity of a SCCBB. 
 
 
2. Restraining stiffness analysis of a SCCBB’s web 

 
Fig. 2 depicts the cross-sectional dimensions of a SCCBB and its coordinate system. The 

distortional buckling of a SCCBB occurs along with the lateral deformation of the steel web, as it 
has been shown in Fig. 1. To simplify the calculations, the following assumptions have been 
formulated (Johnson and Fan 1991, Bradford and Gao 1992, Bradford and Kemp 2000, Tong and 
Xia 2007, Jia and Chen 2009, Chen and Jia 2010): (1) the lateral and torsional stiffness of the 
concrete slab are relatively higher, therefore, the top flange of the steel-box beam is restricted by 
the concrete slab; (2) the tensile resistance of the concrete slab is ignored; and (3) the vertical 
pre-buckling deformation of a SCCBB is neglected. 
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Fig. 2 Cross-sectional dimensions of a SCCBB and its coordinate system 
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In accordance with the above assumptions, the buckling model of a SCCBB can be simplified 
as it has been shown in the model (refer to Fig. 3), where the horizontal, torsional and vertical 
directions of both longitudinal edges of the bottom plate are restricted by springs. The vertical 
bend deformation, which occurred before the buckling of a SCCBB, is a stable deformation and 
does not occur again during the buckling of a SCCBB. Therefore, the springs of both longitudinal 
edges of the bottom plate in the vertical direction can be seen as rigid restraints (i.e., kyl = kyr = ∞). 

By considering the longitudinal reinforcements within the concrete slab of a SCCBB in a 
negative moment area, the compressive stress exerted on the bottom edge of the web can be 
expressed as (Bradford 1988) 

 1 x cz M y I  (1)
 

0.5s s t w w w
c

s t w f

A y A h A h
y

A A A A

 


   (2)

 

2t t tA b t ,  2w w wA h t ,  f f fA b t
 (3)

 
where, As denotes the cross-sectional area of the longitudinal reinforcements within the concrete 
slab, as it has been shown in Fig. 1, yc denotes the distance between the neutral axis and the bottom 
plate, ys denotes the distance between the neutral axis and the center of gravity of the longitudinal 
reinforcements within the concrete slab, hw and tw denote the height and thickness of the web of a 
steel beam respectively, bf and tf denote the width and thickness of the bottom plate of the steel 
beam respectively, bt and tt denote the width and thickness of the top flange of the steel beam 
respectively. Mx denotes the negative uniform moment acting on a SCCBB, I denotes the moment 
of inertia of the equivalent cross-section of a SCCBB. 

 
2.1 Rotation restraint stiffness analysis for the web of a SCCBB 
 
Fig. 4 shows the simplified model of the steel-box beam web, in which two transversal edges 

are simply supported at the ends. The junction between the web and the top flange remains fixed, 
whereas the junction between the web and the bottom plate is simply supported (Bradford and 
Kemp 2000, Chen 2005, Jia and Chen 2009, Chen and Jia 2010). The boundary conditions of the 
steel-box beam web can mathematically be expressed as follows (Chen 2005, Jia and Chen 2009, 
Chen and Jia 2010, Zhou and Jiang 2014) 
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(4)

 

where, ),1(12/ 23  ww EtD  μ denotes the Poisson’s ratio of steel, E denotes the elasticity 
modulus of steel beam, w denotes the buckling deformation function of a steel-box beam web, λ = 
l/n, n denotes the number of half wave, and l denotes the length of a SCCBB. 

The lateral deformation of the left web of a SCCBB can mathematically be expressed as a 
combination of cubic polynomial function f1(y) and trigonometric function that can be written as  
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Fig. 4 Web of a SCCBB under a compressive stress and a distributed moment 
 
 

(Jiang et al. 2013) 
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In accordance with the boundary conditions, the cubic polynomial function f1(y) can be 
expressed as follows 
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Next, the buckling deformation function of the left web of the SCCBB can be expressed as 
follows 

2 3

2 sinl l
w w w

y y y z
w c

h h h
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(7)

 

The rotational angle of the left longitudinal edge of the bottom plate can be expressed as 
follows 

0

sinl l
l

wy

w c z

y h





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 (8)

 

The bending strain energy of the left web of a SCCBB can be obtained in accordance with the 
tiny deflection theory (Jiang and Qi 2013), which can be written as 
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(9)

 

Substituting Eq. (7) into Eq. (9) leads to the bending strain energy of the left web of a SCCBB 
as follows 

2
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The deformation energy of the spring restraint of the left web can be written as 
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Substituting Eq. (7) into Eq. (11) leads to deformation energy of the spring restraint of the left 
web as follows 

1

2

2 24
l l

w

k c
U

h


 (12)

 

The external work of the left web of a SCCBB is equal to 
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Substituting Eq. (7) into Eq. (13) leads to the external work of the left web of a SCCBB as 
follows 

2
1
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420 1120
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c

h
W t h c

y

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(14)

 

The total potential energy of the distortional buckling of a SCCBB can mathematically be 
expressed as 

1 2U U W    (15)
 

According to the principle of minimum total potential energy, the following relations can be 
formulated (Liu et al. 2014, Ruocco and Minutolo 2014) 
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
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where, β = π2 / λ2, kφl1 denotes the rotational restraint stiffness of the left web, and cl denotes the 
general coordinates representing the distortional buckling deformation of the left web. 

The general coordinates cl cannot be equal to zero, subject to the distortional buckling of a 
SCCBB when it occurs. Therefore, the rotational restraint stiffness kφl1 can be solved with the 
eigenvalue of the following characteristic matrix 
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Eq. (21) shows a linear coupling relationship, which exists between the applied forces and the 
rotational restraint stiffness of the left web of a SCCBB. This detection indicates that the rotational 
restraint stiffness of the left web may not only be determined by using the features of a SCCBB’s 
cross-section, but it can also be depended on the applied forces. As a consequence, it may not be 
appropriate to use the restraint stiffness as a constant, which relates to the cross-sectional features 
of a SCCBB. 

According to the theory of elastic thin plate, the lateral distribution force exerted on the bottom 
edge of the left web can be expressed as follows (Timoshenko 2009, Atanackovic and Guran 
2012) 

 
3 3

3 2
2

l

l l
x w

w w
f D

y z y 
  

       
(22)
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z
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h h
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 

(23)

 

The lateral deformation of the right web of a SCCBB can be expressed by virtue of a 
combination of cubic polynomial function f2(y) and trigonometric function in the following 
manner (Jiang et al. 2013) 

 2 sinr r

z
w f y c




   
 

(24)

 

In the same way as of the left web and according to the principle of minimum total potential 
energy, the following equations relating to the right web of a SCCBB can be written 
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where, 
1r

k  denotes the rotational restraint stiffness of the right web, 
rxf   denotes the lateral 

distribution force exerted on the bottom edge of the right web, and cr denotes the general 
coordinates representing the distortional buckling deformation of the right web. 

The rotational angle of the right longitudinal edge of the bottom plate can be expressed as 
follows 

0

sinr r
r

wy

w c z

y h





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 (28)

 

The general coordinates cr cannot be equal to zero, when the distortional buckling of a SCCBB 
occurs. Therefore, the rotational restraint stiffness 

1r
k  can be solved with the eigenvalue of the 

following characteristic matrix 
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Fig. 5 Web of a SCCBB under compressive stress and lateral distributed stress 
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When solving Eq. (29), the rotational restraint stiffness can be obtained, which is given by 
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Eq. (30) shows that a linear coupling relationship exists between the applied forces and the 
rotational restraint stiffness of the right web. 

 
2.2 Lateral restraint stiffness analysis for the web of a SCCBB 
 
Fig. 5 illustrates a simplified model of the web of a SCCBB. The two transversal edges are 

supported simply, and the web and the top flange have a fixed junction (Jia and Chen 2009, Chen 
and Jia 2010). In the longitudinal direction, the junction between the web and the bottom plate is 
free. The boundary conditions of the web can mathematically be expressed as follows 

 

0,
0,

2 2

2 2

0,

0 0 0

0

w

w

z y h
y h

w

z

w
w w

y

w w
D

z y







 
 




   


        

(31)

 

The lateral deformation of either the left or right web of a SCCBB can mathematically be 
expressed by using a combination of cubic polynomial function f3(y) and trigonometric function in 
the following manner (Jiang and Qi 2013) 

 

 3 sin
z

w f y d

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(32)

 

According to the Eq. (31), the cubic polynomial function f3(y) can be expressed as follows 
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Therefore, the distortional buckling deformation function of both the left and right web of a 
SCCBB can be expressed as follows 
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2 3
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The lateral displacement function of the bottom plate can be expressed as follows 
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Similarly, in accordance with the principle of minimum total potential energy (Ruocco and 
Minutolo 2014), the following relations can be formulated 
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2
R


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where, kx1 denotes the lateral restraint stiffness of either the left or right web, and d denotes the 
general coordinates representing the distortional buckling deformation of the web. 

The general coordinates d cannot be equal to zero, when distortional buckling occurs, and, 
therefore, the lateral restraint stiffness kx1 of either the left or right web can be solved by the 
eigenvalue of the following characteristic matrix 

 

0 1 1 0 0xH k R S   (40)
 

When solving Eq. (40), the lateral restraint stiffness of either the left or right web can be 
obtained, which is written as 

1 0 0
1x

S H
k

R

 
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Eq. (41) determines that a relationship based on linear coupling exists between the applied 
forces and the lateral restraint stiffness of either the left or right web. 

According to the theory of elastic thin plate, the lateral distribution force of either the left or 
right web can mathematically be expressed as follows (Timoshenko 2009, Atanackovic and Guran 
A 2012) 
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3. Distortional buckling method of a SCCBB 
 

As it has been shown in Fig. 3, where the function of out-of-plane deformation of the bottom 
plate is v(x, z), therefore, the boundary condition of the bottom plate can be written as 
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The function of out-of-plane buckling deformation of the bottom plate can be expressed by 
using the trigonometric functions in the following manner (Jiang and Qi 2013) 
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According the boundary conditions, the trigonometric functions f4(y) and f5(y) can be given as 
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Therefore, the function of out-of-plane buckling deformation of the bottom plate can be written 
as 
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Similarly, according to the principle of minimum total potential energy, the neutral equilibrium 
differential equation of the bottom plate can be written as 
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(50)

 

where, ),1(12/  ,12/ 233  ffffy EtDbtI  
l

k and 
r

k denote the torsional restraint stiffness of 
the left and right edges of the bottom plate respectively, and kx denotes the lateral restraint stiffness 
of the bottom plate. 

By employing the Galerkin method (Jaberzadeh et al. 2013, Tinh and Minh 2013, Wang and 
Peng 2013) in the solution of Eq. (49), the following relations can be derived 
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(52)
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T

l rc c d  (58)
 

Since the functions of theoretical distortional buckling deformation, as they have introduced in 
this article, cannot accurately describe the buckling deformation of the actual models, and this can 
only be realized by increasing the additional constraints to the actual model. Therefore, (1) the 
restraint stiffness as it has been introduced in this article is higher than that of the real model, and 
(2) the critical distortional buckling stress as it has been calculated by theoretical method is greater 
than that of the actual model. To eliminate errors, this article recommends a reduction factor to be 
applied to the torsional restraint stiffness of the bottom plate; the value of which is found to be 0.5.  

The combination of Eqs. (50) and (52) leads to 
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where 

0 1 0 1
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2 2
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(60)

 

The deformation vector η cannot be equal to 0, when distortional buckling of a SCCBB occurs. 
Therefore, the distortional buckling of a SCCBB can be solved by the eigenvalue of the following 
characteristic matrix 
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When solving Eq. (61), the critical buckling stress of a SCCBB can be obtained, which is given 
by 

 1 2min ,cr t t   (62)
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3 2BH FH PQ    (68)
 

σcr denotes the critical buckling stress of a SCCBB and the following equation can be used to 
calculate the critical distortional buckling moment of a SCCBB 

 

cr cr cM I y (69)
 
 

4. Analysis of examples 
 
Both, the calculation method as it has been introduced in this article and the finite element 

method, were employed to analyze the distortional buckling of 24 examples of a SCCBB under a 
negative uniform moment. To validate the calculation method, as it has been proposed in this 
paper, Jiang’s method (Jiang et al. 2013) based on energy method was employed to calculate the 
distortional buckling in the aforementioned 24 examples. This article uses ANSYS commercial 
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software to conduct finite element analysis. The steel beam was modeled using a 4-node, 
quadrilateral, shell 181 elements. The aspect ratio of the mesh is kept close to 1, the mean mesh 
size varies between 0.1 m and 0.15 m, and approximately 48,000 finite elements were employed in 
the model. The Young’s modulus is equal to 2.06 × 105 N/mm2, whereas the Poisson’s ratio is 0.3 
and the yield strength is 345 MPa. The numerical simulations have been performed to represent 
the concrete slab of a SCCBB as constraints (Ye and Chen 2013). The end moments were exerted 
directly at the end of the model in the form of a stress gradient. The two degrees of freedom at two 
ends of beams in x- and y- directions are restrained and the torsion at the ends of a beam is thus 
restrained. The degree of freedom of one node at the left end in z-direction is restrained to meet the 
static balance requirements. In addition, two degrees of freedom of the top flange in x-and y- 
directions are restricted in the eigenvalue buckling analysis. Tables 1 and 2 figure out the 
geometrical dimensions and the results of each calculation method of 24 examples respectively, 
and Fig. 6 shows the error analysis of each method. 

 
 

Table 1 Geometrical dimensions of all examples 

Example No. hw/mm bf/mm bt/mm tw/mm tf/mm tt/mm l/mm 

1 

400 500 120 9 9 9 

4,000 

2 8,000 

3 12,000 

4 

300 500 120 8 8 8 

4,000 

5 8,000 

6 12,000 

7 

400 600 100 10 10 10 

4,000 

8 8,000 

9 12,000 

10 

400 600 100 9 9 9 

4,000 

11 8,000 

12 12,000 

13 

300 600 100 10 10 10 

4,000 

14 8,000 

15 12,000 

16 

400 600 120 10 10 10 

4,000 

17 8,000 

18 12,000 

19 

400 600 100 8 8 8 

4,000 

20 8,000 

21 12,000 

22 

400 500 120 8 8 8 

4,000 

23 8,000 

24 12,000 
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Table 2 Critical buckling moment, critical buckling stress and buckling modes of all examples 

Exam- 
ple No. 

Buckling 
modes 

Critical buckling stress /MPa Critical buckling moment /kN.m 

ANSYS Eq. (68) Jiang ANSYS Eq. (69) Jiang 

1 

Distortional

321.20 320.24 471.46 675.71 673.69 991.81 

2 322.00 319.99 471.46 677.38 673.15 991.81 

3 322.46 319.84 471.41 678.36 672.85 991.70 

4 

Distortional

259.69 256.27 373.06 347.85 343.26 499.70 

5 259.86 256.27 373.06 348.07 343.26 499.70 

6 260.22 256.21 373.02 348.56 343.18 499.65 

7 

Distortional

279.19 277.69 409.72 726.05 722.14 1,065.5 

8 279.61 277.69 408.72 727.14 722.14 1,062.9 

9 279.93 277.69 408.76 727.97 722.14 1,063.0 

10 

Distortional

226.39 225.12 331.90 529.41 526.44 776.12 

11 226.73 225.12 331.08 530.20 526.44 774.22 

12 226.98 225.12 331.12 530.78 526.44 774.31 

13 

Distortional

285.33 284.39 414.26 537.51 535.75 780.4 

14 285.86 283.50 413.89 538.52 534.07 779.7 

15 286.21 283.52 413.73 539.17 534.11 779.4 

16 

Distortional

279.16 276.86 407.00 742.21 736.10 1,082.1 

17 279.58 276.86 406.03 743.33 736.10 1,079.5 

18 279.90 276.86 406.06 744.17 736.10 1,079.6 

19 

Distortional

179.08 178.04 262.26 371.90 369.74 544.65 

20 179.30 178.04 261.62 372.37 369.74 543.32 

21 179.51 178.04 261.65 372.80 369.74 543.38 

22 

Distortional

254.16 253.28 372.56 474.80 473.15 695.97 

23 254.77 253.08 372.56 475.93 472.78 695.97 

24 255.12 252.97 372.52 476.59 472.56 695.90 
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On the basis of the results, as these have been presented in Table 2 and Fig. 6, the following 
conclusions can be inferred: 

(1) The results yielded by the calculation method, which has been introduced in this article, 
match well with the results of ANSYS. The limited discrepancies within the range of 3% 
validate the accuracy of the method, as it has been proposed in this article. 

(2) The length rarely affects the critical distortional buckling moment, with the same 
cross-section, of a SCCBB under a negative uniform moment. 

(3) The results yielded by the energy calculation method are larger than that of the finite 
element method under a negative uniform moment. This is owing to the restraint stiffness 
of the theoretical model, which is higher than that of the actual model. 

 
 

5. Conclusions 
 
This article revisits the traditional elastic foundation beam method and improves it by taking 

into account the coupling effect between the applied forces and the restraint stiffness of the bottom 
plate. By using a modified algorithm, this article develops a simplified calculation method for a 
critical distortional buckling moment of a SCCBB. This article further compares the proposed 
method with the traditional energy method by using the 24 examples and deduced the following 
conclusions: 

 

(1) A linear coupling relationship between the applied forces and restraint stiffness of the 
bottom plate exists. Therefore, it may not be appropriate to use the restraint stiffness as a 
constant relating to the feature of a cross-section of SCCBB. 

(2) The results yielded by the calculation method, as it has been introduced in this article, 
agree well with the finite element calculation method under a negative uniform moment. 
The discrepancies between the two methods are limited within the range of 3%, which 
validate the applicability of the method, as it has been introduced in this article. 

(3) The length rarely affects the critical distortional buckling moment with the same 
cross-section of a SCCBB under a negative uniform moment. 

(4) The results yielded by energy calculation method are larger than that of the finite element 
method under a negative uniform moment. Therefore, the traditional energy method is 
highly uncertain and needs to be improved. 
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